Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

THE COST OF TERMINATING SYNCHRONOUS PARALLEL DISCRETE-EVENT
SIMULATIONS

Vasant Sanjeevan
Marc Abrams

Departmant of Computer Science
Virginia Tech
Blacksburg, Virginia 24061-0106

ABSTRACT

Simulation models use many different rules to decide
when to terminate. However parallel simulation
protocols generally use a single, simple rule: each
logical process terminates when it reaches a predefined
time. This paper proposes seven algorithms by which
an arbitrary termination condition can be mechanically
added to a non-terminating parallel simulation using a
conservative-synchronous protocol. Informal arguments
about the performance of each algorithm are made, and
the arguments are confirmed through measurement of the
Bounded Lag protocol using torus networks on a shared
memory multiprocessor. Conservative-synchronous
protocols are shown to be inherently efficient in the
experiments considered; adding a termination algorithm
requires limited additional memory and increases the wall
clock time required for simulation by at most an amount
proportional to the number of logical processes.
Furthermore, a simulation model with any stable
termination condition requires negligible overhead for the
termination algorithm, a property that appears to be
unique to synchronous protocols.

1 INTRODUCTION

Most parallel discrete-event simulators can handle only
a single termination condition: each logical process
constituting the simulation terminates when its local
simulation time equals or exceeds a value T. To apply
parallel simulation protocols to any simulation model,
algorithms must be developed to use any arbitrary
termination rule. This poses a quandary for parallel
simulation, because some termination conditions may be
so costly to evaluate that they may cause a parallel
simulation protocol to require more wall clock time to
execute than a sequential simulation.

A termination condition, denoted C, is a boolean

642

valued function whose domain is a subset of all
simulation attributes. A simulation can terminate at any
simulation time ¢ such that the values of all attributes
required to evaluate C are known at time ¢ and the
termination condition evaluated using the attribute values
is true. Termination conditions are either stable or non-
stable. A stable condition remains frue once it becomes
true (Chandy and Misra 1988). An example of a stable
condition is, “the number of jobs processed by the
simulation at simulation time ¢ exceeds 100,000.” An
example of a non-stable condition is, “the number of
jobs processed by the simulation at simulation time ¢
equals 100,000.”

Detecting when a non-stable condition holds requires
evaluating the condition at every simulation time at
which a logical process changes the value of any
simulation attribute in the domain of the termination
condition. At worst, the number of evaluations can
grow exponentially in the number of attributes in a
simulation model. Therefore it could be the case that a
terminating parallel simulation requires more wall clock
time to execute than a sequential simulation requires.

Our previous work proposes algorithms to terminate
optimistic (i.e., time warp) and conservative-
asynchronous (i.e., Bryant-Chandy-Misra) simulation
protocols, and concludes that optimistic protocols have
an inherent advantage over conservative-asynchronous
protocols when an arbitrary termination condition is used
(Abrams and Richardson 1991, Richardson 1991). In
particular, both stable and non-stable termination
conditions can be implemented in a straightforward
manner with a negligible increase in memory
requirements with optimistic protocols. However
conservative-asynchronous protocols can only handle
stable conditions with a negligible increase in memory
requirements. To handle non-stable conditions,
conservative-asynchronous protocols either require
unbounded amounts of storage or they require the

Cost of Parallel Discrete-Event Simulations

addition of the same state-saving mechanism present in
optimistic protocols.

This paper presents seven termination algorithms for
conservative-synchronous protocols. The most general
of these algorithms applies to non-stable conditions and
increases the additional storage required for termination to
an amount proportional to the number of attributes used
in a simulation model. This implies that the storage
requirements of a terminating conservative-synchronous
protocol can be competitive with the storage
requirements of a terminating optimistic protocol.

Nicol has shown that under certain assumptions, the
execution time required by a conservative-synchronous
protocol is within a constant factor of optimal (Nicol
1990). In addition, conservative-synchronous protocols
are simpler to implement than optimistic protocols. In
addition to these arguments in favor of conservative-
synchronous protocols, this paper presents arguments
that the cost in execution time of adding termination to
the Bounded Lag protocol (Lubachevsky 1989)
simulating a torus queueing network model is constant
for stable termination conditions and is proportional to
the number of events executed between synchronization
barriers for non-stable conditions. These conclusions are
confirmed through measurements.

