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ABSTRACT

Discrete event simulation is used to explore the
robustness of queueing network models, a set of
powerful analytical techniques for evaluating computer
system performance. These techniques are shown to give
good results even when some of the basic assumptions
used to derive them are violated. It is also shown that
simulation provides additional insights, into computer
system performance, not available when using the mean
value analysis characteristic of separable queueing
network approaches.

1 INTRODUCTION

Queueing network models have proven to be powerful
tools to analyze computer systems (Lazowska et al
1984, Lipsky 1977). Buzen and others have shown that
much less restrictive assumptions are required to develop
an operational based theory of computer system
performance than those required to develop Markovian
queueing network theory (Buzen 1976, Denning and
Buzen 1978, Lazowska et al 1984). However, several
widely used solution techniques are predicated upon the
queueing networks being separable.

The separable network solutions are based on the
following assumptions:

- service center flow balance

- no two jobs change state at exactly the same time

- routing of jobs is independent of service center

queue lengths

- service times are independent of the number and

placement of jobs at other centers within the network

— the arrival times of jobs extemal to the network are

independent of the number and placement of jobs

within the network.

(1) Simultaneous possession of resources violates the
assumption: no two jobs change state at exactly the
same time. Examples of simultaneous possession of
resources are memory constrained systems (memory
and cpu) and modem disk systems (channel, controller,
and disk).
(2) Rotational position sensing (rps) disk systems
violate the assumption: service times are independent
of the number and placement of jobs at other centers
within the network. In rps systems, the disk unit
determines if the path to the processor is available or
not, when the requested sector is about to rotate under
the disk read or write head. If the path is available,
it is seized and the data transfer takes place. If the
path is busy, the disk rotates one revolution and
process is repeated. Thus each time a disk finds the
path busy, the data transfer is delayed for one
rotational period. Disk service time is therefore a
function of the channel utilization which is, in tumn, a
function of the existence of jobs at other disks (service
centers).
(3) Both cpu and disks may violate the assumption:
service times are load independent and exponentially
distributed. As discussed above, disk service times,
may not be independent and often may not be
exponentially distributed. In a multiprocessor, task
execution rates are usually a function of tasks running
concurrently on other processors as a result of resource
contention.

In this paper, we explore the robustness of mean value
analysis (MVA) of queueing network models as these
assumptions are violated. Substantial analytical work
has been done to develop the techniques of queueing
network models from operational principles (Buzen 1976,
Denning and Buzen 1978) and using the results of
Markovian queueing theory (Lazowska et al 1984,

Specific solutions (Lazowska et al 1984) also require Zahorjan 1982). But as far as their usefulness, less work
load independent exponentially distributed service times. has been published. Case studies, such as those

Computer systems commonly violate certain of these discussed in Lazowska et al (1984), show good
assumptions.
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agreement with a limited number of measurements, but
this author is not aware of a systematic study of their
applicability and accuracy. Simulation based,
experimental studies are suggested as a technique to
investigate these issues.

The suggested approach includes 6 steps:

(1) Determine the system characteristics, which

potentially impact the accuracy of the analytical

models.

(2) Design an experimental program to determine the

sensitivity of the analytical model to these

characteristics.

(3) Design and implement a simulation test bed for the

experimental study. The results, reported later in this

paper, demonstrate that relatively simple simulations

can be used to meet the objectives of (2).

(4) Carry out the experimental program.

(5) Evaluate the results, and iterate through steps (2)-

(5) as required.

(6) Refine the analytical models to address the

sensitivities discovered through this process.

This paper illustrates the application of steps (1)-(5)
of this proposed technique with a study of a relatively
simple multitasked computer system. Discrete event
simulations are constructed which selectively violate the
assumptions of separable queueing networks. Then
queueing network analysis is used to generate the
solutions of these same networks and the accuracy of the
models is determined by comparing the two sets of
results.

2 THE MODEL

A discrete event simulation of multitasked computer
system is used to study the accuracy of network
queueing analysis. The system modelled is a
uniprocessor with a single channel and four disk drives.
The disk subsystem uses rotational position sensing (rps).
Tasks are characterized by the number of visits to the
cpu and disk subsystems, their service demands, and
main memory requirements. The simulation is based on
a disk input/output model described in Knadler and May
(1990) and the disk system performance was validated
by comparing with measurements by Olson (1989).

