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ABSTRACT

Most simulation models output multiple
responses. Yet little research has been done in the
area of multicriteria optimization of simulation
models. This paper suggests a framework for the
multicriteria optimization of simulation models by,
first, discussing the unique difficulties of this problem
area along with important problem characteristics, and,
second, discussing the way that these problem
characteristics would affect the choice of a particular
technique.
Keywords: Multicriteria  Optimization, Goal
Programming, Decision Analysis,
Multiattribute Utility Theory.

1 INTRODUCTION

Simulation is one of the most useful modeling
tools for the design of manufacturing (and other) types
of systems. For example, Harpell, Lane, and
Mansour (1989), in a survey of large corporations,
noted that simulation ranked second in utilization from
among eight modeling tools. Simulation was ranked
first in terms of utility from among twelve modeling
approaches, in a survey of the OR Division members
of the Institute of Industrial Engineers (Shannon,
Long, and Buckles, 1980).

There are several reasons for the popularity of
simulation modeling, including the large number and
variety of specialized languages and software packages
to aid in the simulation modeling effort, such as
SLAM (Pritsker, 1986) and SIMAN (Pegden, Shannon
and Sadowski, 1990), and the fact that most graduates
from an IE curriculum have had at least one, and
possibly two, courses in simulation modeling. Also,
the concepts associated with the building of a
simulation model are perhaps easier to understand than
those associated with many other modeling techniques
(e.g., queueing theory).

Perhaps the main reason for the popularity of
simulation modeling is the fact that it provides the
most accurate modeling methodology. As noted by
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Evans and Haddock (1991), "simulation models can
incorporate a greater level of detail and capture the
time dynamic behavior of the system.” This differs
from other modeling techniques such as queueing
theory and mathematical programming, which model
a system from a steady state, or a static viewpoint.
The ability to model the time dynamic behavior of a
system is especially important when such things as
machine breakdowns, balking, starving, and other
transient aspects of systems must be analyzed.

Although simulation can provide a very
accurate model of a system, it is only an evaluative
(descriptive) as opposed to generative (prescriptive or
normative) modeling tool (Suri, 1984). As such,
optimization of a simulation model is typically done in
an ad hoc, trial-and-error fashion. That is , the
designer may input a "good design" to the model and
by examining the output (e.g., performance variable
values such as utilizations, production rates, etc.)
decide which variables to change in the design to
improve this output. However, there is no formal
guidance as to how these values should be changed
between runs. This formal guidance, or procedure, is
especially important when one realizes that there are
usually many performance variables (criteria) which
are output from a simulation model, and which must
be considered.

The fact that many of these performance
variables are conflicting makes the optimization
process even more difficult when there is no formal
guidance between iterations. For example, suppose
that an analyst is using a simulation model of a job
shop to analyze the routings of particular types of
parts. He notices that because of a bottleneck at a
particular work center the production rate for one part
type is not what he would desire. (This is
accomplished through analysis of the output from a
simulation model). So, he decides to change the
routing for that part type so that the operation(s) that
were being performed at the bottleneck work center
will now be performed at a different work center.
Yet, upon running the model with the new routing, he
discovers that the production rate for another part
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type, which also uses the new workcenter, is not what
he would desire. That is, the production rates for the
various part types are conflicting in nature since the
various part types must share resources. When there
are hundreds or even only 5 to 10 part types to
consider, expecting the analyst to implicitly trade off
the various production rates, without any formal
guidance, is unrealistic.

The purpose of this paper is to suggest a
framework, or set of guidelines, for the multicriteria
optimization of simulation models. This is
accomplished by examining the various characteristics
associated with this problem, and suggesting particular
techniques based upon these characteristics. The
problem of manufacturing system optimization will be
specifically addressed. = However, the principles
described will extend to optimization of any general
system described by a simulation model.

Many authors have discussed the general areas
of simulation optimization and response surface
methodology. For examples, see Smith (1973 and
1976), Biles and Swain (1979), Meketon (1987),
Wilson (1987), Jacobson and Schruben (1989), Myers,
Khuri, and Carter (1989), and Safizadeh (1990).
These reviews/discussions have generally not
emphasized the multicriteria aspect of the problem, as
is done in this paper. Related discussions can also be
found in Bengu and Haddock (1986), Cochran and
Chang (1990), Hopmans and Kleijnen (1980), Law
and Kelton (1991), Porta Nova and Wilson (1989),
and Shannon and Prakash (1990).

