Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

AN EFFICIENT AND SCALABLE PARALLEL ALGORITHM FOR DISCRETE-EVENT
SIMULATION

Sushil Prasad

Math. and Computer Science Dept.

Georgia State University
Atlanta, GA 30303

ABSTRACT

We describe a new parallel algorithm for discrete-
event simulation on exclusive-read exclusive-write
parallel random-access machine (EREW PRAM).
This algorithm is based on a recently developed par-
allel data structure, namely parallel heap, which
when used as a parallel event-queue, allows deletion
of O(p) earliest messages and insertion of O(p) new
messages each in O(logn) time, using p processors,
where n is the number of messages scheduled. Our
algorithm can simulate up to p independent messages
in O(logn) time - thus achieving O(p) speedup. The
number of processors, p, can be optimally varied in
the range 1 < p < n. Toour knowledge, such a theo-
retical efficiency in a parallel simulation algorithm
has been achieved for the first time.

1 INTRODUCTION

About a decade ago, the increasingly high compu-
tational requirement of sequential simulation led re-
searchers to recognize that one recourse in coping
with this problem is parallel simulation. Parallel sim-
ulation held the hope of a p-fold speedup over se-
quential simulation by using a p-processor parallel
computer. The last decade saw active research in
exploring parallel processing techniques for simula-
tion. Several parallel algorithms have been proposed
for simulation as a result. Unfortunately, none of
these algorithms have fulfilled the promise of parallel
simulation. That is, we do not know of any exist-
ing parallel simulation algorithm which could guar-
antee a p-fold speedup on a p-processor computer.
The purpose of this paper is to demonstrate a theo-
retically efficient and optimally scalable parallel sim-
ulation algorithm for general physical systems. We
present a new algorithm which, in the worst-case,
guarantees O(p) speedup while using p processors.
Furthermore, if sufficient parallelism is available in a

652

Narsingh Deo

Computer Science Dept.
University of Central Florida
Orlando, FL 32816

physical system which can be partitioned into n com-
ponents, then up to n processors can be efficiently
used. We begin with some preliminary concepts, and
thereafter, introduce our work. Since our algorithm
uses a completely new approach, we present the rele-
vant background material in some detail to motivate
readers.

Background

In this paper, we will be concerned with discrete-
event simulations. Furthermore, we restrict ourselves
to the parallelization of event-driven approach, which
centers around the data structure, event-queue.

Any two events which access a common system
variable must be simulated in the order of their times
of occurrences to ensure the overall correctness of
the simulation. Two such events are said to have a
data dependency relationship. Likewise, if an event
is caused by another event, they are said to have
causal dependency relationship. Data and causal de-
pendencies, together, impose a partial order on the
set of all the events that can possibly occur in a sys-
tem. An event which is not dependent on any other
event through either data dependency or causal de-
pendency is called an independent event. Usually,
at any given moment during the course of simulat-
ing a system, there are multiple independent events
available. The main thrust of parallel event-driven
simulation is to identify and simulate independent
events concurrently. Initial parallelization efforts of
the sequential event-driven simulation, however, were
stymied by the serial bottlenecks that the common
data structure event-queue and the global variable
simulation-clock presented. In each cycle of simula-
tion, the event-queue could provide just one event
and after that event’s execution, the simulation-clock
had to be advanced. Therefore, Misra(1986) com-
mented: “We contend that the sequentiality inherent
in the event-list structure is a major impediment to
the widespread use of simulation.”