The next section defines the simulation termination
problem and shows that this problem is more complex
than the classic parallel program termination problem.
Section 3 presents algorithms that work for any
sequential or parallel simulation protocol and sequential
or parallel computer architecture. Section 4 then refines
the algorithms of Section 3 into seven algorithms
specifically suited for conservative-synchronous
protocols. Section 5 analyzes the algorithms in two
ways, by analysis and by experimentation, to estimate
the cost of the termination algorithms of Section 4 on
the torus queueing network benchmark. Section 6
presents conclusions.

2 THE SIMULATION TERMINATION
PROBLEM

In the simulation termination problem, we are given a
non-terminating simulation and a termination condition.
Condition C is guaranteed to be true when evaluated
using the values of simulation model attributes at some
value of simulation time. The problem is to state an
algorithm that modifies the non-terminating simulation
to:

P1. find a value of simulation time, denoted by t,
such that function C evaluated using simulation
attribute values at time t has value true,

P2. report the value of each simulation output
measure at time t, and

643

P3. stop execution of the simulation and return
control to the operating system.

This problem formulation is based on our belief that in a
commercial parallel simulation system, one would like
the user to specify a simulation model without worrying
about termination (hence the simulation is non-
terminating), and then separately specify a variety of
termination conditions. The simulation system should
automatically superimpose the termination condition on
the non-terminating simulation.

Detecting when condition C is true is difficult for four
reasons. First, the termination condition in general is a
function of simulation attributes that are private to two
or more logical processes that have some degree of
asynchrony. Second, the termination condition may
constrain the times at which they hold, for example,
specifying the “first time” that an event occurs. Third,
evaluating the termination condition may be more costly
than performing the simulation itself. Finally, the
condition is generally not stable; therefore at worst the
termination condition must be reevaluated each time any
LP increases its clock.

Related Work

There are many papers that address the classical parallel
program termination problem; Mattern provides an
overview of the literature (Mattern 1987). The classic
termination problem differs from the simulation
termination problem in four ways. First, in the classic
problem, “termination detection” means detecting a
stable condition, whereas many interesting simulation
termination conditions are non-stable. Second, a
termination condition must be a conjunct of predicates,
each using variables private to one, unique logical
process. However, a simulation termination condition
generally is a function of simulation attributes, each
private to one, unique logical process; the two examples
given in Section 1 illustrate this point. Third, the
program is idle when the termination condition is true,
whereas the simulation termination problem presumes
that the simulation is non-terminating. Finally, after the
termination time ¢ is determined, simulation programs
require the values of a set of output measures to be
evaluated using the attribute values at time ¢; in general ¢
lies in the past of each logical process. No analog to
recovering old attribute values to evaluate output
measures exists in the classic termination problem.

3 GENERAL TERMINATION ALGORITHMS

This section presents termination algorithms that
make no assumptions about the simulation protocol and
computer architecture used to execute a simulation
program; therefore they apply to sequential or parallel

644

simulation using optimistic or conservative and
synchronous or asynchronous protocols on sequential or
parallel architectures.

The key to developing algorithms without relying on
these assumption is to view the simulation termination
problem as a type of search problem. Let a denote a set
whose elements each correspond to a simulation time at
which a simulation attribute required to evaluate
termination condition C changes value. Let n denote the
number of simulation attributes required to evaluate C.
Each element of a is an n-tuple containing the values of
all simulation attributes required to evaluate C at the
corresponding simulation time. A simulation program
computes set a. Furthermore, a contains an infinite
number of elements, because the simulation is non-
terminating.

3.1 Solution of Problem P1

The definition of a is related to the definition of a
space-time rectangle, in which space corresponds to the
set of simulation model attributes (Chandy and Sherman
1989). Figure 1 illustrates a portion of a space-time
rectangle. In the figure, attribute aj changes value at
time (), both @@ and a2 change value at time ¢, and so
on. Part P1 of the simulation termination problem from
Section 2 is equivalent to searching the space-time
rectangle for any time r € {1, 11, 12, ...} at which
condition C, evaluated using the attribute values at time
t, yields true.

