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ABSTRACT

In detailed shop-floor simulation applications, data
concerning the cutting-tool requirements of the parts
being machined in the manufacturing system are often
necessary to drive the simulation model. While there
are merits associated with the use of real data, such
data are sometimes not readily available, and it is
therefore desirable to have a method for generating
hypothetical, yet realistic, tool requirement data. In
this paper, we describe a two-stage procedure for gen-
erating random tool requirement matrices (part type
vs. tool type 0-1 incidence matrices) on the basis of
"expert" opinions about the characteristics of such
data. In the first stage, we sample row-sums and
column-sums of the tool requirement matrix from two
user-specified multivariate normal distributions sub-
ject to the feasibility condition that the row- and
column-sums yield the same grand total. In the
second stage, we determine the binary values of the
matrix elements by means of a heuristic. The resultant
matrix reflects the desired characteristics, such as part
type similarities and tool usage dependencies.

1 INTRODUCTION

The management of cutting-tools in advanced
manufacturing systems, particularly Flexible Manufac-
turing Systems (FMSs), is becoming an increasingly
studied area in both academia and industry. Simula-
tion is often used to evaluate the impact of tool
management strategies on the performance of
manufacturing systems. In such simulation applica-
tions, information concerning the tool requirements
for the family of parts being machined in the manufac-
turing system is necessary to drive the simulation
model.

One approach for providing such input to the
simulation model is to sample from an empirical dis-
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tribution which has been constructed using data col-
lected from existing process plans. However, this
approach has several drawbacks as noted by Law and
Kelton (1991). First, it is often very difficult and time
consuming to collect complete and accurate data on
tool requirements for each operation and each part
which is machined in the manufacturing system.
Second, this approach cannot be applied when data
are unavailable (for example, in the case of
new/projected systems). Third, the data that are col-
lected constrain the range of the distribution. Random
variables which fall outside this range will never be
generated. These shortcomings of using empirical dis-
tributions become very relevant when the user desires
to consider alternative (often speculative) scenarios
for evaluating tool management strategies.

The alternative approach to modeling the tool
requirement data is to sample from theoretical distri-
butions that display the characteristics of "real" data.
In this paper, we describe a two-stage procedure for
generating tool requirement matrices based on the
latter approach. In the first stage of the procedure, we
sample row-sums and column-sums from two user-
specified multivariate normal distributions so that the
sum of the row-sums equals that of the column-sums.
In the second stage, we determine the binary values of
the matrix elements by means of a heuristic that takes
into consideration both inter-row and inter-column
correlations. This facility to generate "realistic’ tool
requirement matrices provides the user with a great
deal of flexibility and ease in developing tooling
related input models for manufacturing system simula-
tion applications.

In the next section, we examine some of the
characteristics of cutting-tool requirement matrices
that illustrate why the generation of such matrices is
not trivial. In §3 and §4, we describe the two stages of
our procedure. The paper concludes with a discussion
in §5.
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2 CHARACTERISTICS
REQUIREMENT DATA

OF CUTTING-TOOL

We are primarily interested in generating 0-1 matrices
having p rows and ¢ columns in which each column
corresponds to a particular type of cutting tool and
each row corresponds to a particular part type. (For
example, one of the columns might represent a 1/4"
jobbers length, general purpose, high speed steel,
straight shank, twist drill.) If part type i requires tool
type j for processing, then element x;; of the matrix has
value 1; otherwise, x;; equals 0. We denote the row-
sums R;, where R; = E;=1x,7 for i =1,2,...,p.
Similarly, the column-sums are denoted by C;, where
Ci= Ef=1x,~j for j =1,2,...,t Clearly, {C;} and
{R;} are integers; and we must have Ej C = Z‘, R; for
a feasible assignment of tool types to part types.

Matrices of this type often mirror salient features
of the manufacturing system. For example, it is com-
mon for some part types to have processing require-
ments similar to those of other part types. Such simi-
larity in processing requirements is often used as a
basis for formation of part families. In our context, this
implies that parts belonging to a family have a high
degree of tool commonality (that is, they require a
similar number of tools of similar types). This implies
that the rows of the matrix are correlated. If R, and
R, denote the row-sums corresponding to row a and
row b, then similarity between these two part types (a
and b) would be reflected in a high degree of correla-
tion between R, and R.