The next section of this paper contains a
formal definition of the problem, along with a brief
discussion of the unique aspects of this problem as
compared to the related area of multiobjective
mathematical programming. The third section contains
a discussion of the various characteristics of a problem
involving the multicriteria optimization of a simulation
model that would affect the specific technique chosen
for solving the problem. Following this, in the fourth
section of the paper, various techniques along with
their advantages and disadvantages are discussed.
These techniques are categorized according to the
timing of the articulation of the required preference
(tradeoff) information with respect to the optimization.
Finally, the fifth section of the paper contains some
general conclusions.

2 THE PROBLEM

A simulation can be viewed as a black box,
for which decision variable values and parameter
values are input, and output variable values are
obtained by running the model. Often, because of the

stochastic nature of the model (e.g., resulting from the
use of random variable values as input), the output
variable values are actually random variables. This is
depicted in Figure 1.

In Figure 1, the decision variables are denoted
as X,, ..., X,, the parameters as P, ..., P, and the
output variables as Y,, ..., Y,. The designer is
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Figure 1. Input and Ouput for a Simulation Model.

parameter values.

The objective of the designer is to choose the
values for X = (X, ..., X)) so that he is most satisfied
with the output variables values Y, ..., Y, that is,
optimize (Y,(X), ..., Y(X)) subject to X € X° where
the Y,’s are functions of X as expressed through the
simulation model, and X° implicitly represents any
constraints on X. (We will assume, without loss of
generality, that each of the Y’s are to be maximized).

This problem is comparable to the type of
problem addressed by multiobjective mathematical
programming algorithms (see Evans (1984) or
Rosenthal (1985)). It does differ however in three
important aspects:

1) The relationships between the X’s and the Y’s
are not of a closed form,

2) The Y’s may be random variables (i.e.,
stochastic as opposed to deterministic in
nature), and

3) The response surfaces may contain many local
optima.

These characteristics result in unique difficulties,

which may affect the particular technique chosen to

solve the problem.

In the discussion that follows, we will use the
following terminology.

1) Attribute: a measure associated with a
performance variable (e.g., the mean hourly
production rate for a part over a one day run
in parts per hour),

2) Goal: an aspiration level associated with an
attribute (e.g., achieve a mean hourly
production rate of 15 parts),

3) Objective: a direction associated with an
attribute (e.g., maximize the mean hourly
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production rate),

4) Criterion: anything that can be called an
attribute, goal, or objective,

5) Outcome: a point in the Y space, associated
with some input X.

The definitions for the first four terms are basically

the same as given in Zeleny (1982).

3 IMPORTANT PROBLEM
CHARACTERISTICS

The multicriteria optimization technique
chosen for a particular simulation model should
depend upon several important problem characteristics,

including:

1) the number of decision variables and criteria,

2) the nature of the response surfaces (e.g.,
convex or nonconvex),

3) the nature of the response variables
(deterministic or stochastic),

4) the run time for the model, and

5) the ability/desire of the decision maker to
articulate various types of preference

information, concerning tradeoffs between the

various criteria.

Obviously, the larger the numbers of decision
variables and criteria, the more complex the problem
will be. Of greater concern is the number of criteria
which must be handled. When this number gets very
large, many formalized techniques for the articulation
of the required preference information "break down",
and less formalized techniques (e.g., goal
programming) must be employed.

The number of decision variables is of great
concern only to the search technique; since the
designer must only provide preference information in
the outcome space.

The nature of the response surface (e.g.,
whether it is convex or nonconvex) is of concern
because this will affect the search technique employed.
For example, when there are many local optima, the
use of an unmodified local search technique is clearly
inappropriate.

Whether the response variables are
deterministic or stochastic is another important
characteristic. Obviously, the need to consider the
stochastic nature of responses makes the problem much
more difficult.

The run time for the model is especially
important if one uses a technique which employs a
progressive articulation of preferences. With this type
of approach, the designer must provide preference
information between runs of the model.

Finally, the ability/desire of the designer to
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articulate various types of preference information is
perhaps of greatest concern. For example, the
designer may only be able to express that one outcome
is preferred to another, but he may not be able to give
a marginal rate of substitution of one attribute for
another.

4 TECHNIQUES FOR MULTICRITERIA
OPTIMIZATION

Over the last 25 years, there has been a
tremendous amount of research in the broad area of
multicriteria optimization. Much of this research has
addressed multiobjective mathematical programming in
which objectives and constraints can be written as
closed-form functions of a problem’s decision
variables.

