Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

A METHOD FOR RANDOMLY GENERATING CAPACITATED NETWORKS

Kwang Shin
Steve Corder

Department of Computer Information Systems
Arkansas State University
State University, Arkansas 72467

ABSTRACT

A description is given of an approach to
randomly generating capacitated (s,t)-networks of 10
nodes or more. A generator program written in
BASIC demonstrates the approach. The results of
run time experiments conducted with the generator
for various network sizes are presented as well. The
generator, which can produce large networks very
quickly, is designed for use with capacitated network
optimization models.

1 INTRODUCTION

This paper offers an efficient yet relatively
simple approach to randomly generating capacitated
(s,t)-networks of 10 nodes or more. The generator
program presented in this study accepts a single input
value -- the number of nodes in a network, and
outputs a stream of three integer numbers that
represent the head node, tail node, and capacity of an
arc in the network. The generator is designed for use
with capacitated network optimization models as a
supplier of large and diverse test problems.

The specific design decisions and the random
process involved with the generator are described.
Storage space for the arrays involved is analyzed and
the variables used are briefly described. We then
report results of run time experiments carried out
with the generator for various sizes of networks.

2 THE APPROACH

The approach we use in this study is based on
the concept of "layered network” borrowed from Dinic
(1970). Assume that we want to construct a network
of 20 nodes with node 1 designated as the source
node (s) and node 20 as the sink node (t). Between

861

s and t, layers of intermediate nodes are successively
built from left to right, as illustrated in Figure 1.

e

—>® 20

D)

(20=t)

C

\&

Figure 1: Constructing a Layered Network

The size of a layer is determined by the
formula:
m = integer(2Vn) (1)
where n is the number of nodes in the network and m
is the layer size (the maximum number of nodes in a
layer). After this upper bound is set, a uniform
random process determines how many nodes are to be
placed in the layer. The average size of layers, m/2,
should be equal or approximately equal to the average
number of layers in the network so that the network
will be neither flat nor fat. Formula 1 provides a
best-fit approximation to that objective, as the
calculations shown in Table 1 indicate.

862

Table 1: Average Size of Layers vs. Average
Number of Layers in Network of Size n

Avg No of

n m m/2 _ Layers*

10 6 3 3
20 8 4 S
30 10 5 6
40 12 6 7
50 14 7 7
60 14 7 9
70 16 8 9
80 16 8 10
90 18 9 10
100 20 10 10
200 28 14 15
300 34 17 18
400 40 20 20
500 44 22 23
1,000 62 31 33
2,000 88 44 45
5,000 140 70 72
10,000 200 100 100

* based on m/2 and n

For the first layer after node s, a random
number between 1 and m is drawn to indicate the
number of nodes to be put in that layer. The source
node is linked up with all of the nodes placed in the
layer, which are numbered sequentially beginning with
2. The results are directed arcs 1-2, 1-3, and so on.

Nodes in a pair of adjacent layers are linked
up as follows. Let layer j be a current layer and layer
i its predecessor layer. Assume that layer j has three
nodes in it, numbered 6, 7, and 8, and layer i has four
nodes, numbered 2 through S. For each node present
in the current layer, a random number is drawn within
the range of the numbers of nodes in the predecessor
layer. For example, if the random number drawn for
node 6 is 3, the link is 3-6. If a node in the
predecessor layer remains unlinked after all nodes in
the current layer have been linked, a random number
is drawn from the current layer to connect the node
in the forward direction. This ensures that all of the
nodes in the two layers will be linked.

Let r be the number of remaining nodes to be
generated for the network. For each successive pair
of adjacent layers, the arc generation process is
repeated until the condition 2 < r < m is
encountered. In this case, the random variate for the
current layer takes on a value between 1 and r-1. The
random arc generation process is continued until r =
1 or 2. Whenr = 1 or 2, the random process is
unnecessary. The sink node is linked from all nodes

Shin and Corder

in the layer preceding it, forming directed arcs leading
to node t.

3 IMPLEMENTATION

The head node i and tail node j of arcs are
stored in two separate arrays in the order in which
they are generated. At the completion of the arc
generation process, the two arrays are sorted in
sequence by node j within node i. This arrangement
of arcs is consistent with the input requirements of
maximum flow models -- a class of capacitated
network optimization systems. Generating random
capacities of the arcs is accomplished after the arc
sorting is complete. Arc capacities are stored in a
third array.

Three other arrays are needed for
implementing the generator: one to contain nodes of
a current layer, another to hold nodes of its
predecessor layer, and still another to mark nodes of
the predecessor layer. These three arrays take up
relatively small amounts of memory space as they are
dimensioned by m.