Another feature of cutting-tool requirement
matrices relates to dependencies among the usage of
tools of different types. For example, in order to pro-
duce a threaded hole, it is necessary (in the simplest
case) to first drill the hole and then tap it. Let columns
¢ and d denote a drill and a tap (of corresponding size)
respectively. For the part types under consideration, if
it is known that the holes of the dimension produced
by the drill are usually threaded, then x;. = 1 would
imply that it is very likely that x;; = 1. Extrapolating
this argument, the number of times, C,, that the tap is
used is strongly related to Cz, the number of times that
the drill is used. Therefore, there exists a correlation
between the columns of the matrix; and this is
reflected in the correlation structure between the
column-sums C, and C,.

Similarities between processing requirements for
related parts and dependencies between usages of
different tools appear as "clusters” in the tool require-
ment matrix. The presence of tool clusters in real tool
requirement matrices is common (see Stecke (1989)
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for instance) and corresponds to the partitioning of the
parts into part families.

To summarize, the scheme for generating a tool
requirement matrix should yield random row-sums
(that is, tool counts for each part type) whose correla-
tions accurately represent similarities (probabilistic
dependencies) between part types; simultaneously, the
generation scheme should yield random column-sums
(that is, part counts for each tool type) whose correla-
tions accurately represent similarities (dependencies)
between tool usages. These considerations form the
basis for the matrix generation scheme described in
the next two sections

3 GENERATING ROW- AND COLUMN-SUMS

In the first stage of the procedure for generating a tool
requirement matrix, the objective is to generate a p x1
random vector R of row-sums and a ¢ x1 random vec-
tor C of column-sums

13 = [Rb""Rp], and g = [Cl,...,C,]'.

We assume that R (respectively, C) is normally distri-
buted with user-specified mean vector pr (respec-
tively, uc) and covariance matrix g (respc;:tively, e).
We must sample R and C subject to the feasibility con-
dition E;-=1 Cj = ¥F_,Ri. We write R ~ Np(;_tR, ZR)
and C ~ N(uc, Z¢); and we let T denote the com-
ponentwise grand total for each of these vectors.

3.1 Preliminaries

Our approach to the problem of generating R and C is
based on a linear transformation

R = HR, @)

where H is any nonsingular p xp matrix whose last row
consists of 1’s. For simplicity, we will consider

Ip-1 Op-1 Ip-1 Op-
H = = H'= )
T {1 1 1o 1

First we seek to determine the distribution of R” in
terms of the analogous properties of R.

To clarify the development, we introduce some
additional notation that emphasizes the dependence of
the random vectors under consideration on their
respective dimensionalities. Let us rewrite R as

R(p)=[R(p-1),R,)
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where R“(p-1) = [Ry, Ry, ..., Ry_1]. Similarly we
define corresponding mean vectors
Brp) =ER(P)] = [BRep-1s ]

where pgp-1y = E[R(p-1)] = [p1, 12, tp-1]-
We also define the corresponding covariance matrices

Lrp-1y W
Zr(p) =cov[R(p)] = llo,ill = ] ,
Tr  %p
where P = [al'p, O2ps > Tp-1p ] and
011 012 - . O1p-1
021 022 - . O2p-1

Zrp-n=covR(p-1)] =

%p-11 %p-12 - - Op-1p-1

For the transformed random vector (1), we define the
analogous quantities R*(p) = |IR; |l, ur*py = Ilusi I,
Zr*p) = llonl, and "_Y;a = [61ps T2 - ,0p-1p] -

We derive the relevant properties of R*(p) in

terms of those of R(p). In view of Equations (1) and

),

P
R(p-1), ¥ R;

i=1

R'(p) = HR(p) = 3)

is p-variate normal so that its distribution is completely
determined by its mean vector and covariance matrix.

Recall that T = E’ = 3F_, Ri. Taking expecta-
tions in Equation (3) we have

,

KR (p) = Hirep) = [l_"R(p—l), MT] )

where pur=E|[T] = 21,,’=1p.,-. Computing the covari-
ance matrix corresponding to Equation (3), we have

Zr(p) = HIpp H’ )

ZR(p-1) Zrp-nlp-1+ %

1p-1Zrp-1 + 7 of

where o7 =var(T) = E‘;zl ngla,,,,- and
p

)4
Eal,h Eﬂz,i,---,

i=1 i=1

» .
2% -1 -
i=1

ZRp-plp-1+p =

We make the key observation that given a fixed
value of R, =T, the conditional distribution of
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R*(p-1) is (p —1)-variate normal with mean
E[R"(p-1) | Rp=T] = pr*(p-1) + (T~ 14p)/0p,5; (6)
see pp. 135-136 of Johnson and Wichern (1982). We

can rewrite Equation (6) elementwise in terms of the
original quantities {y;} and {0} as follows:

+ [ - U% ](1~ BT)

for i =1,2,...,p-1. In addition, the conditional
covariance matrix of R*(p - 1), given R, = T, is
cof[R"(p~1) | Ry =T = Bxp-1y = () /pp- (7)
In terms of the original covariances {o,;}, we can
rewrite Equation (7) as

E[R] |Ry=T]=u

p
cov[Rp, R; | R, =T] =04, - [ Y O m] [ EUi,m]
ot =
forh,i =1,2,...,p-1
3.2 Algorithm for generating row- and column-sums

To generate each row-sum R; (i = 1
each column-sum (Cj for j = 1,2,...,
the following steps.

