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ABSTRACT

A macroscopic freeway model of traffic

flow is presented which can be used
for simulation of freeway traffic
under heavy traffic conditions. The
model regards essentially two

different reactions of car following
behaviour (1) relaxation to a static
speed-density relation (empirical
fundamental diagram) (2) anticipation
of traffic conditions downstream. The
model can describe shock wave
formation, spreading of stop-start
waves, bistability and irregularities
due to nonlinearity stochastics. The
computation effort for the macroscopic

model is described as well as the
necessary storage capacity. As an
application of the program a
simulation procedure for design

purposes of traffic control systems is
presented.

1  INTRODUCTION

Macroscopic description of traffic
flow implies the definition of
adequate flow variables expressing the
average behaviour of the vehicles on a
regarded freeway. Such variables are
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traffic volume q
(vehicles per hour)

traffic density ~
(vehicles per km)

mean speed v
(sampling intervall e. g. § min)

Besides the basic relation
q:p*‘v

(flowrate = density - velocity)
for a static description an empirical
speed density relation holds

v="V(p)

As a functional
expression

relation a general

Vip) = vs(1 - (GE)™)™

Pbump

is used with n, and n, as exponents,
V¢ as mean freé speed,” and  Poump
ag density bumper to bumper.
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The speed-density relation vreflects
homogeneous traffic flow with an
unambiguous relation between speed and
density. This assumption only holds
for free traffic flow, therefore a fit
of the above v- p -relation to
experimental data is only possible
with restriction to free traffic flow
data. A selfconsistent cut-off
procedure is described in a paper by
Kithne (1987). The method uses the
derived below stability condition for
homogeneous traffic flow and a cut-off
speed for stable and unstable traffic
data discrimination.

For a dynamic description two main
effects are regarded: First the
retarded reaction on deviations from
the equilibrium speed-density relation
modelled by a relaxation term. Second
the drivers awareness of conditions

downstream modelled by an anticipation
term 1ike in compressible gas flow.
Together with the equation of
continuity the dynamic description of
freeway traffic reads (Witham (1974)):

P1+'(P'U)I=0 (1)
v+ vvs = L(V(p) —v)
—CSP;‘- + VoUzz (2)
A small viscosity term VoVz was

introduced to smear out sharp shocks
and to guarantee a continuous
description of freeway traffic even if
bottlenecks are regarded or unstable
traffic flow with jams and stop-start
waves.

Besides the static speed density
relation v = V(p) the dynamic traffic
flow model contains as parameters the
relaxation time 7 and the
anticipation coefficient ¢Z . The
relaxation term summarizes the
characteristic times for acceleration,
deceleration and relaxation. It
indicates the time after which a speed
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variation is compensated. Due to the
anticipation, disturbances move along
the freeway as waves like in
compressible gas flow. Without
relaxation these disturbances
propagate upstream along the freeway
with velocity Co- The anticipation
coefficient has the meaning of a
square of the congestion velocity,
when a rapid change 1in density runs
upstream as a shock wave. Without the
additional (small) viscosity the model
would get difficulties in describing
transient effects and high density
traffic at bottlenecks (Hauer and
Hurdle  (1979)). The mathematical
reason is that in the case of no
second order derivative jumps and
piecewise continuous solutions must be
included artificially by Jjump
conditions (Dressler (1949)).

By discretization of space and time
the model can be transformed into a
set of difference equations and can
reproduce real traffic including
transitions from free flow conditions
to congestion (Cremer (1979)).

2  STABILITY ANALYSIS AND SPEED-
DENSITY FIT

For stability analysis of the
homogeneous solution p = po
v = V(p,)deviations

P—Po=p v—V(po) =9 (3)

are regarded up to first order. This
Teads after introduction of
dimensionless variables

s _ 5 s_ 5
p_PO v co

, - 4
i___z—lpot t____i ()

to a system of equations which reads
(*suppressed)

at a:!: ,D- _ 0
—2V"(po) +0: O+ 1 —vd? v ]~
(5)
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and which can be solved by the
decomposition

( ﬁ ) ~ ewt+ik:l:
7 (6)

This leads to a wave number dependence
of the time constant

k’l
v =i

+ /()2 — k2 —ik(a+ 1)

(7)
with the traffic parameter
e=-1- g% (8)
For the homogeneous

solution remains stable. The cross
over occurs for

a = vk? (9)
To make sure stability is given for
a<0 (10)

The corresponding critical density can
be derived from

a(pe) = -1 — @drl — g (11)

