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ABSTRACT

To match the greatly increasing power of scientific
engineering workstations with the slowly changing
capability of the simulation practitioner, this paper
examines possibilities for a high level output analysis
interface. The goal is an interface which considers a
parametric family of models and accepts commands
stated in terms of understanding model character-
istics over this family and/or making practical deci-
sions with respect to it.

1 INTRODUCTION

With the increasing availability and power of engi-
neering workstations, the data processing challenges
to simulation practitioners will soon shift from
problems involving the careful allocation of scarce
computing resources to problems involving the ef-
fective utilization of plentiful computing resources.
This will result in a challenge to the creators of sim-
ulation packages to provide a high level output
analysis interface so that substantially less effort on
the part of the experimenters will result in substan-
tially more effort on the part of the machines. This
interface will have to match the relatively unchanged
capability of the user with the vastly increased capa-
bility of the workstation so as to keep both of them
gainfully occupied. For example, instead of issuing
a command for the machine to run a given model for
a certain simulated time and provide certain output
statistics, the user would issue a command for the
machine to explore a set of performance measures
over a specified parametric family of models and
obtain a summary of the response surfaces to some
specified resolution and accuracy. The interface will
have to have the capability to take broad statistical
goals as commands and produce meaningful sum-
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maries. These commands will be tied as closely as
possible to the user’s need for understanding the
implications of the model and utilizing this under-
standing to make decisions. The responses may not
be exactly what the user requires but they should
provide valuable insight and provide the basis for a
dialogue which will result in understanding and well
founded decisions.

As a secondary requirement the interface should
be able to produce a running summary of its progress
in one or more of the windows of the workstation
display. This will provide the user with the capability
to abort or modify the analysis depending on what
is currently evident. For example, he may wish to
expand or contract the region of the parameter space
being explored. This secondary requirement means
that the system should proceed to explore the “im-
portant” things first, presenting information which
is immediately useful and which becomes more and
more refined until the final goal is reached. Hence it
should not proceed in some exhaustive fashion
which will not produce any conclusions until the
end. It should also not present yes/no results of hy-
pothesis tests without providing the type of data
summary which can lead to additional experimenta-
tion. What we have in mind by this will become
apparent as we consider the examples.

In such an environment the simulation package
will have to, of necessity, proceed in a sequential
fashion much the same as a person would. It will
have to make some runs, see what information they
provide, decide what additional runs to make, reas-
sess the information, and so on until the final goal
has been reached. In this paper we will explore
possibilities for the form of such an interface. We
will consider a number of situations proceeding from
the simple to the complex.
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2 CHARACTERIZING A SINGLE MODEL:
SOME EXPERIMENTS WITH SEQUEN-
TIALLY CONTROLLED CONFIDENCE
INTERVALS

We first consider the vahdity of sequentially con-
trolled confidence intervals. Such confidence inter-
vals will be important throughout this discussion and
hence it is appropriate to discuss their validity. They
are also important in the simplest practical applica-
tion of simulation: the case where an experimenter
has a single model whose performance he wishes to
characterize. We now discuss this case. We assume
the characterization takes the form of a set of re-
sponse variables whose expectations must be esti-
mated. The most common type of control for
simulation experiments involves the specification of
limits on characteristics of the simulation mech-
anisms themselves such as simulated time, numbers
of events, etc. They are not stated in terms of any
statistical or decision oriented goal. If such controls
are used in this case and confidence intervals are
generated they may or may not meet the accuracy
requirements. If they do not the experimenter would
have to set new run control parameters and continue
this process until he was satisfied. In this simple
case, with a higher level interface, the user would give
the simulation package his accuracy requirements
either in the form of confidence interval half widths
or relative half widths and the system would auto-
matically run until these accuracies were achieved.
The window would display the running point esti-
mates and confidence intervals as a simple range
plot. This process (without the display) is, in fact,
implemented in some systems today. By a relative
half width we mean the confidence interval half
width divided by the point estimate. Such relative
or proportional confidence interval requirements ap-
pear to us to be more natural and of greater practical
importance than absolute confidence interval re-
quirements so we will confine our discussion to
them. Such sequentially generated relative confi-
dence intervals have been shown to be
asymptotically valid (see Nadas 1969). However if
they are implemented sequentially in a fashion ex-
actly parallel to their non-sequential application they
display lower than expected coverage because they
pass the criteria on the average too readily at low
estimates of the standard dewviation of the point esti-
mate. We ran some experiments to investigate this
effect and some simple techniques to correct for it.
Nadas showed the confidence intervals to be
asymptotically valid as the criteria for the relative
half width approached zero. The practical question
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is how valid are they for the accuracy levels common
in practice and what precautions can be taken to
make them valid. These questions have been studied
for absolute accuracy criteria (see Anscombe 1953,
Starr 1966a, b, Woodroofe 1986 and Edelman 1990)
but not for the relative accuracy criterion. We now
describe some simple experiments which investigate
the effectiveness of two techniques for achieving
good small sample coverage: creating a minimum
sample size and inflating the t-multipher.