The three arrays that hold head nodes, tail
nodes, and arc capacities are the most expensive in
terms of memory space used. What should be the
declared size of these arrays? To answer the question,
first consider the case for n = 20. Among all of the
network configurations possible, the one shown in
Figure 2 yields the maximum number of arcs, 34, that
is possible with n = 20.

/171]
N/

Figure 2: A 20-Node Network Configuration

Let k be the maximum number of arcs possible for a
given n (n > 10). The values of k were calculated for
various values of n. They are presented in Table 2.

Randomly Generating Capacitated Networks

Table 2: The Relation Between Network Size (n)
and Maximum Number of Arcs Possible (k)

n k

10 15
20 34
30 54
40 73
50 93
60 112

70 132
80 152
90 172
100 192
200 389
300 588
400 787
500 985
1,000 1,980
2,000 3,974
5,000 9,961
10,000 19,947

From these sufficient observations of the relation
between n and k, it is clear that k < 2n for any n >
10. (One can also verify that this inequality holds for
any layer size m for any n > 10.) Therefore, the three
principal arrays can be dimensioned with at most 2n
elements.

A total of seven scalar variables, excluding loop
control variables, are used for implementation. The
names and descriptions of the variables are given in
Table 3.

Table 3: Variable Descriptions

Variable Description

NSIZE Number of nodes in a network (minimum
10)

LSIZE Maximum number of nodes for a layer

NODES Accumulator for the number of nodes
generated

ARCS Accumulator for the number of arcs
generated

RND1 Random variate between 1 and the size of
a predecessor layer

RND2 Random variate between 1 and the size of
a current layer

RND3 Random variate between the lowest and

highest numbers of nodes in a layer.

863

The generator program, written in BASIC, is
presented with sample output in the appendix. It uses
BASIC’s timer variable TIMES to supply seeds for the
internal random number generator RND. The
program is easily modified so that the user can supply
the seed in order to replicate a network previously
created. The user is asked to enter a number for the
size of a network to be generated. After some pause
(the time lapse will vary depending on the network
size), the screen will display three numbers on each
line corresponding to the head node, tail node, and
capacity of an arc. The same output is printed on the
printer as well. Arc capacities generated by the
program are integer values between 1 and 100,
inclusive. The type and range of the random numbers
can be modified by the user with a simple change on
the program.

4 RUN TIME EXPERIMENTS

Run time experiments were conducted with the
generator for various values of n using a Zenith PC-
compatible based on the Intel 8088 processor running
at 10 MHz. The results presented in Table 4 are
average run times for the selected values of n. The
figures enclosed in parentheses are average run times
measured with the sort routine removed from the

program.

Table 4: Run Times for Selected Network Sizes

Run Time
n__(hh:mm:ss)
10 02 (:01)
20 07 (:01)
30 13 (:03)
40 24 (:03)
50 42 (:04)
60 01:02 (:06)
70 01:26 (:06)
80 01:47 (:08)
90 02:09 (:09)
100 02:52 (:10)
150 05:54 (:16)
200 10:38 (:25)
250 17:44 (:31)
300 23:39 (:42)
350 30:25 (:43)
400 39:00 (:51)
450 55:01 (:01:06)
500 01:07:06 (:01:18)
550 01:21:57 (:01:30)
600 01:42:42 (:01:34)

864

An interesting outcome of the run time
experiments is that as much as 98.5% of the run time
is spent on sorting arcs after they are generated. This
is not surprising because it is a well-known fact that
sorting large-sized arrays (200 elements or more)
takes a substantial amount of time. Besides, the
interpretive BASIC used for the tests works relatively
slowly on sorting. The generator without the sort
routine, on the other hand, produces large networks
very quickly. On our test machine, networks involving
600 nodes requires less than 1 minute and 40 seconds
to generate.

5 CONCLUSIONS

This study provides an approach to quickly
generating capacitated (s,t)-networks. The result of
applying the method is a network with one source
node, one sink node, and a succession of intermediate
"layers” of nodes. The layer approach allows the
resulting network to be more easily interpreted and
graphically represented than the creation of a
completely randomly connected network which can
appear, once drawn, as little more than a barely
interpretable jumble of lines and nodes.

The generator presented in this paper can
produce very large networks very quickly. However,
succeeding operations which might be required such
as sorting the arcs may be very time consuming. That
limitation is based on other models and is not the
primary emphasis for this paper.

From a researcher’s point of view, the
implementation of the method allows the easy
generation of many different examples of networks
with a given number of nodes for empirical testing of
capacitated network optimization algorithms.

From an educator’s point of view, the ability to
generate multiple examples of a network can be ideal
for creating exercises to practice existing network
analysis techniques.

We hope that the approach presented in this
study may serve as a springboard to the development
of new algorithms.