Co

This density does not necessarily
coincide with the density of the
maximum of the fundamental diagram
which is derived from the relation

Q(Pmaz) = 22| =0 (12)

or

|Pma.-.

mazx dv maz ) __
~ 1V (pmaz) — emaz lemaz) = (13)

<o

The noncoincidence of critical density
for which homogenous traffic flow
becomes unstable and maximum capacity
density corresponding to the
maximum capacity Q is typical for
phase transition pwaﬁomena in physics.
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Under particular conditions beyond the
stability 1limit it is possible to
overheat a phase transition system.
The overheating ration can be derijved
from capacity measurements coming in
one case from stable traffic flow and
in the other case from unstable
traffic flow. The drop in capacity is
about 5 % (compare Agyemang-Duah and
Hall (1991)).

A — maz )= c) Av
drop ratio = emaz)=Qec) pq(pm?) el ~ 5%

(14)

Maximum capacity Q(pmez ) or Q(ec ),
critical density po , free traffic
flow mean speed v, and density bumper
to bumper (depeﬁding on mean car
length including the actual truck
ratio) are parameters which can be
derived directly from stable traffic
flow measurements. With these 4
figures the static speed density
relation is completely determined. To
fitting vo, o , Q. .., and Peump to
traffic 'data ismaxpossible when

restricting to stable flow measurement
data with the above quoted cut off
procedure. This. presents an alterna-
tive to least square fits of
functional relations which in non
carefully selected measurements mix
stable traffic flow data and transient
data.

autobahns the above
procedure leads to

For German
decribed fit

parameters for the speed density
relation (Sick (1989)).
v
f = 115 km/h
" = 2.05
"2 = 21.11
Poump = 180 Veh/km
The dynamic parameters for German

autobahns under normal conditions are

C

0 63,5 km/h

30 s
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They are determined by the cut off
procedure (Kihne (1987)) and
disturbance spreading measurements
(Cremer (1979); Kihne, Zackor, Balz
(1988); Sick (1989)).

3 TRAFFIC PATTERNS OF UNHOMOGENEOUS
TRAFFIC FLOW

Numerical analysis of the basic
equations as starting point for a
simulation of traffic flow with given
initial and boundary conditions is
possible only if the analysis adapts
the expected traffic patterns. These
traffic patterns can be derived from
the traffic flow model by analytical
investigations. First the universality
of the equations is inquired. For this
aim dimensionless variables are

introduced.

F’j:_L
. f:}bump
'U=;

f—t

it

(L'ZCO—_’_

(15)

which lead to the transformed basic
equations (“suppressed)

pe+(pv)z =0 (16)

v+ VY, = E%(V(Pbumpp) -

—be t RoVas (17)

with the dimensionless speed-density
relation from the beginning of the
paper

iv(pbumpp) = ’U;(l — pm)nz (18)

and the dimensionless characteristic
numbers

normalized free speed:

vi = (19)
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Reynolds number:
Re=r (20)

Besides the exponents of the static
equilibrium speed density relation n,,
n, which depend on the choice of An
aﬁa]ytical expression for V(p) as
universal parameters there are
occuring only two numbers v_. and Re.
These numbers summarize tﬁe whole
static and dynamic behaviour of the
solutions. An explicit dependence on
the parameters and describing
the dynamic behaviour is not given,
only an implicit dependence via v;

and Re. For all subsequent
calculations the variables are
normalized in the above way and the

universal parameters v} and Re are
used. )

Looking for time independent solutions

the basic equations simplify to
(dimensionless variables!).

(p*“v™)z = 0 (21)

vt + 'l);t — i(V(PbumpPSt) _ vst

st 1

- ot RV (22)
The time independent solution

describes a stable profile along the
freeway. The equation of continuity
(21) can be integrated directly.

st,, 9t JQ__ (23)

p v = CoPbump

The integration constant QO ist the
external given flow. It” has the
meaning of the traffic capacity at the
bottleneck far away from the regarded
section (stationary profiles!). As
acceleration equation remains the
profile equation

ﬁv;‘z + (v )t + H(v*) =0 (24)
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with
I\I(vsl) — _ul7 _ vst (25)
H(v*) = 2v(%fe) — ot (26)

The profile equation has the form of a
Newtonian equation of motion for a
pendulum with an amplitude- depending
damping term T'(v*) S%nd an
anharmonic force term H(v®"). As in-
dependent variable serves the
c?ordinate x is used. The inertia term
ReVez from the viscosity supplement to
be taken in the limit Re— oco.