We consider the method of independent repli-
cations and assume that more accurate estimates are
obtained by increasing the number of replications
rather than the run lengths of a fixed number of
replications. We further assume that the outputs are
normally distributed. This is not a controversial as-
sumption since the outputs are generally averages.
Hence we assume we have a sequence

X, Xy, X, ...

of ii.d. normal random variables with mean u and
standard deviation o. In the straight forward proce-
dure for sequentially generating a confidence interval
for u with a given relative half width, at each stage
(N = 2) we form the sample mean

N
)—(N=% ZXn

n=1

and the sample standard deviation

N
SN = \/N—l_l— Z(Xn - Xy

n=

We then consider the standard t confidence interval
(with theoretical coverage 1 — a) whose relative half
width is

YN N1/2

where ty(x) 1s the inverse cdf of a t distribution with
N degrees of freedom. The first time this half width
is less than or equal to the target value, C, the pro-
cedure stops. The method has the desirable property
of realizing a result whose accuracy, as measured by
the confidence interval, is (at least) plus or minus a
prespecified percent. For example, if C=.1, the
quantity is “known” to some reasonable degree to
within plus or minus 10%. To correct for the poor
small sample coverage three techniques have been
proposed: not starting the procedure until a moder-
ate value of N, say N=10 or 20; using multipliers
larger than



.05

1960(.934,.976)
.908(.874,.933)
.908(.874,.933)

.05

.928(.896,.950)
.940(.911,.960)
.948(.920,.966)

.05

945(.917,.964)
.943(.914,.962)
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Table 1: Usual t-Multiplier
No = 2
C
2 .1
5 .905(.871,.931) .943(.914,.962)
olu 3 .910(.877,.935) .900(.865,.927)
1 .938(.908,.958) .908(.874,.933)
No = 10
C
2 .1
.5 .925(.894,.948) .933(.902,.954)
olu 3 .943(.914,.962) .935(.905,.956)
1 .955(.928,.972) .955(.928,.972)
NO = 20
C
2 .1
.5 .938(.908,.958) .938(.908,.958)
olu 3 .955(.928,972) .938(.908,.958)
1 .940(.911,.960) 1965(.941,.980)

.948(.920,.966)
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.025

.943(.914,.962)
943(.914,.962)
.920(.888,.944)

.025

1948(.920,.966)
958(.931,.974)
1958(.931,.974)

.025

.953(.926,.970)
.960(.934,.976)
.960(.934,.976)

ty_ (1= af2)

but which converge to that value as N — oo, and
adding a few extra samples after the critenia is initially
passed. We investigated the first two of these pro-
cedures.

In a first set of experiments we studied the proce-
dure using the usual t-multiplier (N-1 degrees of
freedom) and considering three starting values:
No=2,10 and 20. In the case of N, = 2 there is no
starting delay because a minimum of two samples is
required to calculate the sample standard deviation
and generate a confidence interval. The behavior of
the procedure is a function of the coefficient of vari-
ation of the X’s, o/u, and the target accuracy, C.
We considered the values o/u=.5.3,.1 and
C=.2,.1,.05,.025. To estimate the coverage, 400
replications were made under each set of conditions.
The results are given in Table 1. 95% confidence
intervals on each of the values are included in pa-
renthesis. The confidence intervals were generated
using the normal approximation to the binomial
(See equation (21.11.8) of Hald 1952). Notice that
the coverage is not satisfactory for Ny = 2 but that it
is only slightly low for Ny = 10 and 20. Hence pro-
viding a delay appears reasonably effective and
Ny = 10 would be recommended on grounds of effi-
ciency.