Parallel Algorithm for Discrete-Event Simulation

Naturally, most of the parallel event-driven algo-
rithms proposed so far have discarded the two shared
objects of the sequential simulation - the simulation-
clock and the event-queue. There are two major ex-
isting parallel event-driven schemes: conservative and
optimistic. The conservative scheme, whose founda-
tion was laid by R. E. Bryant(1977) and indepen-
dently by M. Chandy(1979), suitably partitions a
physical system to be simulated into several compo-
nents called logical processes (Ip’s). Each lp simulates
itself autonomously while coordinating with other Ip’s
in the system by sending and receiving time-stamped
messages. The local simulation-clocks of different
Ip’s need not be synchronized. In the conservative
scheme, each Ip simulates itself and advances its lo-
cal clock cautiously, and, if necessary waits, to ensure
that it does not receive a message with a time-stamp
less than its local clock. Such waiting, however, could
lead to deadlock and would require deadlock detec-
tion and resolution. Otherwise, some deadlock avoid-
ance schemes have to be adopted. The optimistic
scheme, founded by Jefferson(1985), uses the same
partitioning of the physical system as the conserva-
tive scheme does, but lets the individual Ip’s simulate
themselves without waiting to coordinate with oth-
ers. This can lead to an lp receiving a message with
a time-stamp less than its local clock and necessitate
a rollback to an earlier state. A rollback at an lp
could cause its neighboring Ip’s to rollback also, thus
leading to a proliferation of rollbacks. The overheads
of deadlock management in the conservative schemes
and of rollbacks in the optimistic schemes waste com-
putational resources. Furthermore, these overheads
are unbounded as they depend on the physical sys-
tem being simulated. Even without these overheads,
such as the recently proposed conservative scheme by
Lubachevsky(1989) which avoids deadlock by repeat-
edly updating the global simulation clock, these ex-
isting schemes can not promise an efficient use of a
multiprocessor computer. (An efficient parallel algo-
rithm is one which yields a O(p) -fold speedup on a
P-processor computer over a uniprocessor computer.)
This is because none of them can guarantee an opti-
mal task-to-processor allocation to achieve a balanced
computational load. There are a host of other parallel
simulation algorithms falling somewhere between op-
timistic and conservative schemes with similar draw-
backs. For a survey of the major parallel simula-
tion approaches, refer to Fujimoto(1990) and chapter
2 of Prasad(1990). It seems that in the quest for
novel algorithms, the efficiency issue has been lost
- although there are algorithms with good average
performances, there is none with a guaranteed worst-
case performance. Besides, not much attention has

653

been paid to the developments in parallel processing
research in other areas which could provide new in-
sights into designing parallel simulation methods that
are theoretically sound and provably efficient.

Our Approach

We decided to reopen the basic issues which were
abandoned a decade ago (Prasad 1990) and to di-
rectly attack the long-standing bottlenecks of parallel
event-driven simulation: the shared event-queue and
the global simulation-clock. The problem of updating
the global simulation-clock is exaggerated. It can be
efficiently updated in parallel in a logarithmic number
of steps. Parallelizing the data structure event-queue
was indeed a difficult problem. An event-queue is an
example of an abstract data structure called priority
queue. A priority queue allows deletion of the highest-
priority item and insertion of new items. In the case
of a sequential simulation, deletion of the highest-
priority item corresponds to the deletion of the ear-
liest event from the event-queue. A parallel priority
queue should allow simultaneous deletion of several
earliest events and insertion of several new events.
The research on parallel priority queues, however, had
not been successful prior to our recent work (Deo
and Prasad 1990). Previously, the best result had
been obtained by Rao and Kumar(1988) in paralleliz-
ing a conventional data structure called heap. Rao
and Kumar could efficiently use up to logn proces-
sors of a shared-memory parallel computer on a heap,
thus performing O(logn) insertions and deletions in
O(logn) time. However, logn-fold parallelism was
very limited.

We have designed a new parallel data structure,
namely a parallel heap, which, using p processors,
allows deletion of O(p) highest-priority items, and
insertion of O(p) new items, each in O(logn) time,
where n is the size of the parallel heap. A parallel
heap can efficiently utilize up to n processors on an
exclusive-read exclusive-write parallel random-access
machine (EREW PRAM) as compared to only logn
processors that all the pre-existing methods can use.
The data structure for parallel heap is similar to that
of a conventional heap except that each of its node
contains p items instead of just one item, where p is
the number of processors used. Therefore, the root
node of a parallel heap always contains the top p
highest-priority items. For further details, readers are
referred to Deo and Prasad(1990) and Prasad(1990).

With the parallel heap, the event-queue bottleneck
of parallel simulation has been eliminated. In this
paper, we employ the data structure parallel heap
to design an efficient EREW PRAM algorithm for

654

discrete-event simulation. This algorithm uses the
partitioning of a system into logical processes and
their coordination by message passing as in the con-
servative parallel simulation algorithms. The parallel
heap will be used to store messages prioritized by
their times of occurrences (from now on, we will talk
about messages instead of events - both have been
shown to be equivalent concepts (Misra 1986)). This
allows extraction of p earliest messages to be consid-
ered for simulation in every cycle, using p processors.
If these p messages are not all independent, those
which are independent are filtered out using specific
techniques, and then simulated.

