Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

OBJECT-ORIENTED GRAPHICAL ANALYSIS

Catherine Hurley

Department of Statistics/Computer & Information Systems
George Washington University
Washington, D.C. 20052

ABSTRACT

Object-oriented techniques have long been used for
building simulation models, and more recently for an-
imating the simulation as it progresses. This paper
describes how object-oriented techniques may be used
in the output analysis phase of a simulation, using a
system designed for highly-interactive, graphical data
analysis.

1 INTRODUCTION

Object-oriented programming methods have been
popularized by modern graphical user interfaces. The
design of statistical software which takes advantage
of such techniques has been the subject of recent
research (McDonald 1986, McDonald 1988, Oldford
and Peters 1987, Tierney 1990, Pedersen 1991) Em-
phasis has been placed on software for exploratory
data analysis by means of highly-interactive and dy-
namic graphics (Stuetzle 1987, Buja et al. 1988, Hur-
ley 1987, Buja and Hurley 1990, McDonald, Stuetzle
and Buja 1990, Hurley and Oldford 1991). The vol-
ume by Cleveland and McGill (1988) is a collection
of papers giving a good introduction to the subject.
Modern systems for statistical graphics are

o Interactive: plots respond to user input, using
a command-style or mouse-driven interface. A
good example is point identification, where the
analyst uses the mouse cursor to select a point
in a scatterplot, causing a label identifying the
associated case to be printed.

e Dynamic: plots may change over time. Ex-
amples are point cloud rotations, where the co-
ordinates of points in a scatterplot move conti-
nously over time, and scatterplot brushing where
the colors of the points change (see, for exam-
ple Becker, Cleveland and Wilks 1987, Stuetzle
1987). Dynamic plots are typically interactive,

877

because plot changes are most usefully controlled
by the analyst.

o Extensible: Fewer systems are programmable,
like S (Becker, Cleveland and Wilks 1988) or
LispStat (Tierney 1990). Because of their in-
heritance properties, systems based on object-
oriented languages should be particularly easy
to extend.

This paper will briefly describe a new object-
oriented system for graphical data analysis, and dis-
cuss applications to analysis of simulation data. A
more complete description of the system is found in
Hurley and Oldford (1991). Our implementation is in
Common Lisp (Steele 1989) and CLOS (Steele 1989,
Keene 1988), an object-oriented extension of Lisp.
The graphics package is part of the QUAIL system
(for QUantitative Analysis In Lisp) (Oldford et al
1991), available soon for a variety of workstations.

2 OBJECT-ORIENTED PLOTS

Statistical plots are collections of objects such as
points, lines, labels and axes. In general, these ob-
jects are arranged in a hierarchy- a scatterplot con-
sists of axes, label and a pointcloud which itself con-
sists of points (see Figure 1). Similarly a scatterplot
matrix consists of pointclouds and labels, though ar-
ranged in a different format. An object appearing in
the plot has an associated piece of statistical data, for
the scatterplot it’s the entire dataset, for a point it’s
typically a case and for the pointcloud the collection
of cases. Each component of a plot we term a view,
so-called because it provides a graphical representa-
tion of some piece of data, called the viewed object. A
view object contains a reference to its viewed object,
and an image of a view is used as a graphical inter-
face to the viewed object. Simple views are views like
point symbols, axes and labels which do not contain
subviews, all other views are compound views.

878

C. Hurley

scatterplot

viewed obj: dataset

viewed obj: subjects

var: income

X axis pointcloud y axis

viewed obj: subjects

Xvar: income, yvar: age

viewed obj: subjects
var: age

point symbol 1

viewed obj: subject 1

drawing style: blue,circle..

point symbol 2

viewed obj: subject 2

drawing style: red,box..

point symbol 3

viewed obj: subject 3

drawing style: yellow,star..

Figure 1: Scatterplot hierarchy

Figure 1 shows the hierarchy for a scatterplot with
two axes, and a pointcloud containing three points. In
each rectangle, the items listed below the dashed line
are some of the attributes (slot names and values) of
the view- the viewed object, drawing styles for point
symbols and variables for the axes and pointcloud.

2.1 Drawing a Plot

In the terminology of object-oriented programming,
there is a draw-view generic function (or message)
which when applied to a view results in an image ap-
pearing on the screen. Compound views are drawn
by looping over their immediate subviews and recur-
sively invoking the draw-view function on each. As
a consequence of the inheritance properties of object-
oriented languages, a single draw-view method works
for all compound views. Simple views are at the bot-
tom of a plot hierarchy and must be drawn explic-
itly, using the drawing style parameters. Therefore a
draw-view method must be provided for each class
(type) of simple view.

2.2 Constructing a Plot

To construct a scatterplot, the user invokes the
scat-plot function on the data. A scatterplot ob-
ject is created, which itself constructs the appropriate
subviews (labels, axes and a pointcloud). Then the
pointcloud in turn constructs its subviews, the point
symbols. View construction is the primary occasion
on which information is passed from view to subview-

parameters provided by the user are used to initialize
the views.