The zeros of the force term correspond
to fixpoints. To discuss the position
of these 1zeros and the occuring

traffic patterns instead of the
control parameter Q, an operating
point po|V(po) is infroduced which
corresponds to an operating point on
the fundamental diagram Q( ) = with
the bottleneck capacity QO as
ordinate.

Qo = poV(po) (27)

Since the flow-density relation Q(p) =
PV(P) is ambiguous one ends up with
the same integration constant Q, if
one choses an operating point poR/(PO)
from the stable or from the
corresponding unstable regime. With
the interpretation (27)  of the

bottleneck capacity the absolute term
H(v) reads

H(v") = E%V <P0‘%“:a(ep0)) — v (28)

Besides the ever existing zero

‘Ui"t = cLoV(pO) (29)
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there exist additional equilibrium
points depending on the density Po

at the operating point. This density
now serves as control parameter
instead of the bottleneck capacity Q.o
Figure lsﬁhows the shape of the forcCe
term H(v’") for different values of
the single control parameter p,/ppump

The fixpoints are stable or unstable
if the force in the fixpoint s
restoring or repulsive respectively.
To decide this the derivative H'(v) of
the force with respect to the inde-
pendent variable has to be analyzed.
The change from one type of behaviour
to the other coincides with a change
of the structural stability. Depending
on the control parameter values the
sequence of the zeros in the force
term H(v) can also change.

If the operating point is unstable and
is surrounded by a saddle point in a

v-v_-phase portrait both fixpoints
mus¥ include a Timit cycle. This limit
cycle corresponds to stationary stop-
start wave traffic.

0.8 , ,

0.4

0o

-0.4

-0.8 -

_12 -

16 . 1 A ! . 1
0 0.6 1.2 1.8

vst

Fig. 1: st
Shape of the absolute term H(v®")
for different operating point
densities
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For further discussion of the static
solutions the substitution

vi=1-X (30)
is introduced. For practical

investigations X can be restricted to
small values |X| << 1 which implies a
restriction to the vicinity of the
operating point and which simplifies
the damping term to

I'~2X (31)
The substitution
=V (po) = 1+ a(po) (32)

simplifies the absolute term H
together withla| << 1. The Tlatter
assumption restricts the operating
point densities to densities
slightly above the critical density #c
and to bottleneck capacities Q

slightly below the maximum capacity
Q ... For all practical purposes a
qﬂgératic approximation for the abso-
Tute term H then is sufficient.

H=~a(X +a)(l- X) (33)

With the desired simplifications the
profile equation for time independent
unhomogeneous solutions reads

1
X +2X X,
+a(X +a)(l-X)=0 (34)

where the 1imit Re — oo has to be
taken. The profile equation is a
nonlinear wave equation of Lienard
type  (Eckhaus  (1983)). It has
different types of solutions depending
on the control parameter po which
influences the traffic parameter a.

a(py) = —1 — @ dtien) (35)
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(a controls the curvature of the ab-
solut term H within the quadratic
approximation) and on the position of
the fixpoint x, = —a

a(po) = =1+ 2V (po) (36)

Besides a typical saw tooth
oscillation (compare Fig. 2), where a
regular stop-start wave is shown
together with measurements of shop-
start waves from congested traffic on
a German autobahn, shock fronts and
bistability occur, depending on Po.
The whole variety of possible traffic
patterns for time independent profiles
dividing the

Fig. 2 T
Saw thooth oscillations in a V-
v_-phase portrait as example for
sBatial]y oscillating time
independend profiles (mean density

pPo = Poump @S density of the
operating point and control parameter)
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0 1 2 J<30 0 S0 (60 70 8 %@
loo e b ———= p[veh/km]
unstable stable creeping
Fig. 3 _
Fundamental diagram together with

different traffic patterns in the
unstable regime. The traffic patterns
are derived from the Lienard equation
for inhomogeneous time independent
profiles with mean density po as
control parameter (compare equ. (34))
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Fundamental diagram is shown in Fig. 3
with
Qe) = V() = pus(1 - (22" )™ (a1)

Pbump

4  NUMERICAL INTEGRATION

For numerical integration the basic
equations are transformed with

VU =W (38)

into a system of 3 equations for the
unknown variables r, v, w including
first derivatives with respect to
space and time

r+vr;, +w=0
w+vw—-V(r)+v+r,—vw, =0 (39)
v—w=20

As a further reparation for numerical
integration a logarithmic density.

r::ln(aji; (40)

was introduced which simplifies the
speed-density relation to

V(r) = £(1 - emr)m (41)
Due to the nonlinearities ww, V(r)
the system can only be solved

iteratively. Starting with an nth
approximation

()
Z(n) = ( v(n) )
(n)
v (42)

the next n +1 st approximation is
calculated by

2" = 5(0) _ A-Y(n)I(n) (43)
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with
re + vWry 4+ w)
I(n) = | ve+v™w® - V(r() 4y

v, — w
+r; —vw, ) (44)

and

0 Ty 1
An) = | =v'(r™) w41 ) (45)
0 0 -1
Inhomogenity I(n) and expansion matrix
A(n) are calculated by an Newtonian
iteraction procedure applied to the
system (39).