To try to raise this low coverage we conducted a
second set of experiments where we applied a cor-

rection to the t-multiplier proposed by Edelman.
Based on the earlier work by Woodroofe, Edelman
proposed increasing the t-multiplier by decreasing
the number of degrees of freedom by 5. The results
of these experiments are given in Table 2. Here only
the cases Ny = 10 and 20 are considered. (The pro-
cedure requires N, to be at least 7.) Notice in Table
2 that the coverage is too high for large values of C
when the coefficient of variation is small. The prob-
lem is that in these cases the procedure is not really
sequential because by the time N, observations have
occurred the relative half width is, with a large
probability, already below the target. Hence it is
basically a non-sequential procedure and the inap-
propriately inflated t-multiplier causes the high cov-
erage.

To attempt to correct for this high coverage we
modified Edelman’s procedure so that at the initial
test we used the standard t-multiplier and in subse-
quent tests we used the inflated multiplier. These
results are given in Table 3. Notice that for this
procedure the coverage is uniformly correct. Hence
this procedure with N, = 10 seems the best of those
examined.

In the next section we will propose a ranking and
selection procedure based on multiple confidence
intervals. For this procedure to be valid, sequentially
generated confidence intervals need to be valid. We
have considered only one of a large class of proce-
dures for generating confidence intervals. This ques-



A Higher Level, Output Analysis Interface

825

Table 2: Edelman’s Correction to the t-Multiplier

Ny=10
c
2 1 .05 025
.S .933(.902,.954) .933(.902,.954) .928(.896,.950) .948(.920,.966)
olu 3 .968(.944,.982) .943(.914,.962) .940(.911,.960) .958(.931,.974)
1 .988(.969,.995) .975(.953,.987) .955(.928,.972) .943(.914,.962)
No = 20
C
2 1 .05 .025
5 .938(.908,.958) .940(.911,.960) .945(.917,.964) 1953(.926,.970)
olu 3 .965(.941,.980) .938(.908,.958) .943(.914,.962) .960(.934,.976)

945(.917,.964)

968(.944,.982)

.953(.926,.970)

1963(.938,.978)

tion of sequential validity is an important question
for them all.

3 RANKING AND SELECTION PROCE-
DURES FOR MULTIPLE MODELS

We next consider the case where the experimenter
has a finite number of models and wishes to compare
them with regard to some performance measure.
Again we assume this performance measure is the
expected value of some output process. This is the
situation discussed in the ranking and selection liter-
ature. We will take a different approach centered
around sequentially determined confidence intervals
and the Bonferroni inequality. There are many
ranking and selection goals. Most can be put in this
framework. As an illustration we consider the fol-
lowing: the experimenter wishes to make the neces-
sary runs so that either

1. a reliable decision can be made as to which
model is best and the performance of the best

model characterized to some specified accuracy
or,

2. after eliminating as many models as possible a
subset remains which, even though specified to
the desired accuracy, cannot be reliably ranked.

Presumably in this latter case, because of the accu-
racy requirements on the results, for all practical
purposes the subset of models remaining are equiv-
alent. The method which we propose requires only
that valid confidence intervals can be sequentially
generated whose expected width goes to zero as the
amount of data increases without bound. If we gen-
erate K confidence intervals with coverage 1 — («/K)
then by the Bonferroni inequality the K confidence
intervals will be jointly valid with probability 1 — a.
Hence, any non-overlapping of confidence intervals
will imply a ranking with probability 1 — «. The
procedure is extremely straight forward. It has two
parameters: the joint confidence level, 1 — «, and the
accuracy, C. First, initial confidence intervals are

Table 3: Modified Edelman’s Procedure

NO = 10
C
2 1 .05 .025
S .943(.914,.962) .960(.934,.976) .968(.944,.982) .963(.938,.978)
olu 3 .960(.934,.976) .935(.905,.956) .960(.934,.976) .935(.905,.956)
A .950(.923,.960) .940(.911,.960) .955(.928,.972) .950(.923,.960)
No = 20
C
2 B .05 .025
.5 .950(.923,.960) .953(.926,.970) .955(.928,.972) .953(.926,.970)
olu 3 .963(.938,.978) .950(.923,.968) .960(.934,.976) .943(.914,.962)
A .950(.923,.968) .945(.917,.964) .953(.926,.970) .958(.931,.974)
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generated, one for each model. These and subse-
quent intervals are with confidence 1 — («/K) where
K is the number of models. Suppose the best model
is that with the smallest expected value for the out-
put variable. Consider the model with the smallest
point estimate. Consider its confidence interval. Get
more data for all the models whose confidence in-
tervals overlap its confidence interval (it overlaps it-
self) and whose relative half widths are greater than
or equal to C. Then recompute the confidence in-
tervals and repeat until there is no more data called
for. At each repetition all models are considered not
just the ones for which data has been added. You
will end up with a subset of “best” models whose
confidence intervals overlap the confidence interval
for the model with the smallest point estimate and
whose performance is known to an accuracy C.
Furthermore, if the system displays the complete set
of confidence intervals in a range plot as the method
proceeds, the experimenter will see a meaningful
history of the progress and be able to intervene in a
reasonable fashion.