2.3 User Interfaces

Each plot appears in a window on the screen, and ev-
ery view in a plot is mouse-sensitive. When the user
clicks on a window, the ‘closest’ (in some sense) view
is selected and handles the click. Typically the view
pops-up a menu, the analyst makes a selection, and
the selected operation is invoked on the selected view.
The next section demonstrates the variety of opera-
tions provided. Note that a view handles mouse-input
in the same way regardless of where it appears— a his-
togram axis offers the same menu choices as does a
scatterplot axis, guaranteeing a consistent, easy-to-
use interface. Of couse, operations can also be in-
voked using a traditional command-style interface.

2.4 Using the Toolkit

Since the plotting package is intended to be a toolkit
for statistical graphics, it is extendible and pro-
grammable . New kinds of plots may be built
without programming by overlaying and superimpos-
ing existing types of views. The programmer can
construct new view classes, inheriting from existing
views, and/or using them as subviews.

Object-Oriented Graphical Analysis

3 APPLICATIONS

The first section illustrates the capabilities of the plot
package with a graphical analysis of a simulation ex-
periment. The second section describes interactive
techniques for analyzing time-varying response vari-
ables.

3.1 A Multi-Factor Experiment
3.1.1 The Experiment

A simulation experiment was conducted to evaluate
a new method for variable selection in linear regres-
sion (see Thall, Simon and Grier, 1991). The new
method used cross-validation in an effort to beat ex-
isting methods in situations with considerable non-
informative predictor (noise) variables. Four factors
were varied as follows, with 1000 replications.

(1) algorithm (TYPE) cross-validation (CV),
stepwise (STEP) and backwards elimination
(BACK).

(i1) sample size (N) = 50,100,200

(ii) number of noise variables, (#NOISE), 5,10,20
(iv) correlation of noise variables (CORR), 0 or 0.75.
The response variables were

(1) percent of replications with correct variable se-

lection (%CORRECT).

(i) percent of replications with zero noise variable
selection (0-NOISE).

(iii) average squared error of the fitted values (MSE).

To compare the response variables, I constructed
a scatterplot matrix (Figure 2). A second plot (not
shown) separating the observations in each block was
constructed and linked to the scatterplot matrix. In
this way I could easily color groups of points in one
plot and see the groups color in associated plots. It
seems as both CV and BACK groups have a pair
of outliers; inspection of the data uncovers a tran-
scription error which exchanged %CORRECT coor-
dinates. Figure 3 shows the corrected data. CV ob-
servations separate clearly from the others for both
%CORRECT and 0-NOISE. The four remaining clus-
ters separate by TYPE and N.

As one might anticipate, sample size is the main
contributor to variation in MSE. Note also that in
plots involving MSE, points lie in pairs. Selecting the
points for inspection of the associated observations
shows that the pairs differ only by CORR. The struc-
ture of CV observations seems quite different from

879

the others; either group may be plotted separately
by highlighting the points and requesting a blow-up
plot.

Now we turn to a more detailed inspection of in-
dividual response variables. Figure 4 shows MSE on
the y-axis, with observations on the x-axis grouped
first by TYPE, and within TYPE by #NOISE. Gray-
scale color was used to separate by N, and shape for
CORR. The plot has a very clear pattern, with CV a
clear winner for #NOISE = 20, and correlated pre-
dictors having a negative impact on the fits.

We select a change variable operation from the plot
menu to switch to ACORRECT on the y-axis. Here
the points do not separate clearly by N, so each sam-
ple size group was examined in turn by making other
groups invisible. Figure 5 shows the plot for N = 100.
CV is the clear winner, with BACK beating STEP.
%CORRECT decreases as more noise variables are
present; CORR, is not a contributing factor. These
patterns are consistent over N values, and are similar
for 0-NOISE.

To summarize, the graphical analysis demonstrates
that the new CV algorithm is a big improvement over
the popular BACK and STEP methods, in the pres-
ence of large numbers of noise variables.

3.2 Time Plots

Time traces are frequently used in discrete-event sim-
ulation to show how a response variable changes over
time. Here I point out some of the advantages of
building interaction into such displays.

e Controlling the time interval. In a simula-
tion a variable trace produces a long series, too
long to view in a fixed-frame window. With a
scrolling window, one could easily scan the en-
tire series by moving the time interval. However
more sophisticated controls are necessary to ex-
pand and contract the visible time-interval, ad-
justing the aspect ratio. See Buja et al. (1988)
for some interesting examples.

e One way of conducting inference on a variable
traced over time attempts to induce approximate
normality and independence by batching the raw
observations. This may be done graphically by
constructing a slider which allows the user to ma-
nipulate the number of batches. As the batching
parameter is changed the time-plot updates au-
tomatically to show the new batch means. A nor-
mal QQ-plot and an auto-correlation plot could
also be controlled by the slider, allowing graphi-
cal assessment of normality and independence.