The derivatives in I (n) and A(n)
occur as parameters.

They are calculated in an implicit
discretizing procedure [Cebeci, Smith
(1974)]. The continuous arguments

r(z,t)
z(z,t) = | v(z,t)

w(z,t) (46)
are replaced by lattice points
2(130 + 'LA(D, to + ]At) = 2ij (47)

A1l derivatives are replaced by
centered-difference quotients

2z = sz (Zidrg41 — Zijel t Zivng — zi,)

1 _ e i s — 2
2y — m(2i+1.1+1 4+ Zij41 7 Zitl,j Zh])

(48)

and the function values are replaced
by the midpoint values

2 = Hzip1je1 + Zije + zienj + 2i5) (49)
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The system (39) then transformes to a
difference equations system which can
recursively be solved with 3 boundary
conditions e. g.

p(z = 0,t)
v(z =0,t)
vz(z = 0,t)
(50)
and 2 initial condition e. g
plz,t = 0;
v(z,t =0 (51)

5 APPLICATION TO A LINE CONTROL
SYSTEM

The macroscopic traffic flow model
allows to determine the state of a
road for each position at all times.
You only have to supply the correct
boundary - and starting conditions.
This fact can be used for simulation
purposes. First, the road which shall
be Tooked at has to be described by
the length, the on- and off-ramp
facilities and the number of lanes
present. These facts have to be
considered for the spatial conditions.
Also, the traffic has to be described
by the macroscopic variables mean
speed, density and volume for
passenger cars as well as for Tlorries
in respect to each lane. After
supplying an initial mesh for the
whole freeway, the newly arriving
traffic must as well be described.
This enables one to study a whole
variety of traffic patterns, not only
as a static state but also as a
dynamical creation and development.
A1l the phenomena which are occurring
can be studied and fully derived from
starting conditions. So some traffic
states may be identified as leading to
certain phenomena, for example stop-
and go-traffic.

769

It has to be considered that
macroscopic data are not normally used
for traffic control purposes. Most of
the common techniques are using data
with respect to single cars. So there
is the need for a translation from the
macroscopic model to the scale of
individual cars. This is done by
statistical distributions. It s
assumed that for each traffic density
there exists a unique Poisson
distribution which transforms the
computed density in to a row of time
gaps. In fact, it is a modified
Poisson distribution as the time gap
cannot be smaller than the average
length of a car. For the speed a
Gaussian distribution is assumed. This
is done separately for trucks and
passenger cars.

Such a discretisation is realised at
each place of a traffic detector,
i. e. an inductive loop. The position
of each detector is kept as an abso-
lute kilometer-value in a separate
record file describing those parts of
the freeway where the data aquisation
for the traffic control takes place. A
great advantage is the possibility of
easily modifying this file. As a
result, changes and amendments to the
line control can easily be realised,
as well as temporarily taking out
malfunctioning detector units.
Depending on the installation, the
data from the sensors are collected
for a certain period of time and then
sent to the central traffic control
centre where the control and the
graphical presentation as well as the
storage and the possibility of manual
interference takes place. As an
additional feature, there is the
generation of environmental data Tlike
wetness, fog and ice. This 1is done
either by random generation, i. e.

simulating a patch of dr1ft1ng fog, or
by specifying the values in a separate
record file. These data are
subsequently added to the output from
the traffic algorithm and further
processed in the control centre.
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With this simulating tool it is pos-
sible to test and to properly adjust
the whole variety of parameters which
are used in the Tine control strategy.
Situations which are only occurring
seldom or are posing a risk to drivers
can easily be studied. It is also
possible to have two sets of
parameters, are one the simulation
tool and the other one for the real
freeway, and to study their different
behaviours under the same measurement
data.

;starting density cars in veh/km
20

;percentage of lorries
10

;mean speed cars

130

istandard deviation cars
14

;mean speed lorries

70

istandard deviation lorries
8

Fig. 4 Input data for simulation
tool
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