To illustrate the procedure we simulated the be-
havior of an independent replications study of 5
models. We assumed that the replications for each
model produced a series of i.i.d. normally distributed
random variables with the means and standard devi-
ations indicated in Table 4. The mean of each se-
quence is the performance measure of interest.
Model 3 has the smallest performance measure and
hence is the best model. To obtain the initial confi-
dence intervals a sample of size 10 was taken. All
confidence intervals were generated using the stand-
ard t-multiplier. At each stage one replication was
added for each model meeting the criterion described
above. The accuracy parameter was C=.1. Alto-
gether the procedure went through 131 stages. Only
Model 3 remained at the end. Hence only it had the
maximum of 140 samples. Figure 1 contains a series
of 6 equally spaced snapshots of the progress of the
procedure. It is a series of snapshots of what might
appear in a window of the experimenter’s display.
Model 3 was seen as the best all the way. The con-
fidence interval for Model 5 never overlapped that
for Model 3 and hence no more samples were taken
for Model S after the initial 10.

Table 4: Model Characteristics

Model Mean Standard Deviation
1 20 10
2 7 3
3 5 2
4 9 4
5 30 12

MacNair and Welch

This procedure is easy for the experimenter to
understand. The interpretation of the intermediate
and final results are straight forward. There is an ef-
fective combination of selection criteria and accuracy
criteria. This is important since, a priori, the exper-
imenter has some idea how closely his model ap-
proximates the systems modeled and hence what
differences between models are likely to be signif-
icant. The procedure can easily be extended to other
ranking and selection criteria. At each stage more
data is taken on any model for which a decision
about the criteria cannot be made and which has not
yet reached the accuracy goal. If you wish to identify
the best k of the K models, you would take addi-
tional data on those models whose confidence inter-
vals overlap some one of the confidence intervals
corresponding to the k smallest point estimates and
have not met the accuracy goals. If you wish to rank
all the models you would take more data for any
model whose confidence interval overlapped any
other confidence interval and have not met the ac-
curacy goals. This approach is discussed in a some-
what similar fashion in Section 10.3 of Law and
Kelton (1991).

4 CHARACTERIZING THE BEHAVIOR OF
A MODEL OVER A SPECIFIED RANGE
OF A SINGLE PARAMETER

We next consider the case where the experimenter is
interested in characterizing the expectation of a re-
sponse variable which is a function of a single con-
tinuous mode] parameter. We assume he is interested
in this function over some range, i.e. over an interval.
As in the earlier discussion we wish to develop pro-
cedures which will try to obtain rough but important
information first. This information will get more and
more refined until some final goal is reached. In this
case a reasonable goal would be the estimation of the
function to some resolution and accuracy. Further,
it might be desirable to obtain an estimate which was
continuous and had a continuous first derivative. As
before we would like to provide the experimenter
with a graphical picture of the progress of the pro-
cedure in one or more windows of his display so that
he can appreciate what has been learned and, if de-
sirable, interact with the process.

As an example suppose the procedure tries to ap-
proximate the function by a polynomial over the
range specified. Then, in line with the philosophy
we are proposing, the procedure would start by fit-
ting a straight line. It would implement an appro-
priately powerful test of the straight line fit. If this
assumption were accepted it would test the accuracy
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Figure 1. Six Snapshots of a Model Selection Procedure

criteria. If the accuracy criteria were met it would
quit. If the straight line fit were rejected it would
move to higher degree polynomials, adding data and
checking the fit until either it decided it could not fit
a polynomial or the resolution limits had been
reached and all the confidence intervals met the ac-
curacy criteria. If it were unable to fit a polynomial
in this global fashion it could go on to try to fit a
richer class of smooth functions using a technique
such as local polynomial fitting (see e.g. Cleveland
and Devlin 1988). If it remained unsure of the fit of
a smooth curve it would present the results as a set
of point estimates and confidence intervals meeting
the resolution and accuracy goals. As a final display
it would either show the final fitted function with its
confidence intervals or the set of point estimates and
confidence intervals with the point estimates con-
nected by straight lines.