1. Generate C(t) ~ N,(uc, Xc¢).

2. Round off the column-sums {Gi:j=1,...,t} to
the nearest nonnegative integer and compute
T = E‘ ..

3. leen T, gcnerate R’(p-1) from a (p-1)-variate
normal distribution whose mean vector and covariance
matrix are given by Equations (6) and (7) respectively.
4. Round off the variates {R; :i = 1,..., p—1} to the
nearest nonnegative integer values and recover the
desired row-sums from Equation (2) as follows:

2,...,p) and
t), we perform

- P-l L]
IQi = }Qi, i = 1,... ,17-'1; }gp =T- §3 Ili.

i=1

4 GENERATING THE TOOL REQUIREMENT
MATRIX

In the second stage of the procedure, our objective is
to assign 0’s and 1’s to the tool requirement matrix
| matrix(i,j)|| so that (¢) matrix(i,j)=1 when part
type i requires tool type j; and (b) the row-sums and
column-sums of ||matrix(i,j)|| respectively match the
values of {R;} and {C;} that were generated by the
procedure given in §3.2. Ideally, the user-specified
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correlation corr(Cj,Cy) between C; and C should also
be the correlation between the jth and kth elements of
each row of the tool requirement matrix; similarly,
corr(Ry,R;) should be the correlation between the hth
and ith elements of each column of the tool require-
ment matrix.

4.1 The Assignment Heuristic

The following heuristic begins by assigning the target
row-sums and column-sums to the corresponding rows
and columns respectively. On each iteration, a row,
ibestrow, is chosen. For this row, a column, ibestcol, is
selected, and the element matrix(ibestrow, ibestcol) is
assigned a 1; and the corresponding row- and column-
sums, R pestrow a0d Civestcol, are each decremented by
1. If the resultant Rjesirow is positive, then another
column is assigned to ibestcol. This procedure of
assigning 1’s to the elements of row ibestrow in the
tool requirement matrix continues until Rjpestrow has
been decremented to zero. Then, the next iteration
begins with the assignment of another row to ibestrow.
The procedure terminates when all the row-sums have
been reduced to zero. In the algorithmic statement
given below, "s.t." is an abbreviation for the phrase
"such that" and # (E) denotes the number of elements
in the set E.

Input: The sampled row-sums and column-sums and
the user-specified inter-row-sum and inter-column-
sum correlations.

Output: The tool requirement matrix || matrix(i,j) || -

Step (0): [Initialize.)

Initialize {R;} and {C;} to the sampled row- and
column-sums.

Set matrix(i,j) +—0 fori = 1,...,p;j=1,..., L

Step (1): [Select current row and column.]
ibestrow —i s.t. R; = max{R, | k =1,2,...,p}
ibestcol — j s.t. Cj = max{Cp | m =1, 2,...,t}
matrix(ibestrow, ibestcol) — 1
Rivestrow — Ribestrow — 1
Civesteol — Cipesteol — 1
If ( Ribestrmw >0 ) then

go to Step (2)
Else

go to Step (3)
Endif

Step (2): [Select next column for current row.]

If ( there is nextcol s.t. corr(C nextcol, Civestcol) =
max {corr(Cp,Civestcat) | m # ibestcol, Cy,, > 0}
& corr(C gextcots Cibesteot) > 0.5
& matrix(ibestrow,nextcol) = 0 ) then
ibestcol +— nextcol
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[In case of a tie, choose the candidate column with the
largest current column-sum.]