We propose two termination algorithms (Abrams and
Richardson 1991):

Exhaustive Termination Algorithm: Evaluate
C(t) at each simulation time represented by set a in
ascending time order until C(t)=true.

Non-exhaustive Termination Algorithm:
Choose any subset of a such that the subset contains a
time for which C(t)=true. Evaluate C(t) at each
simulation time represented by the chosen subset in
ascending time order until C(t)=true.

One can construct cases to show that exhaustive
termination sometimes requires less wall clock time than
non-exhaustive termination to identify a simulation time
at which C(t) is true, however the average case
performance is that non-exhaustive termination requires
less wall clock time. The challenge in using non-
exhaustive termination is choosing a subset of a that
contains a time ¢ for which C(t)=true before execution of
a simulation begins. However such a subset can always
be chosen before execution for a stable condition.
Consider Figures 2 and 3, which characterize a stable and
a non-stable termination condition, respectively. From
Figure 3, non-exhaustive termination works for any
subset of a that contains no element corresponding to a

Sanjeevan and Abrams

simulation time that is an upper bound for the
simulation times corresponding to all elements in set a.
Examples of subsets of a that work for stable
termination conditions are to evaluate the termination
condition every tenth time that an attribute changes
value, and to evaluate the termination condition every
five seconds of wall clock time.

Rules that evaluate the termination condition at fixed
intervals have a disadvantage in that the optimal
evaluation frequency is generally dependent on the input
data to the simulation. Too frequent an interval devotes
many processor cycles to evaluating C and can degrade
the performance of a parallel simulator. Too infrequent
an interval (i.e., once every 10 hours) will allow a
simulation to run for a long time after its termination
condition becomes true.

3.2 Solution of Problem P2

Once a simulation time ¢ for which the termination
condition is true has been found, simulation output
measures using the values of attributes at time ¢ must be
reported. We propose that the non-terminating
simulation store in memory the values of all attribute
values required for output measures for all simulation
times greater than or equal to the largest value of
simulated time at which the termination condition has
been evaluated. The advantage of this proposal is that
when termination time ¢ has been identified, the attribute
values required for output measure computation at time ¢
are available in memory. The disadvantage of the
proposal is that the storage required grows monotonically
with the difference, denoted D, between the largest
simulation clock value of all logical processes and the
value of simulation time at which the termination
condition was last evaluated. This is why conservative-
asynchronous algorithms require at worst unbounded
memory for termination. Optimistic protocols need not
save any attribute values that can be recomputed, thereby
saving memory space at a cost of increased execution
time; this is explained by Richardson (Richardson 1991).
Conservative-synchronous protocols have an inherent
advantage over asynchronous protocols because they
bound the simulation time difference D and hence bound
the amount of memory required.

3.3 Solution of Problem P3

An earlier paper proposed three methods to stop
execution of a simulation: requesting the operating
system to kill all logical processes (dissociative
termination), forcing the simulation to go backwards in
time (retrospective termination), and allowing the
simulation to go forwards in time (prospective
termination) (Abrams and Richardson 1991).
Dissociative termination requires unbounded memory,

Cost of Parallel Discrete-Event Simulations

and prospective termination only works for stable
termination conditions. Hence retrospective termination
is the method of choice in a general purpose parallel
simulation system. Retrospective termination requires
the roll back and re-execution mechanism of time-warp
(Chandy and Sherman 1989); however Section 4 shows
that the needed mechanism can be added to conservative-
synchronous protocols in a straightforward manner.

4 TERMINATION ALGORITHMS FOR
SYNCHRONOUS PROTOCOLS

The remainder of the paper will consider
Lubachevsky’s Bounded Lag simulation protocol, shown
in Figure 4 (Lubachevsky 1989). We augment the
protocol with a termination condition C. The algorithm
proceeds synchronously in iterations. It can, however,
simulate synchronous as well as asynchronous systems.
Each logical process (LP) of the simulation executes this
algorithm in parallel and synchronously with other
LP’s.