To illustrate this approach we consider the model
depicted in Figure 2. It is a closed queueing model
of a simple computer system. We consider the case
where the number of customers is 100. It has six
queues. There is an infinite server queue representing
the terminal think time. There is a queue in front of
the cpu and queues iol, i02, i03, i04 in front of

storage devices. All these latter queues have a FCFS
discipline. The service times for all 6 queues are se-
quences of i.i.d. exponential random variables. The
routing from the cpu to the terminals and the storage
devices is controlled by a sequence of i.i.d. discrete
random variables with probability 0.2 for each path.
The expected think time at the terminals 1s 9. The
expected service time for the storage devices 1s .025.
We will be trying to estimate the expected overall
system response time as a function of the expected
service time at the cpu. The overall system response
time is the time from the departure from the termi-
nals until the return to the terminals. We let 8, be the
expected service time at the cpu. We let R be the
expected system response time. We suppose the ex-
perimenter is interested in determining the relation-
ship over the range .005 < 6, < .025.

We used the method of independent replications.
We ran each replication for 500 system response
times and discarded the first 100 to control the initial
transient. The estimate was the average over the
undiscarded 400 response times. We next describe a
possible procedure for trying to fit a smooth curve
or defaulting to a set of confidence intervals. The
experimenter picks a resolution, D, which is a power
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of 2 and greater than or equal to 4. Runs will be
made at, at most, D + 1 equally spaced points on the
interval of interest. The experimenter also picks an
accuracy, C. This is a relative half width accuracy
over the interval of interest. We will assume it is a
pointwise accuracy and does not hold simultane-
ously over the interval. If the procedure is able to
fit a polynomial over the interval, the maximum
value of the relative half width of the confidence in-
terval on the fitted polynomial will be less than or
equal to this accuracy. If it cannot fit a polynomial,
data will be taken at D + 1 equally spaced points and
the maximum relative half width over all the confi-
dence intervals will be less than or equal to the ac-
curacy C. In line with the goals stated earlier, the
method begins by taking data at the two end points
and the centerpoint of the interval. Since the as-
sumption of equal variances is unrealistic, enough
data has to be taken at each point to obtain reason-
able estimates of the variances. We chose to take 10
replications initially at each point.

In Figure 3 we give a sequence of snapshots of the
performance of the method for D=8 and C=.1.
These would be snapshots of the window on the
display devoted to the progress of the procedure.
Figure 3A shows a scatterplot of the initial data.
Since we have 10 replications at each parameter
point, we have a test of lack of fit. The application
of weighted least squares (with the inverses of the

estimated variances as weights) to the fitting of a
straight line revealed a very significant lack of fit.
This straight line is shown as a dashed line and a
quadratic fit is shown as an undashed line. There are
not enough points to check the quadratic fit so two
more points were added with 10 replications each.
These points are midpoint between the existing
points yielding five equally spaced points in all. In
Figure 3B we show a scatter plot of the data. The
weighted least squares fit of the quadratic had a sig-
nificant lack of fit. It is shown as a dashed line. The
cubic fit passed the lack of fit test and is shown as
an undashed line. To be reasonably sure of the fit,
the method requires that the number of points be at
least two greater than the number of coefficients of
the fitting polynomial. Hence four more points were
added equally spaced between the previous five. As
before, 10 replications were taken at each point. In
Figure 3C we show a scatterplot of the data. The
cubic fit passed the goodness of fit test and is shown.
Also shown are the pointwise confidence bounds on
the fitted function. They are displayed as dashed
lines. These confidence intervals do not pass the ac-
curacy bounds and hence although the method has
tentatively identified a fitting function it has not sat-
isfied the accuracy criteria. The method then pro-
ceeds to add replications until the accuracy criterion
are satisfied. In this experiment we added replications
uniformly to each point. After adding 20 replications
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FIGURE 3A: STAGE 1 RESUWLTS
10 REPLICATIONS PER POINT

o.n2 ooy
MEAN CPU SERVICE TIME

FIGURE 3C: STAGE 3 RESULTS
10 REPLICATIONS PER POINT

0.02 0.03
MEAN CPU SERVICE TME
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FIGURE 38: STAGE 2 RESULTS
10 REPUCATIONS PER POINT

0.01 002
MEAN CPU SERWVICE TIME

FIGURE 3D: STAGE 4 RESULTS
30 REPUCATIONS PER POINT

—— CUBIC FTT
= =~ .08 CONFIDENCE INTERWALS

Q.01 0.2
MEAN CPU SERVICE TIME

Figure 3. Sequence of Snapshots of a Single Continuous Parameter Procedure

at each point the accuracy criterion was passed and
the cubic fit still passed the goodness of fit test. The
final results are presented in Figure 3D.