Else
nextcol —j s.t.
Cj = max{C,, | matrix(ibestrow,m) = 0}
ibestcol — nextcol
Endif

matrix(ibestrow,ibestcol) — 1
Ripestrow +— Ribestrow — 1
Civestcol — Cibestcol — 1
If ( Ribestrow >0 ) then

go to Step (2)
Else

go to Step (3)
Endif

Step (3): [Select next row for assignment.]
If(R; =0 fori =1,2,...,p) then
go to Step (5)
Endif
Check the exception condition:
Cmax —max{C; | j =1,2,...,t}
Rnum—# {R; | R; >0, i=12,...,p}
If (Cmax > Rnum ) then
go to Step (4)
Endif
If ( there is nextrow s.t. cOrr(R pextrowsR ivestrow) =
max {corr(Re,Rivestrow) | Re > 0}
& corr(R pextrowsR ivestrow) > 0.5 ) then
iprevrow « ibestrow
ibestrow +— nextrow
[In case of a tie, choose the candidate
row with the largest current row-sum.]
If (thereisj st. C; = max{Cp | C» > 0;
matrix(iprevrow,m) = 1} )

then

ibestcol «— j
Else

ibestcol — ! s.t. C; = max{C,}
Endif

matrix(ibestrow, ibestcol) — 1
R jpestrow — Ripestrow — 1

Civestcol +— Cibestcot — 1
If ( Riestrow > 0 ) then

go to Step (2)
Else
go to Step (3)
Endif
Else
go to Step (1)
Endif

Step (4): [Eliminate exception condition.]

Undo the assignment of values to the elements of
ibestrow — that is, set all elements in the row to zero
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and reinstate the row-sum and column-sums to the
values prior to this row’s iteration.
Let E = {C; | C; satisfied exception condition
in Step (3)}
If (#(E) > Ripestrow ) then
Findi s.t. R; = max{R, | k #ibestrow}
ibestrow « i
ibestcol —j s.t. C; = max{C,, | m =1,...,¢}
matrix(ibestrow, ibestcol) — 1
Rivestrow — Ripestrow — 1
Civesteol — Civesteot — 1
If ( Rib&slmw >0 ) then
go to Step (2)
Else
go to Step (3)
Endif
Else
Do for everyq st. C, €E
matrix(ibestrow,q) «— 1
Ripestrow +— Ripestrow — 1
C—C -1
nextcol —q
Endo
If ( Ripestrow = 0) then
go to Step (3)
Else
Let iprecrow denote the row that pre-
ceded ibestrow in assignment procedure.
If ( corr(R iprecrowR ivestrow) > 0.5 ) then
If ( there exists j s.t.
Cj = max{C,, | Cp, > 0;
matrix(iprecrow,m) = 1} )
then
ibestcol — j
Else
ibestcol —/ s.t.
Cr=max{C, | m=1,...,¢}
Endif
matrix(ibestrow,ibestcol) — 1
Ribestrow — Ripestrow — 1
Civestcol — Civestcot = 1
If ( R ibestrow = 0 ) then
go to Step (2)
Else
go to Step (3)
Endif
Else
ibestcol +— nextcol
go to Step (2)
Endif
Endif
Endif

Step (5): [Exit the procedure.]
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Return ||matrix(i,j) || .

The only source of complication in this heuristic is
the exception condition. This arises when, at the
beginning of any iteration, the number of unfilled rows
remaining is less than the largest (current) column-
sum. This implies that some element in each column
having the largest column-sum will need to be assigned
a value greater than 1 in order to satisfy the column-
sum constraints. This problem is avoided in step (4) of
the heuristic by giving these columns a higher priority
for assignment over other columns than would other-
wise be more desirable.

4.2 Sample Results

Figures 1a, 1b, and 1c illustrate three sample 20x25
matrices generated on the basis of the user-specified
data shown in Table 1. The inter-row-sum correla-
tions {corr(Ry,R;)} for 1<h,i<10 and for
11<h,i <20 were specified as 0.9. All other inter-
row-sum correlations were set at 0.1. The inter-
column-sum correlations {corr(C;,Cy)} for 1< j, k <
12 and for 13 < j, k < 25 were specified as 0.8, and all
other inter-column-sum correlations were set at 0.1.

The row-sums and column-sums were generated
based on this input by the first stage of the procedure
that is described in §3. The values of the matrix ele-
ments were determined by the heuristic in § 4.1.

All the three sample matrices reflect the desired
tool commonality among rows 1-10 and rows 11-20.
The desired tool usage dependencies are also evident
in these matrices. These examples illustrate that, sub-
ject to the above input conditions, the desired matrix
may have more than one form of clustering (compare
Figure 1a and 1c). Also note that deviations from per-
fect cluster formation is sometimes necessary to satisfy
the row-sum and column-sum constraints (See Figure
1a rows 15 and 20, for example).