Let each of the N LP’s comprising a simulation be
denoted as LPj, LP»,..., LPy. TI[i] is the earliest time
of an event in the input queue of LP;. B denotes a

quantity called the bounded lag of the algorithm and is an
upper bound on the difference between the simulation
times of events being processed by all LP’s in the
current iteration. SV is a stop variable which is set to
true when the termination condition becomes true. The
algorithm assumes that the delay for an event to
propagate from any node to its neighbor is positive.

We can categorize termination algorithms based on
three criteria. First, is the evaluation of C done between
barriers 1 and 2 or between barriers 2 and 3? Second, is
the evaluation of C itself sequential or parallel? Third,is
the evaluation of C exhaustive or non-exhaustive? Based
on these criteria, we propose the following mnemonics
to classify termination algorithms:

E - evaluation of C is exhaustive

N - evaluation of C is non-exhaustive

S - evaluation of C itself is sequential

P - evaluation of C itself is parallel

Q- evaluation of C is done between barrier 1 and

barrier 2

T- evaluation of C is done between barrier 2 and
barrier 3

R - algorithm rolls back to the previous barrier
before evaluating C

Not all combinations are interesting. We cannot have
exhaustive evaluation between barriers 1 and 2 because
we cannot have events being inserted into the shared
queue while C is being computed using it. Also the
parallel non-exhaustive evaluation between barriers 2 and

645

3 is not interesting as event processing usually takes
more time than computing the Floor; therefore
computing C in parallel with event processing is less
likely to be a bottleneck.

We propose seven algorithms to solve P1 of finding a
termination time ¢: NST, NSQ, NPQ, EST, ESTR, EPT
and EPTR. The first three algorithms are instances of
the non-exhaustive termination algorithm proposed in
Section 3.

4.1 Algorithm NST
Add followin ment S10:

if (i=2) SV:= evaluate C(¢); /*only LP9 evaluates C */

Using this algorithm to evaluate C imposes a
negligible overhead for simple global termination
conditions because the evaluation is done by only one of
the LP’s between barrier 2 and barrier 3 in parallel with
the assignment to Floor, which is done by another LP.
The evaluation of C itself, however, is done sequentially.

4.2 Algorithm NSQ

Add the following process to the simulation which
participates in the synchronization barriers of the LP’s
while (not SV){

synchronize; /* barrier 1 */

SV:= evaluate C(t); /* use attributes stored after */

[* previous iteration */
synchronize; [* barrier 2 */
synchronize; /* barrier 3 */

}

In this algorithm, there is an additional operating
system process dedicated to evaluating termination
condition C. This process runs in parallel with the other
LP’s comprising the simulation. After each event
processing iteration, attributes in the domain of C as
well as those required to compute output measures are
copied into memory after the LP’s pass barrier 2 and the
LP’s proceed on to the next iteration of the loop. This
imposes an extra memory overhead for the algorithm.
The LP which evaluates C uses these attribute values to
evaluate C while the other LP’s are doing their event
processing. If C evaluates to true, it sets the stop
variable SV to true. In comparison with algorithm
NST, this algorithm will perform an extra iteration of
the simulation before termination is detected. This
algorithm also imposes a negligible overhead to evaluate
C. However, it may be more advantageous to use this
algorithm if the evaluation of C becomes a bottleneck
for Algorithm NST, because the Bounded Lag protocol
usually takes more time to perform event processing
than it takes to compute the Floor.

646

4.3 Algorithm NPQ

This algorithm differs from Algorithm NSQ only in
that the evaluation of the termination condition C is
itself done in parallel. For example, a combining tree
could be used if the operators used in evaluating C form
an abelian group (Lakshman and Wei); in this case
algorithm NSQ would require O(N) time, while
algorithm 3 requires O(log N) time to evaluate C.
Parallel computation of C is justified if the time required
to evaluate the termination condition is much larger than
the time that LP{ spends doing its event processing.
However, there are overheads involved in parallelizing
the computation that may negate the benefit of parallel
evaluation of C.