The two simulated multitasked computer systems are
shown in figures 1 and 2. They are a multitasked batch
system and an interactive system. The interactive
system is a memory constrained central processor
attached to a network of interactive users and an
input/output system. Processor tasks have exponentially
distributed service time per visit. The number of visits
per task and task memory requirements are uniformly
distributed. Disk data requirements are expressed as a
uniformly distributed number of sectors requested per
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Figure 1: Batch Computer System

access.

A task (either a terminal system request or a new
batch job) requests memory when it enters the system
and holds it until it completes all visits to both the
central processor and the disks. This mechanism
matches either the allocation of virtual memory in a
paged system (queueing is for virtual memory, not real
memory) and the allocation of real memory in a
segmented system.

TERMINALS
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Figure 2: Interactive Computer System

This relatively simple model provides a good
benchmark to evaluate some key queueing network
model techniques against. A simulation allows very tight
control over system characteristics and thus the impact of
violating particular assumptions, used to develop the
techniques of mean value and queueing network analysis,
may be determined.
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3 SINGLE CLASS MODELS

In single class models, the customers are considered to
be indistinguishable from each other. The service time
inputs are the average values for all customers and by
the same token the outputs are mean values representing
all customers. The main advantage of single class
models, compared to multiclass models, is the reduced
parameterization requirements and the main disadvantage
is that results are not available for distinct workload
components.

3,1 Exact Solution

The exact solution for closed single class models
requires the iterative solution of equations (1) forn = 1
to N, where N is the number of jobs in the system and
the variables are as defined in Table 1 (Lazowska et al
1984).

Ry(m)=D,[1+Qy(n-1)]

X(my=——2 )

z{jf:  Rn)
Qu(m)=X(n)Ry(n)

3.2 Comparison with Simulation Results
3.2.1 Batch Processing Systems

A series of simulation experiments were run for the
uniprocessor model with a multitasking, batch workload.
The simulated system satisfies the basic assumptions of
mean value analysis. While the disk subsystem
complexity is typical of modern hardware and would
violate these assumptions if the input/output service
process were subdivided into seek, latency and transfer
times (Knadler and May 1990); the queueing network
model, equations (1), handles this case with no difficulty
since the disk service times include the combined
contributions of all components in the subsystem.

The parameters of the queueing network model are
taken from the first of five (5) simulation runs made for
each data point. This method of parameterization was
chosen, because of its analogy to a frequently used
Queueing network model parameterization technique.
Namely, make measurements of a real system to
determine average values for central processor and
input/output service times to obtain the required service
demands. The simulation and analytical throughput and
residence time results are shown in figure 3. Figure 3 is
drawn with dual y-axes. Throughput values, X: Sim and
X: MVA, are plotted versus the left hand axis and the
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Table 1. Single Class Model Variables

Variable Definition

R.(n) mean residence time for
queueing center k with a
system customer population
of n

D, mean service demand for
queueing center k (service
time)

Qu(m) mean queue length for center
k when n customers are in the
system

X(n) mean system throughput, with
n customers in the system

K the number of queueing
centers in the network

Z mean think time for
interactive (terminal) users;
equals O for batch systems

n the number of customers in
the system

residence time values, R: Sim and R: MVA, are plotted
versus the right hand axis. The simulation results are the
sample means for the series of five simulation runs for
each task population.

We see that there is good agreement between the
simulation and analytical results. The analytical results
for residence time are within 15% of the simulation
results and the throughput results are within 11% of the
simulation results. Interestingly the analytical results are
slightly closer to the sample means than to the particular
runs used for their parameterization. These results are
an indication that queueing network models have
sufficient accuracy to perform tuning and sensitivity
studies of batch processing systems.