S CHARACTERIZING THE BEHAVIOR OF
A MODEL OVER A REGION SPANNED
BY TWO OR MORE PARAMETERS

In a parallel fashion we now consider the case where
an experimenter is interested in characterizing the
expectation of a response variable which is a func-
tion of two continuous model parameters: 6, and
0,. We assume that he is interested in its behavior
over a rectangular region. As before, he would like
to fit a smooth function; however, if that is not
possible, the default will produce an array of point
estimates and confidence intervals. Again his re-
quirements are stated in terms of resolution and ac-
curacy. The resolution goal is given as a pair D, and
D; where the D’s are powers of 2 greater than or
equal to 4. Runs will be made on a rectangular grid
with the range of 0, divided into at most D, + 1
equally spaced intervals and the range of 6, divided
into at most D, + 1 equally spaced intervals. The
accuracy goal is a constant, C. The estimates will

have confidence intervals with a relative half width
less than or equal to C. As before, the search for a
smooth function will take the form of the attempt to
globally fit a bivaniate polynomial.

We consider the simple computer system model
described in Section 4. The two parameters studied
were 0, the expected think time at the terminals, and
0,, the expected service time at the cpu. We consid-
ered the region 3<6,<15 and .005<6,<.025.
The procedure control parameters were D, = D, =4
and C=.05. In Figure 4A we show a scatter plot
of the initial set of data. 10 replications were taken
at 9 points on a rectangular grid covering the rec-
tangular region and splitting the range in half along
each axis. We also show the fit of a bivanate quad-
ratic. It was fit using weighted least squares with the
inverses of the sample vanances as weights. This
bivariate quadratic did not pass the goodness of fit
test. There were not enough points for the bivanate
cubic so 10 replications were added at 16 additional
points on a rectangular grid which covered the entire
region and divided the range along each axis into 4
equal parts. Thus, at this stage there were 10 repli-
cations at each of 25 points. In Figure 4B we show
the scatter plot of this data along with the fit of a
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FIGURE 4A
FIRST STAGE: 10 REPUCATIONS PER POINT
BVARIATE QUADRATIC FIT

FIGURE 4C

MacNair and Welch

FIGURE 48
SECOND STAGE: 10 REPLICATIONS PER POINT
BIVARIATE CuBIC FIT

FINAL STAGE: 30 REPLICATIONS PER POINT
POINT ESTIMATES PLUS CONFIDENCE INTERVALS

Figure 4. Sequence of Snapshots for a Procedure with Two Continuous Parameters

bivariate cubic. The bivariate cubic did not pass the
goodness of fit test and we were not able to fit a
bivariate quartic because of colinearity between the
vectors representing the different terms. Hence the
fitting of a smooth function by the global fitting of
bivariate polynomials was unsuccessful. Finally,
enough replications were added so that at each point
the estimates met the accuracy criteria. The resulting
estimates and confidence intervals are plotted in
Figure 4C. Thus Figure 4 represents a sequence of
snapshots of the progress of the procedure. The ex-
perimenter could at any point have intervened and
modified the conditions and/or goals.

As the number of parameters increases the situ-
ation, of course, becomes much more complicated
with a much greater variety of possible statistical
metamodels and a greater availability of sophisti-
cated techniques. Procedures have to be developed
which

1. proceed in a sequential fashion from simple to
more complex models,

2. continue to use the existing data while aug-
menting it with new data taking advantage of

the ready availability of additional data in the
simulation environment,

3. at each stage both estimate and test the model
being considered,

4. at each stage provide the user with summary
information so that he can intervene if desirable,

5. if unsuccessful at fitting a model, provide good
summary information.

6 SUMMARY

With the proliferation of powerful scientific-
engineering workstations, simulation practitioners
are soon going to be challenged by a plethora of
computing resources. To use these resources effec-
tively, high level output analysis interfaces are going
to have to be built. These interfaces need to exploit
the unique features of the simulation environment:
the fact that additional data is readily available and
that this data can be immediately incorporated into
the analysis and presented to the user. Thus many
of the classical considerations of statistics involving
making optimum use of limited data become
eclipsed by questions of what additional data is



A Higher Level, Output Analysis Interface

needed to make the necessary decisions and how to
present the results as the data is being acquired so
as to maximize the power of the combination of
practitioner and machine. In this paper we have
proposed sample procedures for a few of the situ-
ations arising in practice.
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