The following four algorithms are instances of the
exhaustive termination algorithms proposed in Section
3.

4.4 Algorithm EST

This alogrithm requires addition of data structure Q,
which is shared by all LP’s. Q contains a list of events
along with the set of attributes required to evaluate
termination condition C as well as simulation output
measures.
Modify S5 to read:
Process event(s) with locally minimum timestamp;
Lock Q;
Insert each modified attribute set into Q;
Unlock Q;
Add after S10;
if(i=2){

repeat

for each attribute set in O
SV:=evaluate C(t);

until (SV==true or empty(Q));
}
Modi 12tor
Compute using “correct” values from Q;

Algorithms NST, NSQ and NPQ previously discussed
cannot detect unstable termination conditions. To do
this we need to evaluate the termination condition after
every event occurrence which changes attributes in the
domain of C. Implementation of this algorithm requires
us to maintain a history of events and process attributes
in the domain of C between barrier 1 and barrier 2.
Algorithm EST does this by inserting the events into a
shared queue in timestamp order as they are processed
along with all the attributes required to compute C and
simulation output measures. Between barriers 2 and 3,
we evaluate C for each event in this queue in timestamp
order using the values of the stored attributes. The
algorithm terminates at the first evaluation of C

Sanjeevan and Abrams

yielding true and output measures are then calculated
using the stored attribute values for that time, which are
in the shared queue. In Section 5.1, we show that this
algorithm imposes an overhead proportional to the
number of events executed during the entire simulation.

4.5 Algorithm ESTR

Modify S12 to read:

Store time ¢ at which termination was detected
Rollback to state at barrier 1 using stored attribute values
Re-execute until time ¢ computing output measures

In Algorithm EST, we maintain in our history
attributes necessary to determine termination as well as
those necessary to compute output measures. Algorithm
ESTR reduces the storage required by Algorithm EST by
exploiting the fact that the attribute values needed to
calculate output measures may in general be different
from those required to determine termination. In the roll-
back algorithm, the shared queue maintains only those
attributes necessary to compute C, and we maintain the
information necessary to compute output measures only
at barrier 1. When the termination condition C becomes
true, we store the time ¢ at which termination was
detected, roll-back to barrier 1 and re-execute the
simulation until time ¢. We now have all the attributes
required to calculate output measures. In comparison to
algorithm EST, this algorithm requires less memory at
the expense of having to perform some extra work after
termination has been detected.

4.6 Algorithm EPT

This algorithm is a modification of Algorithm EST in
which the evaluation of the termination condition C at
each event occurrence in the shared queue is done using a
combining tree.

4.7 Algorithm EPTR
This algorithm is a modification of Algorithm EPT

with a roll-back mechanism to reduce the memory
required.

We did not study the performance of algorithms EPT
and EPTR because in our case the evaluation of the
termination condition C took less time than the other
simulation computations been done in parallel with it.
However, they might be useful when C is a complicated
function.

5 SYNCHRONOUS TERMINATION
ALGORITHM PERFORMANCE

We report experiments on an N x N torus G/G/1
queueing networks. A 3 x 3 network is shown in Figure

Cost of Parallel Discrete-Event Simulations

5. Jobs which leave a server are randomly routed with
equal probability on one of the N outgoing links.
Initially, servers are idle and have the same number of
jobs in their queues. We used an exponentially
distributed service time with mean of 200 simulation
time units and a constant of 100 time units added to it.

5.1 Predicted Performance

We can, on another plane, also classify termination
conditions according to their dependence on the size of
the problem being simulated. For example, consider a
condition as follows: “stop when the total number of
jobs processed by the system exceeds 100,000”. It
would take less simulation time for this condition to
become true for a larger network than a smaller one
simply because the larger network has a larger number of
servers. On the other hand, consider a termination
condition such as: “stop when the local virtual time of
all LP’s first exceeds 100,000 units of simulation time”.
This termination condition would cause a simulation to
stop at a simulation time which is independent of the
size of the problem being simulated since all the LP
would have to execute until that simulation time.