Section 2 describes an efficient algorithm for a gen-
eral physical system. Our algorithm can simulate up
to p independent messages in O(logn) time, where n
is the number of logical processes in the system. The
number of processors, p, can be optimally varied in
the range 1 < p < n. Section 3 analyzes the time
complexity. Space complexity is O(n2). Section 4
contains some remarks on modifications and practical
implementation. Section 5 contains some concluding
remarks and suggests future work.

Machine Model

We implement our parallel algorithm on an EREW
PRAM (Karp and Ramachandran 1989). This ma-
chine model consists of p identical processors and a
shared-memory. Each processor has its own program.
There is a global synchronization among the proces-
sors via a central clock. A processor can execute a
simple instruction or read from or write into a shared-
memory cell in one clock period. Furthermore, during
any clock period, a shared-memory cell is accessed by
no more than one processor for reading or writing.

2 A PARALLEL-HEAP-BASED CONSER-
VATIVE SIMULATION ALGORITHM

In this section, we present Algorithm ParHeapSim
which is efficient for general systems. Let there be
n lps, Ip 1 through lp n. There exists a directed
channel ¢(z, j) from Ip 7 to Ip j if there is a possibility
of lp ¢ sending a message to lp j. Therefore, each
Ip can have up to n — 1 incoming channels. Each lp
i is associated with a local clock lclock(i) initialized
to 0, and a counter nonempty(i) which is equal to
the number of nonempty incoming channels at Ip :.
Algorithm ParHeapSim also uses a global simulation
clock, GC, initialized to 0.

Assumptions: We assume that simulation of a
message at an Ip 7 requires constant amount of time,
and its simulation produces only a constant number

Prasad and Deo

of output messages from Ip i. We further assume that
if messages have same times of occurrences, they can
be simulated in an arbitrary order. Each lp ¢ has a
known minimum service time s(i) > 0 such that the
simulation of a message m with time of occurrence
t(m) at lp i would not produce an output message
before time t(m) + s(7).

Algorithm ParHeapSim finds independent mes-
sages by using the following two properties:

1. The minimum time message at an lp whose all
input channels are non-empty is independent. —
Property I

2. A message m at an lp ¢ can not affect another
message m’ at an Ip j (J # t) before time t(m)+
s(i). Thus, if t(m') < t(m) + s(z), then message
m' is independent of message m. — Property II

Property II ensures that the earliest time message in
the entire system can be simulated in each simulation
cycle. This property also allows the execution of some
additional messages whose time of occurrences are
close to that of the earliest time message.

Algorithm ParHeapSim

Algorithm ParHeapSim uses a parallel heap contain-
ing copies of the minimum time messages of each of
the channels in the logical system prioritized by their
times of occurrences. Each such copy keeps a pointer
to its original message. After a message m is sim-
ulated, m as well as its copy are annihilated. After
initializing the parallel heap according to its descrip-
tion, and initializing all the clocks and the counters
as described previously, Algorithm ParHeapSim then
consists of repeated executions of the following steps
(assuming p processors, P; through Pp):

1. (a) for 1 < i < p, P; deletes the ith earliest
message from the parallel heap.

(b) If there is more than one message pertain-
ing a common lp among those deleted, the
minimum time message of each Ip is carried
to step 2 - other messages are clearly not
independent.

2. A value ¢ equal to the minimum of t(m) + s(i)
for a message m of Ip i, for all the messages from
step 1, is calculated (if t(m) < ¢ for a message m,
then m would be independent because of Prop-
erty II).

3. A message m of Ip i is carried to step 4 if

(a) nonempty(i) equals the number of incoming
channels of Ip /7 (Property T).

Parallel Algorithm for Discrete-Event Simulation

(b) t(m) < ¢ (among others, this surely in-
cludes the earliest time message of the en-
tire system - Property II).

4. The messages from step 3 are simulated. The
local clock of an Ip ¢ whose message m was sim-
ulated is incremented to lclock(i) = t(m).

5. The global simulation clock GC is incremented
to the time of the earliest message executed in
step 4.

6. Those messages which are deleted in step 1 but
not simulated in step 4 are inserted back into the
parallel heap.

7. For each message m of input channel j at Ip
i simulated in step 4, if the channel j remains
non-empty, the next minimum time message
of channel j is inserted into the parallel heap.
Else, channel j has become empty; therefore,
nonempty(i) is decremented.