3.2.2 Interactive processing systems

The batch system simulation is easily modified to
model an interactive system. A new simulation event is
added at task completion to simulate the time a terminal
user spends thinking about his/her next system request.
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Figure 3: Relative Performance of Simulation and
Analytical Models of a Batch Computer System

Think time is modelled as a uniformly distributed
random variate with specified mean. The mean think
time is varied to produce the results shown in figure 4.
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Figure 4: Relative Performance of Simulation and
Analytical Models of an Interactive Computer System

The queueing network model provides even better
agreement for the interactive cases than for the batch
cases. Possible explanations for the better interactive
results are the dominance of think time in the throughput
equation and the increased randomness in the interactive
workload intensity compared to the batch workload.
These conjectures are supported by the observation that
the agreement between analytical and simulation results
improves with increasingly large think times.

Mean think time is a difficult parameter to measure
for real systems and is often calculated with the MVA
throughput equation, using measured values of throughput
and response time. An inaccuracy in estimating Z will
potentially cause the performance measures calculated
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either from simulation results or from analytical models
to be incorrect. Experience suggests two techniques to
solve problems of this type. First, perform sensitivity
studies and vary the unknown parameters over the range
of possible values to determine the sensitivity of results.
If the results are relatively insensitive to these variations,
good estimates of the performance measures are
possible, else a range of possible values is found.

Second, if only one parameter is unknown, either or
both simulation and MVA analysis may be used to
estimate it. Vary the parameter in the simulation or
analytical model to get the closest possible agreement
with the measurements of performance measures:
throughput, residence times, queue lengths and/or
utilizations. (The use of this technique to estimate the
service demands for a disk subsystem is illustrated in the
Disk System Analysis section of this paper.)

3.2.3 Simultaneous Resource Possession

Memory constrained computer systems may not be
separable, because of a violation of the assumption that
there is no simultaneous resource possession. If the
memory constraint is sometimes, but not always reached
the model will not be separable. There are three cases
to be considered for an interactive computer system.
First, there is sufficient memory (real or virtual) for all
active users and the interactive model with nonzero think
time is indicated. Second, the memory demand always
exceeds the available memory and the system performs
like a batch system with average multiprogramming
level, n,, less than the number on interactive users and
should be modelled as a batch system with z = 0 and n
= n,. Third, the memory constraint is some times
reached, but not always and neither the batch nor
interactive model is valid.

In order to determine the sensitivity of the accuracy of
the analytical models, an interactive constrained memory
system is modelled with variable think time to produce
a series of cases in which the frequency with which the
computer system memory constraint was reached on task
arrival ranges from 0.0% to 68.0%. The analytical and
simulation throughput and residence time results are
plotted versus the fraction of time that an arriving
customer has to wait for memory to become available.
The performance measures are shown in figure 5.

The analytical throughput results are within 4.3% for
all cases, but the residence time results are seen t0
diverge with increasing memory queueing Wwith
differences of 2.4%, 9.2%, 11.3%, 17.0%, 21.3%,
20.6%, 35.5% and 62.9% respectively. The divergence
in residence time results is easily explained by the
observation that the analytical model projects a larger
computer system population, than is the case since some
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Figure 5: Relative Performance of Simulation and
Analytical Models of a Memory Constrained, Interactive
Computer System

users are queued for memory.

Also the excellent agreement between throughput
results should not be surprising. the memory constraint is
met only when there are sufficient tasks in the computer
system to effectively utilize both the central processing
unit and disks.

These results show that the analytical models are quite
robust, as the residence time results are within 21% of
the simulation results with up to 29% of the arriving
tasks queueing for memory.

An extension to these analytical techniques
incorporates load dependent service centers (Lazowska
et al 1984). This extension is a hierarchical approach in
which the memory constrained processor and the disks
are replaced, in the analytical model by a flow
equivalent service center (FESC) which has the same
mean throughput and residence time. The load dependent
throughput of the flow equivalent service center is found
by solving equations (1) for all possible populations of
the central processor system.

Throughput and residence time are shown in figure 6
as functions of think time for the simulation, equation (1)
analytical results and the FESC extension to equation
(1). The FESC results do not agree as well with the
simulation results as do the basic interactive queueing
network results. The poorer agreement of residence
times can be explained as follows: First, the FESC
service demand is equal to the sum of the mean
simulation tasks' cpu and disk service demands, thus an
arriving task must wait longer for its initial service than
if the tasks ahead of it had the shorter service times
characteristic of the visits to the cpu and disks. Second,
the FESC includes the time spent waiting for memory in
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the residence time, as contrasted to the simulation and
interactive queueing network models which only include
the time spent in the cpu and disk service centers and
their queues. Thus the FESC residence time will
increase sharply for shorter think times reflecting the
saturation of main memory.