The termination conditions used in the experiments
reported in Section 5.2 are the following:

TO: Algorithm NST & NSQ: “stop when the number of
jobs processed exceeds 100,000

T1: Algorithm EST : “stop when the number of jobs
processed equals 100,000 .

T2: Algorithm NST, NSQ & EST: “stop when the
local virtual time of each LP exceeds 100,000 .

Let us define the following terms:

J : Total number of jobs processed by the system.

I : Number of iterations performed by the simulation
algorithm.

Ty: Wall clock time taken by N LP’s to perform one
iteration of the simulation.

T;: Wall clock time taken by one LP to perform one
iteration of the simulation.

T : Wall clock time taken by the entire simulation,
which is what we will be measuring.

Lubachevsky has shown that at least an order of N

events are processed for every iteration of the algorithm
(Lubachevsky 1989). Since the number of events is
directly proportional to the number of jobs processed, we
have:
Algorithm NST & NSQ with TO0: The
relationship J /I = K * N holds for some constant K.
Therefore J= K * I * N. Since J is constant (100,000)
for TO, the product N * I is constant.

So, T= TN*I=N*Tj;*I=A for some constant
A, since T is constant for Algorithms NST & NSQ,

647

and N * I is constant. Thus we should get a curve with
slope 0 as N is varied.

Algorithm EST with T1: As before, T=TyN */
=N *Tj * I In this case T is not constant but is
proportional to N because the length of queue Q at the
LP which computes the termination function is
proportional to N.

Because the other nodes have to wait at barrier 3 for

this node to evaluate the termination function, T; is
proportional to N. So T=B * N for some constant B and
we should get a linear curve as we vary N.
Algorithm NST & NSQ with T2: For T2, since
all the LP’s execute until the same simulation time, the
number of iterations they perform is independent of N
and is constant.

Inthiscase T=TNy *I=N*T;*I=D * N, for

some constant D, and we should get a linear curve as N
is varied.
Algorithm EST with T2: In this case T=TyN * I =
N*T; *I=E*N*N for some constant E, since T is
proportional to N. Thus we should get a quadratic curve
for this case.

5.2 Measured Performance

We study the performance of our algorithms using
algebraic analysis and experimentation. We report on
simulation experiments using a Sequent Symmetry
shared-memory multi-processor with 10 80386
processors under the Dynix operating system. We used
AT&T C++ 1.2.1 under the Presto thread package
version 0.4 (Bershad, Lazowska and Levy 1987). We
used Presto because it provides lightweight threads and
several synchronization primitives for locks. We have
the option of preemptive or non-preemptive thread
scheduling with a user specified quantum size in the
preemptive case. We report results using both these
options.

We varied the size of the torus network being
simulated from a 3 x 3 network to a 20 x 20 network for
Algorithm NST, Algorithm NSQ and Algorithm EST.
The number of processors is varied from 1 to 8. We
chose 200 as the initial number of jobs for each server
on all the networks simulated. We conjecture that this is
a sufficient number of events to preclude the possibility
of a server ever becoming idle. Each server is
implemented by a thread executing the algorithm with its
own copy of all local data. Barrier synchronization is
effected using a master-slave mechanism based on
examples distributed with Presto 0.4. The value of the
bounded lag B is chosen so that each node examined only
its nearest neighbors to calculate the earliest time another
event could affect its history.

648

Figure 6 shows NST + TO and EST + T1. We note
that, as predicted the curve for algorithm NST+TO is
essentially flat, and the curve for algorithm EST+T1 is
linear. There is an appreciable improvement in
performance as the number of processors is increased
form 1 to 2, and from 2 to 4. There is not much
improvement if we use 8 processors instead of 4. This
is because of the overhead introduced by the master-slave
barrier mechanism in Presto.

The result of NST + T2 and EST + T2 is shown in
Figure 7. As predicted, the graph for Algorithm NST+T2
is linear and the graph for algorithm EST+T2 is
quadratic. As in the previous graph, we get performance
improvements as we increase the number of processors
from 1 to 2 and from 2 to 4, but not with 8.

The graphs for Algorithm NSQ+TO are essentially the
same as those for Algorithm NST+T0. Also , the
graphs for NSQ+T2 are essentially the same as the
graphs for NST+T2. We did not study the performance of
EST+TO0 as TO is a stable termination condition and EST
is redundant in this case.