S DISCUSSION

In this paper, we have described a two-stage method
for generating cutting-tool requirement matrices based
upon user-specified information on the distributions of
the row-sums and column-sums. The matrices that are
generated not only satisfy the row-sum and column-
sum constraints but also reflect part similarities and
tool usage dependencies that are characteristic of real
tooling data. This facility to generate random, yet real-
istic, cutting-tool input data will be of use in detailed
shop-floor simulation applications, such as for the
evaluation of cutting-tool management strategies.
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Table 1: Target row-sums and column-sums

Row-Sum R; Column-Sum C;

i o J B o
1 100 1.0 1 100 20
2 120 10 2 100 20
3 100 20 3 80 10
4 100 1.0 4 8.0 1.0
5 8.0 1.0 5 100 20
6 100 10 6 100 20
7 120 20 7 8.0 1.0
8§ 100 20 8 80 10
9 100 1.0 9 100 20
10 8.0 1.0 10 100 20
11 100 10 11 8.0 1.0
12 120 20 12 8.0 1.0
13 100 20 13 100 20
14 100 10 14 100 20
15 80 10 15 80 10
16 100 10 16 8.0 1.0
17 120 20 17 100 20
18 100 20 18 100 20
19 100 10 19 8.0 1.0
20 8.0 1.0 20 8.0 1.0
21 100 20
22 100 20

23 80 10
24 80 10

25 100 20

1111111110001000000000000
1110111111111000000000000
0011111111100000000000000
1111111000011000000000000
0001111111100000000000000
1110000111111000000000000
0011111111111000000000000
1111110001111000000000000
1100101111111000000000000
1111110000011000000000000
0000000000000111111011101
0000000000000111111111111
0000000000000111111011001
0000000000000101110111111
0000001100000000000111111
0000000000000111111011101
0000000000000111111111111
0000000000000111010111111
0000000000000100111111111
0000000011111000000000000

7787988888889867786699869

Figure 1a: Cutting-tool requirement matrix #1

1111111110001000000000000
1111101111111000000000000
0000000001111100110011001
1110011111111000000000000
0000000111111000100000001
1001111111111000000000000
1111111111111100000000000
0111111111110000000000000
1111000000000100110011001
0000111000000100110011001
0000000000000111111111111
0100110000000111111111111
1100000000000111211111111
0000000000000111111111111
0001110000000110110011001
0000000000000111111111111
1110100001000111111111111
0000100001010111111111111
0010000000000111111111111
0000000000000111110111111

0000100000000110110011001
8987087779787409438933994

10
12
10
11

11
14
11
10

12

14
12
10
12
17
15
13
11

Figure 1b: Cutting-tool requirement matrix #2

0000000000000111111011111
0000000000001111111111111
00000000000001112111111111
0000000000000111110111111
0000000000000110100111111
0000000000000111111111101
0000000001000111111111111
0000000000000111111111011
0000000000000111111011111
0000000000000101111111001
1111101101111000000000000
1111111111011000000000000
1110111111111000000000000
1100111111111000000000000
0000001011111100100000000
1111111000111000000000000
1111111111011000000000000
1111111111001000000000000
1111000111111000000000000
0000110100000100100010111

0000000000001100100011001
8876878879680299298810991

11
13
12
11

11
13
11
11

11
12
12
11

10
12
11
10

Figure 1c: Cutting-tool requirement matrix #3
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One direction for future research in this area is
the incorporation of information related to processing
times within the tool-requirement matrix. This is per-
tinent in applications where information on the pro-
cessing times associated with each cutting-tool for
every part is required. Processing times, thus, would
add another dimension to this variate generation prob-
lem.

Another extension of this problem is related to the
notion of processing flexibility. In the machining con-
text, it is often possible to process a part with alternate
tool types (not necessarily with the same efficiency).
For example, a part may require tool types 1, 3, 4, and
one of 5, 6, and 7. Therefore, this part can be pro-
cessed with three possible tool sets. A method is
necessary to capture this feature of tool type substitu-
tability when generating cutting-tool requirement data.
An additional complication arises in the case of a tool
type that requires two or more tool types to substitute
it. For example, if the shape generated by tool type 4
can also be generated by using both tools 7 and 9, then
we are faced with a situation where one tool type can
be substituted by two different tool types. Thus, not
only can a particular part type have more than one set
of (alternative) tool requirements, but also these sets
may contain different number of tools.

In conclusion, the problem of generating realistic
cutting-tool requirement data is not trivial. It is hoped
that the methodology presented in this paper will
stimulate more research in this area that will lead to
the development of robust input modeling techniques
for detailed manufacturing simulation applications.
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