By Little's Law (Gross and Harris 1985, Kleinrock
1975, Lazowska et al 1984) this error in residence time
induces a corresponding error in throughput. The impact,
of this residence time error on throughput, should
decrease with increasing think time as is seen from the
throughput equation in equations (1). Z will begin to
dominate the denominator as it grows. This effect is
observed in figure 6, where throughput agreement
improves as think time increases.

Multitasked Computer Performance
Interactive Processing

o 8.5 3.5 n
295 e s 9
> " &
5.5
SN 2 £
5 Ny 15 o
a 3.5 [}
8 Bq\s\ 1 e
gp 2.5 - _g
0 1.5 05 @
L ]
£ o. . - r 0
0.0 1.0 2.0 3.0 4.0 5.0

Think Time (sec.)

—&— X: Sim. —+ X: MVA —* X: FESC
—6—- R: Sim. — R: MVA —#&— R_FESC

Figure 6: Relative Performance of Simulation,
Analytical, and Flow Equivalent Service Center Models
of a Memory Constrained, Interactive Computer System

While the results of a single test case should not be
taken as an indication that this technique is without
value, these results suggest that simple FESC's should be
used with caution, because of the inherently different
environment seen by arriving customers to a single
service center versus the environment seen by an arriving
customer in a network.

3.2.4 Disk System Analysis

If sufficiently accurate measurements or estimates of
disk subsystem service times are not available then a
more detailed disk subsystem model is required to obtain
them. Lazowska et al (1984) describe the following
iterative approach for rps disk systems

(1) Define the queueing network of the system,

representing the input/output system only as disks and

assume the system throughput, X, equals 0.

(2) Iterate

2.1 For each disk k, model its contribution to the total



666

channel utilization as
U, (k) = X -V, - transfer,
2.2 Calculate channel utilization
U, = 2U,4(K)
2.3 For each disk, set
retries, = (U, — U, (k))/(1 - U,,) and
D, = V, (seek, + latency, + transfer, +
(retries, + rotation,))

2.4 Solve equations (1) using these D, s for the disks

Repeat step 2 until the successive values calculated for
X are sufficiently close, say 0.1%

(3) Use the performance measures from the last

iteration.

The variables in the algorithm not previously defined
are as follows: seek,, latency,, transfer,, and rotation,
are respectively the average seek, latency, transfer,
rotation times for the k™ disk and retries, is the mean
number of tries that the k™ disk must make before it
finds the path to the cpu available. V, is the average
number of times that a job accesses disk, and U and
U, (k) are respectively the channel (bus) utilization and
k™ disk's contribution to it.

Applying this technique to the same nonmemory-
constrained, interactive computer system modelled above
provides the results shown in figures 7 and 8, where
simulation results are labeled with "Sim.", standard
MVA results are labeled with "MVA", and the iterative
results with "rps”.

Multitasked Computer Performance

figure 7, and therefore difficult to measure and estimate.
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Figure 7: Analytical Model of Disk Service Demand and
Channel Utilization

The iterative approach is shown to produce excellent
estimates of channel utilization and good estimates of
disk service demand. These estimates of basic disk
subsystem performance mcasures, then produce the
exccllent agreement with both the simulation and
equation (1) MVA results, seen in figure 8. This
iterative approach has the additional very real advantage
of not requiring measurements of disk service demand.
This parameter is very load dependent, as is seen in
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3.2.5 Nonexponentially Distributed Services Times

The independent exponentially distributed service time
assumption is used to derive an estimate for the
remaining service time for the job in service at the
instant that a new job arrives. The significance of the
impact of nonexponential service time distributions can
be determined by rerunning one of the test cases with
various service times distributions. System throughput,
X, and residence time, R, are shown in figure 9 for seven
simulation test cases made with the same mean cpu
service time, but with different standard deviations.
Each data point represents the average of five simulation
runs and is plotted versus the cpu service time coefficient
of variation. Where the coefficient of variation is
defined to be the ratio of the standard deviation to the
mean.
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Throughput results varied by 15% and residence time
by 27% as the coefficient of variation ranged between
0.25 and 8.0, recall that the exponential distribution's
coefficient of variation is 1.0. With coefficients of
variation between 0.25 and 2.0, both throughput and
residence time vary by only 11%. Again we see that the
accuracy of queueing network results is relatively
insensitive to the assumptions required to derive the
analytical model.