We note that the results of our experiments are in
accordance with the predicted values.

The data was collected while the simulation processes
were the only user processes on the system. The variance
in runtimes is less than 1 percent at the extremities,
which are the cases for which the number of LP’s (N)
equals 9 and 400. Therefore the data value used to plot
the graphs is the mean of three experiments. The
simulation was run both preemptively (with the quantum
size varied between 100 msec and 600 msec) and non-
preemptively, but this had no effect on the running times
measured, perhaps because no event required more than
100 msecs of wall clock time to execute. For the one
processor case, the simulation was run nonpreemptively
without any locking of shared data structures because
concurrent access is physically impossible in this case.
The one processor case is, however, not a sequential
simulation as there are multiple threads running on the
single processor, which does impose an execution time
overhead.

6 CONCLUSIONS

This paper presents seven termination algorithms for
conservative-synchronous protocols. The first three detect
stable termination conditions. Algorithm NST is a
sequential evaluation algorithm, which evaluates the
termination condition C after each event processing
iteration. Algorithm NSQ is also a sequential evaluation
algorithm, which evaluates C in parallel with event
processing, and Algorithm NPQ is a parallel evaluation
algorithm which parallelizes the evaluation of C using a
combining tree. The other four algorithms detect both

Sanjeevan and Abrams

stable and unstable termination conditions. Algorithm
EST does this by exhaustively evaluating C sequentially
after each event occurrence. Algorithm ESTR does the
same thing, but it does a roll back and re-execution after
determining termination time ¢ to calculate output
measures and has less memory requirements than
Algorithm EST. Algorithm EPT parallelizes the
exhaustive evaluation of C in Algorithm EST using a
combining tree, and Algorithm EPTR does the same
with roll-back.

Our first observation is that the termination
algorithms only required a few lines of code to be added
to the basic Bounded Lag algorithm to include the
termination condition. Our experiments with two
terminating conditions using an N x N torus queueing
network and the Bounded Lag simulation protocol reveal
that detecting a stable terminating condition requires
negligible overhead and detecting a nonstable termination
condition requires O(N) overhead.

There is an inherent attractiveness in using
conservative-synchronous protocols with termination
detection. First, the memory requirements are bounded
by the size of the Bounded Lag. Second, it is easy to
roll-back due to the synchrony, and this is exploited in
algorithms ESTR and EPTR to reduce the storage
required for termination and output measure reporting.We
actually have two different ways to reduce memory
overheads, embodied in Algorithm EST and Algorithm
ESTR.

One avenue to explore would be to see the effect of
increasing the Bounded Lag on our termination detection
algorithms. This would increase the number of events
processed between barriers. This should have a negligible
effect on algorithms NST, NSQ and NPQ, which detect
stable termination conditions,because they are
independent of the number of events processed between
the barriers. However, the remaining four algorithms,
which detect non-stable termination conditions would be
affected because their overhead grows with the number of
events processed between barriers.

In comparison with optimistic protocols, with respect
to rollback, conservative-synchronous protocols have
less work to do to roll back as there because no anti-
messages are requires and no cascading of rollbacks is
possible. The optimistic protocol with a stable
termination detection condition should require more time
to evaluate a termination condition because each LP has
a different local simulation time in general and the
synchronization cost is high. However, this does not
imply that the overall execution time of conservative-
synchronous protocols is less than that of optimistic
protocols.

Cost of Parallel Discrete-Event Simulations

ACKNOWLEDGEMENTS

Several discussions with Debra Richardson helped in
formulating the conservative-synchronous termination
algorithms presented in Section 4.

REFERENCES

Abrams, M. and D. Richardson .1991. Implementing a
Global Termination Condition and Collecting Output
Measures in Parallel Simulation. In Proceedings of the
1991 Workshop on Parallel and Distributed
Simulation , 86-91. Anaheim, California.

Bershad, B. N., Lazowska, E. D. and Levy, H. M. 1987.
“PRESTO: A System for Object-Oriented Parallel
Programming”. Technical Report, Department of
Computer Science, University of Washington, Seattle.