Because of the existence of multiple (and
conflicting) criteria, multicriteria optimization consists
of two aspects. First, information must be gathered
concerning the designer’s preference structure over the
multiobjective outcome space.  This preference
structure, which is subjective in nature, implicitly
defines the tradeoffs that the designer is willing to
make among the various criteria of the problem.
Second, the optimization itself must be performed in
order to identify the preferred design.

The many various techniques and
methodologies which could be wused for the
multicriteria optimization of a simulation model might
be categorized by the following characteristics:

1) the timing of the required preference
information vs the optimization,

2) types of preference information required,

3) types of decision variables considered (all
continuous, mixed, pure integer), and

4) types of objective and constraint functions

handled (all linear or at least some nonlinear).
With respect to the first characteristic, the articulation
of the designer’s preference structure can occur:

1) prior to the optimization (prior articulation of
preferences),

2) during the optimization (progressive
articulation of preferences), or

3) after the optimization (a posterior articulation

of preferences).

In the discussion that follows, we categorize
various methods which could be employed in solving
multicriteria optimization models, according to the
timing of this preference information.

4.1 Prior Articulation of Preferences

Basically, a prior articulation of preferences
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indicates that all information concerning the tradeoffs
that the designer is willing to make between the
criteria is obtained prior to the optimization process.
The three main types of formalized
techniques/methodologies which could be included in
this category involve the use of multiattribute value
functions, the use of multiattribute utility functions,
and goal programming.

4.1.1 Multiattribute Value Functions

A multiattribute value (MAV) function, v, is
one which maps the outcome space into the space of
real numbers

vi Y,..., Y, 2R
Usually v is scaled so that its range is [0, 1].
MAV function has the characteristic that:

Y>»Y &v(Y) > vY"
where Y’ > Y" indicates that the outcome Y’ is
preferred to the outcome Y". Hence once the MAV
function is formed the problem is one of

Maximize v(Y,, ..., Y,),

X

subject to X € X°.

The MAV function is determined through
detailed interview sessions between the designer and
an analyst, in which the designer expresses the
tradeoffs he is willing to make between the various
criteria: Y,, ..., Y,. (Keeney and Raiffa, Chapter 3,
1976).

The

There are several difficulties associated with
using this approach to optimize multiresponse
simulation models. First, the relationship between the
X's and Y’s are not of a closed form nature.
Therefore, a numerical search technique will typically
be employed in the process.

Second, with a value function, the stochastic
nature of the responses cannot be explicitly considered
since the function can only rank deterministic
outcomes. Hence, only the expected values of
outcomes may be
considered. One way to circumvent this difficulty is
to consider the variance of an outcome variable as one
of the attributes, or responses.

Third, when there are more than a few
attributes (or responses) to consider, the assessment of
a MAV function can be exceedingly difficult. One
way to get around this problem would be to select 3 or
4 of the most important criteria, and assess a MAV
function over these criteria. The other criteria could
be considered implicitly through the use of constraints.
For example, if the first three criteria were the most
important, then the problem might be expressed as:

Maximize v(Y,, Y,, Y,) over x
subject to: X € X%, Y; > b; for
ji=4,...,p.
See Mollaghasemi, Evans, and Biles (1991)
for an example of an approach which employed MAV

function for the optimization of a simulation model.
4.1.2 Multiattribute Utility Functions

A multiattribute utility (MAU) function, u, is
one which allows the ranking of probability
distributions over the outcome space. The function
itself is a mapping from the outcome space into the
space of real numbers:

u Y, ..., Y, 2R
This function is also usually scaled so that its range is
[0,1].

A MAU function has the characteristic that:

Y 2 Y"& EU(Y’) > EU(Y")
where Y’ » Y" denotes that the decision maker
prefers probability distribution Y’ to probability
distribution Y", and EU(Y’) denotes the expected
utility of Y’.

Once the MAU function has been assessed,
the problem can be stated as

Maximize EU(Y) subject to X € X5

X
1.e., choose the values of the X’s which maximize the
expected utility of the outcome.

The advantage of the use of a MAU function
is that the stochastic nature of the responses can be
explicitly considered.

The main disadvantage of the use of a MAU
function is that the assessment procedure is even more
difficult than the assessment for a MAYV function. The
reason for this is that the designer must express his
tradeoffs over lotteries in the outcome space.

4.1.3 Goal Programming Approaches

Goal programming involves the determination
of aspiration levels or goals for the various criteria,
and then using as an objective function a weighted
sum of the goal deviations.