4 CONCLUSIONS

The analytical models have been shown to be very
robust for the simple computer systems considered by
this paper.

(1) Simultaneous resource possession. The analytical
models provided good estimates of throughput and
residence time with as many as 25% of all interactive
jobs queueing for memory (i.e., violating the
assumption).
(2) Load dependent service demand. The mean value
analysis provided excellent results for rps disk systems
over a broad range of channel utilizations, using a
simple iterative extension. The simple flow equivalent
service center (FESC) approach was shown to provide
poorer results, than simply ignoring the lack of
separability and using the basic MVA model.
(3) Independently distributed service times. Clearly
the disk service times are not independent of each
other, as a result of channel contention. Yet excellent
results were obtained. The analytical models are not
necessarily equally amenable to other forms of
dependence.

4) Exponentially distributed service times.

Simulation results showed performance measures to be

relatively constant (within 15%) as a function of the

coefficient of variation of the cpu service times, but
with greater sensitivity for coefficients of variation

larger than 1, than for those less than 1.

This paper does not present a final evaluation of
network queueing models, but rather indicates a marked
robustness. A simulation based methodology is
suggested and demonstrated for the evaluation of the
suitability of queueing network analysis for particular
problem sets.

4.1 Queueing Network Model versus Simulation

There is an ongoing debate between the use of
simulation and queueing network models, possibly
missing an important point. They can be used to
supplement each other. Based on the author's
expericnce, the major cost of a queueing nctwork study
is parameterization. With a properly designed effort,
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this parameterization could be a virtually free result of
a simulation effort. The analytical models could then be
used both to help verify the simulation model and for the
many "what—if" studies desired, but often too expensive
to perform using simulation.

4.2 Programming effort

If queueing network algorithm software is available,
the effort required to develop the queueing network
models used to obtain the results for this analysis is
negligible. Less than 0.5 hours were required to obtain
any of the analytical results and less than a labor week
is required to program and test the implementation of the
queueing network algorithms given in Lazowska et al
(1984). The simulation model required approximately
two labor months of development.

4.3 Value

Queueing network analysis is probably unequalled for
its ability to provide mean value performance measures
accurate to on the order of 10 to 20% for little effort
other than model parameterization. This type of analysis
has been used successfully to select, configure and tune
computer systems (Lazowska et al 1984, Lipsky and
Church 1977, Zahorjan et al 1982). It is particularly
useful for sensitivity analysis. However, its strengths are
also its weaknesses. The algorithms discussed provide
mean values with little insight into variation of
performance measures. If it is important to study
maximum, minimum as well as mean values of
performance measures, then the use of simulation is
indicated. The simulation runs produced a wealth of
statistics for all aspects of system performance, in
addition to the mean values of throughput, residence
time, queue lengths, and service center utilization
provided by the analytical models.

One of the negatives of the use of simulation,
development cost, can be mitigated by good
methodology. Simulations should be developed only
after a good understanding is gained of what questions
are to be answered (Balci 1990). The level of detail
used in a simulation should be chosen to be sufficient to
answer these questions and avoid unnccessary effort.
Experience indicates that the simulation value to cost
ratio should be expected to be low for simulations
developed without a careful examination of the questions
to be answered and the best techniques to be used to
arrive at these answers. While the simulation value to
cost ratio can be quite high when techniques suggested by
Balci (1990) are used. Relatively simple simulations
have provided good and sufficient insights into system
performance; e.g. Mitchell et al (1974) and Knadler and
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May (1990). However to get statistically meaningful
results, multiple simulation runs and statistical analysis
of results are required (Law 1990, Law and Kelton
1991).

5 FURTHER WORK

Several areas of future work are suggested by these
results: investigate FESC's more exhaustively, study the
robustness of both preemptive and nonpreemptive
multiclass models, and study the robustness of open class
models.
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