Chandy, K. M. and J. Misra 1988. Parallel Program
Design: A Foundation, Addison-Wesley, Reading,
Mass.

Chandy, K. M. and R. Sherman. 1989. Space-Time and
Simulation. In Proceedings of Distributed Simulation
1989, 53-59. Tampa, Florida.

Lakshman, T.V.,Wei, V.K, On efficiently Computing
Functions of Distributed Information.

Lubachevsky, B. 1989. Efficient distributed event-driven

649

simulations of multiple loop networks.
Communications of the ACM 32: 111-123.

Mattern, F. 1987. Algorithms for Distributed
Termination Detection. Distributed Computing 2:
161-175.

Nicol, D. M. 1990. The Cost of Conservative
Synchronization in Parallel Discrete Event
Simulations. ICASE Report No. 90-20, NASA
Langley Research Center, Hampton, Virginia.

Richardson, D. S. 1991. Terminating Parallel Discrete
Event Simulations. Master’s Thesis, Technical Report
91-9, Computer Science Department, Virginia Tech,
Blacksburg, Virginia.

AUTHOR BIOGRAPHIES

VASANT SANJEEVAN is pursuing his M.S. in
Computer Science at Virginia Polytechnic Institute and
State University. He has a B.S. in Computer Science and
Engineering from the Indian Institute of Technology,
Delhi. His research interest is in Parallel Discrete-Event
Simulation.

MARC ABRAMS : see the paper “SIMULATION
PROGRAM DEVELOPMENT BY STEPWISE
REFINEMENT IN UNITY” elsewhere in these
Proceedings.

attributes required to

evaluate the termination @ 1

condition a

o

Y

ty t3 ty

simulation time

Figure 1: Illustration Of Space Time Rectangle For A Simulation With Three
Attributes. The Heavy Vertical Lines Denote Assignment Of New Values To

Attributes

650 Sanjeevan and Abrams

attributes required to
evaluate the termination

condition %

Figure 2: Example Of A Stable Termination Condition. “T” and “F” Denote
Regions Of Time-Space In Which The Condition Is True And False, Respectively

.'>

simulation time

attributes required to

evaluate the termination A
condition /

Figure 3: Example Of A Non-Stable Termination Condition

simulation time

/* 1Initially Floor:=0;SV:= false; */
S0: compute TI[i];
Sl: while (not SV){

S2: compute ALPHA[i];
S3: synchronize; /* barrier 1 */
S4: while((T[i] < Floor + B) && (T[i] < ALPHA[i])){
S5: process event(s) with locally minimum timestamp;
S6: optionally schedule new events and/or delete events for
LP; or other LP’'s;
S7: delete the processed events from LPj,
S8 - recompute T[i];
}
S59: synchronize; /* barrier 2 */
S10: if(i=1) Floor := min (T[i])), 1 =1, N
S11: synchronize; /* barrier 3 */
}

S12:compute output measures

Figure 4: Algorithm For Logical Process i Of A Bounded Lag Simulation

Cost of Parallel Discrete-Event Simulations

TIME in seconds

TIME in seconds

Figure 5: A 3 x 3 Torus Queueing Network

500

400 -

300 ~

200

100 -

T T 1
0 100 200 300 400

Figure 6: Wall Clock Time Required To Complete Simulation For N
Threads With NST+T0 And EST+T1. P Is The Number Of Processors.

3000

2000 -

1000 -

0 T . | — - 1
0 100 200 300 400
N
Figure 7: Wall Clock Time Required To Complete Simulation For N
Threads With NST+T2 And EST+T2

651

P=1(NST, T0)
P=2(NST,T0)
P=4(NST,T0)
P=8(NST,T0)
P=1(EST,T1)
P=2(EST,T1)
P=4(EST,T1)
P=8(EST,T1)

P=1(NST,T2)
P=2(NST,T2)
P=4(NST,T2)
P=8(NST,T2)
P=1(EST,T2)
P=2(EST,T2)
P=4(EST,T2)
P=8(EST,T2)