8. For each message m of Ip i executed in step 4,
the output messages are sent to the destination
Ips. If an output message m’ is sent from lp 7 to
a destination lp j along an empty channel c(%, j)
(which causes (4, j) to become non-empty), then

(a) m' is inserted into the parallel heap.

(b) nonempty(i) is incremented.

3 TIME COMPLEXITY

Note that the maximum size of the parallel heap
is n(n — 1), one for each possible channel in
a general system. Therefore, deletion or inser-
tion of O(p) messages will require O(logn) time
(log(n(n — 1)) = O(logn)) using p processors, 1 <
p < n. We will show that each of the steps
of Algorithm ParHeapSim can be performed in
O(logn) time on an EREW PRAM.

Steps 1(a), 2, 3, 4, 5, 6, 7, and 8(a) are imple-
mentable in O(log) time in a straight forward way.
Let us consider step 1(b). As an example, suppose
processors Py, Pr, and Pg were three processors which
deleted messages belonging to a common lp ¢. Then
the processor with the minimum time message from
Ip t would be P4 because, in step 1(a), P; deletes the
ith earliest message from the parallel heap. Thus,
for step 1(b), determining the minimum time mes-
sage of an Ip t is equivalent to finding the minimum
indexed processor which deleted a message oflptin
step 1(a). This can be accomplished in O(log p) time
by a synchronized navigation of a binary tree from
its leaves toward its root. This method utilizes the

655

central clock synchronization among all processors in
a PRAM as described next.

We attach each lp t with a full binary tree with
p leaves, where p is the number of processors -used
(Figure 1). If p is not a power of two. this tree is
chosen to have height of [log, p] so as to have at least
p leaves. Each edge (i,j) from a node 7 to its parent
j of this tree can hold a pair of integers initialized
to [0,0]. We assign the ith leaf to P; while counting
leaves from left, for 1 < i < p. If processor P; has a
message from lp ¢ during the kth cycle of simulation
for k > 1, P; starts at the ith leaf of the binary tree at
Ip t. In each subsequent [log, p] + 1 machine cycles,
P; executes the following steps:

Let P, be at node j with parent node parent.
If j is not the root node then

1. P; sets edge (j,parent) to value [, k]
indicating that P; has a message of Ip
t in the kth simulation cycle.

2. P; reads the value [#, k'] of the edge
between the parent of node j and the
sibling of node j. If k' = k, then
another processor P;: is also access-
ing the binary tree at Ip ¢ in the cur-
rent kth simulation cycle. Therefore,
if (' = kand i < ¢) or (k' £ k), P;
moves on to the parent node. Else, P,
exits.

else P; has the minimum time message.

Thus, the winner processor arriving at the root of
the binary tree of Ip ¢ has the earliest message of lp
t.

Step 1(b) is also implementable in O(logp) time
without specifically relying on the global synchroniza-
tion of the central clock of PRAM. A sketch of an
alternative method follows. The steps involved are

1. forming ordered pairs (i,j) at each processor P;
which deletes a message of an lp 7 in step 1(a).

9. sorting these pairs in O(log p) time using Cole’s
parallel mergesort algorithm (Cole 1988) such
that (i,j) < (#,j)if (=4 and j < j') or (i <
).

3. reassigning the kth sorted pair from the previous
step to Py.

4. marking a pair (¢, j) if its assigned processor Py
finds that pair (i, ') assigned to Pi_; has i #
/. This is done in parallel by P> through P,.
Additionally, P;’s pair is also marked.

656
7S
A €
7 AN
/ \
s N
R B,
A N TANY
/ \ / \
/ \ / \
°
r ;\ A /‘
\ N X Ly
I\ I\ / \ ¢\
¢ o d o d o d o
f; l; l; F; e o o o F;,

Figure 1: Binary tree at an lp for implementation of
step 1(b).

It can be verified that if a pair (i, j) is marked in the
last step, then P; is the processor which deleted the
minimum time message of Ip ¢.

Thus, step 1(b) is implementable in O(logn) time
(because p < n). By a similar technique, the counter
noncmply(y) of a destination lp j can be properly in-
cremented in step 8(b) of Algorithmm ParHeapSim in
Oflogn) tune.