APPENDIX
Generator Program

100 INPUT "How many nodes does the network
have (min 10) "; NSIZE

110 IF NSIZE < 10 THEN 100

120 LPRINT "Number of Nodes = "; NSIZE

130 LSIZE = INT(SQR(NSIZE)) * 2

140

150
160
170

180
190
200
210
220
230
240
250

270

290

310
320
330
340
350

370

390
410
420
430

450

470

490
500
510

520
530

Shin and Corder

DIM INODE(2*NSIZE),
JNODE(2*NSIZE), CAP(2*NSIZE),
CLAYER(LSIZE), PLAYER(LSIZE),
MARK.PLAYERS$(LSIZE)
RANDOMIZE VAL(RIGHTS$(TIMES,2))
RND1 = INT(LSIZE * RND) + 1
FOR I = 1 TO RND1 ’Link s to nodes of
first layer
INODE(I) =1
JNODE(]) = I+1
PLAYER(]) = I+1
NEXT I
ARCS =1-1
NODES = RND1 + 1
WHILE NSIZE - NODES > LSIZE
RND2 = INT(LSIZE * RND) + 1
GOSUB 600
WEND
IF NSIZE - NODES > 2 THEN
RND2 = NSIZE - NODES - 1:
GOSUB 600
IF NSIZE - NODES = 2 THEN 360
FOR I = 1 TO RND1 ’t is the only
remaining node
ARCS = ARCS + 1
INODE(ARCS) = PLAYER(])
JNODE(ARCS) = NSIZE
NEXT I
GOTO 450
NODES = NODES + 1
FOR I = 1 TO RND1 ’Only one node
remains before t
ARCS = ARCS + 1
INODE(ARCS) = PLAYER(I)
JNODE(ARCS) = NODES
NEXT I
ARCS = ARCS + 1
INODE(ARCS) = NSIZE - 1
JNODE(ARCS) = NSIZE
FOR I = 2 TO ARCS - 2 ’Sort arcs in
sequence by node j within node i
FORJ =1+ 1TO ARCS -1
IF INODE(I) > INODE(J) THEN
SWAP INODE(I), INODE(J):
SWAP JNODE(I), INODE(J)
IF INODE(I) = INODE(J) AND
JNODE(I) > JNODE(J) THEN
SWAP JNODE(I), INODE(J)
NEXTJ
NEXT I
FOR I = 1 TO ARCS ’Print arcs and arc
capacities
CAP(I) = INT(100 * RND) + 1
PRINT INODE(I), INODE(I), CAP(I)

Randomly Generating Capacitated Networks

540 LPRINT INODE(I), INODE(I), CAP(I)

550 NEXTI

560 END ’End of program

600 FOR I =1TO RND2 ’Subroutine to link
nodes of two adjacent layers

610 NODES = NODES + 1

620 ARCS = ARCS + 1

630 RND3 = INT(RNDI1 * RND) +
PLAYER(1)

640 INODE(ARCS) = RND3

650 JNODE(ARCS) = NODES

660 CLAYER(I) = NODES

670 FOR J = 1 TO RNDI1

680 IF PLAYER(J) = RND3 THEN

MARK.PLAYERS$(J) = "Y"

690 NEXT J

700 NEXT]I

710 FORI = 1 TO RND1

720 IF MARK.PLAYERS(I) = "Y" THEN
770

730 RND3 = INT(RND2*RND) +
CLAYER(1)

740 ARCS = ARCS + 1

750 INODE(ARCS) = PLAYER(])

760 JNODE(ARCS) = RND3

770 NEXTI

780 FORI = 1TO LSIZE

790 PLAYER(I) = CLAYER(I)

800 CLAYER(]) = 0

810 MARK.PLAYERS$(I)=""

80 NEXTI

830 RND1 = RND2
840 RETURN ’End of subroutine

Number of Nodes = 20

1 2 4
1 3 17
1 4 78
1 5 89
1 6 95
1 7 1

1 8 83
2 9 36
3 10 98
3 15 92
4 11 42
4 12 89
S 13 73
5 14 86
6 15 22
7 12 77
8 15 43
9 17 98
10

17 42

865

11 16 79
12 18 76
13 19 8

14 19 13
15 17 91
16 20 90
17 20 42
18 20 12
19 20 15

REFERENCE

Dinic, E. A. 1970. Algorithm for Solution of a
Problem of Maximum Flow in a Network with
Power Estimation. Soviet Math Dokl. 11: 1277-
1280.

AUTHOR BIOGRAPHIES

Kwang Shin is an Assistant Professor of Computer
Information Systems at Arkansas State University.
His research interests are discrete system simulation
and computer modeling. He received his Ph.D degree
from Southern lllinois University-Carbondale.

Steve Corder is an Assistant Professor of Computer
Information Systems at Arkansas State University.
His major research interests are system development
methodologies and software metrics. He received his
Ph.D degree from Georgia State University.