The major difficulty with a goal programming
approach is that the objective function may not
represent the preference structure of the designer in an
accurate fashion.  For example, as noted by
Goicoechea (pp. 116-118, 1982), a goal program will
not necessarily lead to a nondominated solution; and,
its effectiveness as a design tool relies on the ability of
the analyst to capture the essential elements of the
problem as goals and constraints.

A major advantage of a goal programming
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approach is that the preference information required of
the designer (e.g., aspiration levels) is easier to
provide than the preference information required to
assess a MAV or a MAU function. Clayton, Weber,
and Taylor (1982) and Rees, Clayton, and Taylor
(1985) give examples of the use of goal programming
for the optimization of multiple response simulation
models.

4.2 Progressive Articulation of Preferences

A progressive articulation of preferences
typically involves sequential interactions between the
designer and a specialized optimization algorithm.
The designer specifies some "local information” (i.e.,
relative to a particular point in the outcome space: Y|,
..., Y) about his preferences over the
multidimensional outcome space. This specification of
local information allows the algorithm to formulate a
single criterion subproblem, which is then solved.
The new solution point and outcome is then presented
to the designer as a new reference point, from which
he can provide some new local information.

A key requirement in any algorithm that
would require a progressive articulation of preferences
is that the run time for the simulation must be
relatively short; otherwise, the designer may not be
able to participate in the entire process. For example,
a progressive articulation technique which required 12
iterations (which is not unreasonable) and one hour per
run, could require approximately 11 to 12 hours of the
designer’s time.

There are many different types of information
which could be required in a progressive articulation
of preferences. These might include:

1) A ranking of points in the outcome space,

2) A readjustment of aspiration levels from one
iteration to the next, or

3) Marginal rates of substitution between the

various criteria.
In most cases however, a technique involving a
progressive articulation of preferences will not require
preference information as difficult to provide as that
required to form a MAV or MAU function.

Montgomery and Bettencourt (1977)
employed the Geoffrion, Dyer, Feinberg (1972)
method (GDF method) to optimize a simulation model
with four criteria. The approach suggested involved,
first, the determination of response surfaces for each
of the four criteria by running the simulation model
several times; then, the GDF algorithm was interfaced
with the response surfaces to find the preferred
solution. Hence, there was no "direct” interaction
with the simulation model.
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In addition to the GDF algorithm, other
progressive techniques which have been applied in a
mathematical programming framework include those of
Rosinger (1981), Zionts and Wallenius (1983), White
(1980), and Masud and Zheng (1989). Of particular
interest from the standpoint of the optimization of
multicriteria simulation models is the algorithm
developed by Sadagopan and Ravindran (1986) which
allows nonlinear objective and constraint functions and
varying types of preference information from the
designer.

Also of great interest would be the concept of
interactive goal programming (Masud and Hwang,
1981), since the preference information required of the
decision maker is not extensive.

4.3 Posterior Articulation of Preferences

A posterior articulation of preferences would
involve the generation of all (or at least many)
nondominated solutions, and then having the decision
maker choose one of these nondominated solutions as
being most preferred.  Several researchers have
addressed this problem for the case where all of the
objective functions are linear (e.g., see Yu and
Zeleny, 1975).

However, the problem of generating all of the
nondominated solutions for a simulation model could
very well be intractable, especially for the case where
the uncertainty in the output variables is to be
explicitly considered. One may be able to generate
several nondominated solutions by solving p single
objective problems of the type:

Maximize Y,(X)

subject to: YX) > b for j =1,
o il i+, o, p
fori = 1, ..., p. The b’s would act as aspiration
levels, or required levels, for each of the performance
variables. Assuming then that each of the p problems
were feasible, one could attain p nondominated
solutions to the problem. These solutions would then
be presented to the designer who would choose his
most preferred solution.

Of course, one would still have the difficulty
associated with solving the individual, single objective
problems.

5 CONCLUSIONS

Undoubtedly, the best general method for the
multicriteria optimization of a simulation model would
involve some aspects of all three types of approaches:
prior, progressive, and posterior articulation of
preferences. In fact, the method discussed above
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under posterior articulation actually would involve a
combination of prior and posterior articulation (i.e.,
the designer would be specifying some information
about his preference structure just by his determination
of the aspiration levels, b).

Probably the most important point of this
paper is that there is no single overall best approach
for multicriteria optimization of simulation models.
Characteristics such as the numbers of decision
variables and responses, the nature of the response
surfaces, the ability/desire of the designer to provide
different types of preference information, and the run
time of the model are all important in determining
which technique to use for a particular situation.
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