Thus, each step of Algorithm ParHeapSim requires
O(logn) time. Furthermore, the number of proces-
sors can be varied up to n, where n is the number of
the logical processes. This scalability comes from the
scalability of the parallel heap data structure.

4 REMARKS

Certain remarks are in order at this point. In Algo-
rithm ParHeapSim , all we really want is to store
the minimum time message of each lp into the paral-
lel heap. This would eliminate step 1(b) and would
provide an upper bound of n on the size of the paral-
lel heap. The minimum time message of an lp, how-
ever, changes dynamically as the new messages arrive.
This, in turn, would require deleting the old minimum
time message from the parallel heap and inserting the
current minimum time message. Parallel heap data
structure, however, supports the deletion of the ear-
liest p messages at a time, not that of any arbitrary
p wessages. ‘Thus, in addition to old minimum time
messages, the current minimum time message would
also need to be inserted. Thus, the parallel heap conld
contain n(n — 1) messages in the worst-case, one for

Prasad and Deo

each channel of the logical system. To avoid these
details in Algorithm ParHeapSim , we simply stored
the front message of each channel into the parallel
heap without affecting the O(logn) time bound on
the simulation cycle.

Since the purpose of Algorithm ParleapSim is
to demonstrate a theoretically efficient parallel sim-
ulation algorithm for general systems, Algorithm
ParHeapSim is not an optimized algorithm. Sev-
eral improvements are possible for speeding Algo-
rithm ParHeapSim in a practical implementation.
In addition to using step 3 for filtering the indepen-
dent messages, one can exhaustively test the inde-
pendence of the earliest /plogn messages deleted in
step 1 in O(log n) time (Prasad 1990). For a bounded
in-degree logical system, the technique employed
in Lubachevsky’s algorithm (Lubachevsky 1989) is
portable to Algorithm ParHeapSim as well (Prasad
1990). New techniques for finding independent mes-
sages, as and when found, can also be incorporated
in step 3 of Algorithm ParHeapSim .

Even with these modifications, a genuine criticism
of Algorithm ParHeapSim would be that since it
considers only p earliest messages in each simulation
cycle all of which might not be independent, some
processors will remain unutilized. Two remedies are
possible.

1. In step 1(a) of Algorithin ParlleapSim , kp ear-
liest messages can be deleted for some suitable
constant k£ without affecting the cycle time of
O(logn) . This would allow more messages to
be tested for independence and, thus, increase
processor utilization.

2. To fully exploit the parallelism available in a
physical system, those message which satisfy
Property I mentioned in the beginning of Section
2 can be identified and stored in a separate par-
allel heap READY. Step 1(a) would then delete
p message from the original parallel heap and
an additional p messages from the parallel heap
READY. The messages deleted from the paral-
lel heap READY need not be tested for inde-
pendence. This approach is described in detail
in (Prasad 1990). The simulation cycle time re-
mains bounded by O(logn) .

Finally, we have ignored the initialization times in
our algorithms. This is because of our underlying as-
sumption that the cost of initialization is insignificant
compared to that of actual simulation of complex and
large systems for extended period of simulated time.
Of course, one can investigate the parallelization of
the initialization tasks also.

Parallel Algorithm for Discrete-Event Simulation

5 CONCLUSION

Compared to all the pre-existing parallel algorithms
for simulation, the algorithm presented in this pa-
per has a distinct advantage of halanced load among
all the processors. Such a load balancing has heen
possible due to the underlying data structure, par-
allel heap. The parallel heap is also responsible for
ensuring that an entire system is simulated in such
a way that no subcomponent of the system lags too
far behind the others. This key property has been
achieved by extracting from the parallel heap the p
earliest messages in the entire system when using p
processors. These p earliest messages are more likely
than other messages to be independent of one an-
other. This property would also be useful for obtain-
ing frequent snapshots during the course of simulation
to collect statistical data. A

While most of the conservative parallel algorithms
for simulation are plagued by deadlock avoidance, or
detection and resolution overheads, our algorithm is
deadlock-free. This is ensured by the fact that the
earliest message in the entire system being simulated
1s always independent, and, therefore, it is executed in
every simulation cycle. The global simulation clock,
therefore, is continually incremented.