880

L\ T8
+ +
¢ ++| 8 +
MR I 8 o gty H g a,
o B % 'iin® ’
®, o8 e Siige %ﬂﬁ
® gty %
E+*;++ ¥ + + +;l~'
o + H & ¥ +
0% oo 0-NOISE o
Om m [
LK] (] '
3 g w o
x5 o :}H
+D *-I- o +++
$CORRECT
Wm0 oo e, B °
Koger o, P 1

2% wp .,

Figure 2: Scatterplot Matrix of Response Variables.
Shapes +, O, e used for TYPE =CV,BACK,STEP.

0.35 =
0.3 -
0.25 =
M o2 4 +# -
E 0.15 = B E ;Z‘::
e + _a
01 4, +H & & + ©
‘é‘; &] & |
L
0.05 = L r
rnoise:5,10,20 5,10,20 5,10,20
cv BACK STEP

Figure 4: Variation of MSE Across Factors.

Observations are separated by #NOISE within
TYPE on x-axis. Shapes 0O, + indicate
CORR =0,0.75; light,dark, black for N = 50,100,200.

C. Hurley
e L]
+ +
CE ++| 8 p s
Rl tarefiie
[*m H L) -'h'-ll- ~° *x
oe Frii W »
+-i¥#+++ + ;ﬂ-%
oo +* & ; +
0% oo 0-NOISE o
Om o o
LA J (] e
o g -
+ +
hz + +
4 + g+
;,!E - s B $CORRECT
“.“' Py ‘ ‘
P U

Figure 3: Corrected Response Variables.
Shapes +, O, o used for TYPE = CV,BACK,STEP.

0.8 =
O
ty
-}
0.6 =
%
C
0]
R 0.4+
R o
E + 9
p o
T 0.2 = + g_
o +
+ o
0.0
roise:5,10,20 5,10,20 5,10,20
cv BACK STEP

Figure 5: Variation of %CORRECT Across Factors.
Observations have N=100, and are separated by
#NOISE within TYPE on x-axis. Shapes O, + indi-
cate CORR =0,0.75.

Object-Oriented Graphical Analysis

ACKNOWLEDGEMENTS

The author thanks David A. Grier for providing the
data of section 3.1.

REFERENCES

Becker, R.A, W.S. Cleveland and A.R. Wilks 1987.
Dynamic Graphics for Data Analysis. Statistical
Science 2: 355-395

Becker, R.A, J.M. Chambers and A.R. Wilks
1988. The New S Language, Wadsworth and
Brooks/Cole.

Buja, A., C. Hurley and J.A. McDonald 1986. A
Data Viewer for Multivariate Data. In Computer
Science and Statistics: Proc of the 18th Symposium
on the Interface.

Buja, A., D.A. Asimov,C. Hurley and J.A. McDon-
ald 1988. Elements of a Viewing Pipeline for Data
Analysis In Dynamic Graphics for Statistics, Cleve-
land, W.S., McGill, M.E. (eds) Wadsworth and
Brooks/Cole.

Cleveland, W.S. and M.E. McGill 1988. (eds)
Dynamic Graphics for Statistics, Wadsworth &
Brooks / Cole.

Hurley, C. 1987. The Data Viewer: A Program for
Graphical Data Analysis. PhD Thesis and Tech.
Report, Statistics Department, University of Wash-
ington, Seattle.

Hurley, C. and R.W. Oldford 1991. A Software Model
for Statistical Graphics. In Computing and Graph-
ics in Statistics, IMA Volumes in Mathematics and
its Applications, vol. 36, Buja, A., Tukey, P. (eds),
Springer-Verlag.

Keene, S.E. 1988. Object-Oriented Programming in
Common Lisp, Symbolics Press and Addison Wes-
ley.

McDonald, J.A. 1986. Antelope: Data Analysis with
Object-Oriented Programming and Constraints. In
Proceedings of the A.S.A, section on Statistical
Computing

McDonald, J.A. 1988. An Outline of Arizona. In
Computer Science and Statistics: Proceedings of
the 20th Symposium on the Interface

Oldford, R.W. and S. Peters 1987. DINDE: To-
wards more Sophisticated Software Environments
for Statistics. SIAM Journal on Scientific and Sta-
tistical Computing.

Pedersen, J. 1991. Situations, Summaries and Model
Objects. In Computing and Graphics in Statistics,
IMA Volumes in Mathematics and its Applications,
vol. 36, Buja, A., Tukey, P. (eds), Springer-Verlag.

Stuetzle, W. 1987. Plot Windows. Journal of the
American Statistical Association 82(398):466-475.

881

Thall, P.F., R. Simon and D.A. Grier, 1991. Variable
Selection via Cross-Validation, Technical Report,
George Washington University.

Tierney, L. 1990. LISP-STAT An Object-Oriented
Environment for Statistical Computing and Data
Analysis, Wiley.

AUTHOR BIOGRAPHY

CATHERINE HURLEY is an assistant professor in
the Department of Statistics/Computer & Informa-
tion Systems at George Washington University. Her
research interests are exploratory data analysis and
design of software environments for statistical and sci-
entific computing.