In contrast to the pre-existing parallel algorithms
for simulation, which can not claim any definitive
worst-case time bound, we can precisely state that Al-
gorithm ParHeapSim requires O(log ») time for each
simulation cycle, where n is the number of logical
processes into which a system can be partitioned. In
each simulation cycle, our algorithm simulates up to p
messages, where p is the number of processors used.
The availability of sufficient parallelism in the sys-
tem being simulated (i.e., the number of independent
messages consistently available in each simulation cy-
cle) would determine how many processors should be
used. When sufficient parallelism is available, Al-
gorithm ParHeapSim is efficient for 1 < p < n.
The yardstick for efficiency is the standard sequen-
tial event-driven simulation algorithm which can exe-
cute an event/message every O(log n) time. Whereas,
Algorithm ParHeapSim can simulate O(p) messages
every O(logn) time on an EREW PRAM.

There is plenty of scope for future work. A few are
listed below.

1. Implementing our algorithm on a commercially
available machine such as the BBN Butterfly
GP-1000. Such an endeavor, while being a ma-
jor implementation challenge in itself, would also
have to face the problems of porting a PRAM al-
gorithm to a real machine, such as memory con-
tention and processor synehronization.

657

2. Improving the proposed algorithm and/or adopt-
ing it to specific applications such as battlefield
management simulation and VLSI logic simula-
tion.

3. lmproving the underlying data structure par-
allel heap to allow efficient deletion of ar-
bitrary items, not just the p top-priority
items. Such an upgrade would simplify Algo-
rithm ParHeapSim and would also open up other
application areas where a parallel heap could be
employed more comfortably than now, such as
some shortest-path algorithms where the short-
est paths change dynamically.

As a final note, apart from the proposed conserva-
tive algorithm for parallel simulation, a more practi-
cal parallel-heap-based optimistic algorithm has also
been developed which actively reduces the rollback
frequency and guarantees O(logn) -time simulation
cycle (Prasad 1991). This algorithm is also expected
to reduce the memory requirement for past states and
messages.

REFERENCES

Bryant, R. E. 1977. Simulation of packet communi-
cation architecture computer systems. Tech. Rep.
MIT-LCS-TR-138, Massachusetts Inst. Tech.,
Cambridge, MA.

Chandy, K. M., V. Holmes, and J. Misra. 1979. Dis-
tributed simulation of networks. Computer Net-
works 3 (Feb.): 105-13.

Cole, R. 1988. Parallel mergesort. SIAM J. Comput.
Vol. 17, no. 4, (Aug.):770-85.

Deo, N. and S. Prasad. 1990. Parallel Heap. In
Procs. Intl. Conf. Parallel Process. Vol. III,
(Aug.): 169-72.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Comm. ACM. 33 (Oct.): 31-53.

Jefferson, D. R. 1985. Virtual time. ACM Trans.
Prog. Lang. Systems T (July): 405-25.

Karp, R. M. and V. Ramachandran. 1989. A survey
of parallel algorithms for shared-memory machines.
To appear in Handbook of Theoretical Computer
Science, Amsterdam: North-Holland.

Lubachevsky, B. D. 1989. Efficient distributed
event-driven simulations of multiple-loop networks.
Comm. ACM 32 (Jan.): 111-31.

Misra, J. 1986. Distributed discrete-event simulation.
Computing Surveys 18 (March): 39-65.

Prasad. S. 1990. Efficient parallel algorithms
and data structures for discrete-event simulation.
Ph.D. Diss., Computer Science Dept.. Univ. ('en-
tral Florida, Orlando. (Dec.).

658

Prasad, S. 1991. A scalable and efficient optimistic
algorithm for parallel discrete-event simulation. To
appear in Procs. SIMTEC. Orlando, FL.

Rao, V. N. and V. Kumar. 1988. Concurrent access
of priority queuves. [EEE Trans. Compul. 37
(Dec.): 1657-65.

AUTHOR BIOGRAPHIES

SUSHIL PRASAD has done his Ph.D. in Com-
puter Science from University of Central Florida, Or-
lando, in 1990. Currently, he is an Assistant Profes-
sor at Georgia State University, Atlanta. His research
interests are parallel algorithms and data structures,
parallel simulation, graph algorithms, and complexity
theory.

NARSINGH DEO is the Millican-Chair Profes-
sor of Computer Science at the University of Central
Florida, Orlando. He has authored four textbooks
and over 80 research papers. His research interests
are parallel processing, combinatorial algorithms, and
graph theory.

Prasad and Deo

