Proceedings of the 1991 Winler Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

MEASURING THE OVERHEAD IN CONSERVATIVE PARALLEL SIMULATIONS OF
MULTICOMPUTER PROGRAMS

Mary L. Bailey
Michael A. Pagels

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

ABSTRACT

In this paper we show that it is feasible to characterize
the overheads present in conservative parallel simula-
tions of multicomputer programs. We use a modified
version of the parallel simulator from the Poker Pro-
gramming Environment to empirically measure the
overhead in two parallel algorithms which use three
different interconnection structures. We discuss the
sources of overhead and qualitatively discuss their rel-
ative importance.

1 INTRODUCTION

There has been a great deal of interest over the past
few years in comparing conservative and optimistic
strategies for parallel discrete-event simulations. The
work in this area can be categorized as empirical stud-
ies and analytical or formal models. In the empirical
studies, specific experiments are run on both conser-
vative and optimistic simulators to see which strategy
results in a faster simulation. Fujimoto (1989) did
this for closed queuing networks and found that the
optimistic strategy generally outperformed the con-
servative strategy. Reynolds and Dickens (1989) have
developed a test bed for comparing the two strategies
and are currently using it to compare the synchroniza-
tion strategies with various applications.

In addition to these empirical studies, there has
been a flurry of activity in formal or analytical mod-
els for comparing the two synchronization strategies.
Here different assumptions are made to keep the anal-
ysis tractable, such as requiring one process per pro-
cessor, or vastly simplifying the overhead costs. In
contrast to the empirical experiments, where a single
application domain is investigated, most of the ana-
lytical studies consider all domains (Felderman and
Kleinrock 1991, Nicol 1990, Lin and Lazowska 1990,
Madisetti, Walrand and Messerschmitt 1990, Lipton
and Mizell 1990, Mitra and Mitrani 1984). There

627

has been some work in domain-specific formal mod-
els, but. this seems to be the exception, rather than
the rule, and simplifying assumptions are still made
for overhead costs and processes per processors (Lin,
Lazowska and Bailey 1990).

The focus of our work lies between these two tra-
ditional approaches. We have performed an empir-
ical study using the conservative strategy in which
we examine its performance and more importantly
investigate whether it is feasible to characterize the
overheads in the simulation so that they can be used
in analytical models. The application domain which
we have chosen is simulating multicomputer pro-
grams, i. e., programs written for non-shared mem-
ory parallel processors. In particular, we have taken
a well-established multicomputer programming envi-
ronment, the Poker Programming Environment, to
use for our work (Snyder 1984). We have modified
a parallel version of the Poker simulator by adding
a conservative communication strategy based on the
Chandy-Misra paradigm, and have characterized the
overheads using two Poker programs. Our character-
izations are not sufficiently tuned for use in analytic
models, but we believe we demonstrate the feasibility
of this approach, and its future efficacy.

The organization of this paper is as follows. We
first describe the parallel multicomputer simulator
which we used in the experiments, including brief
overviews of the original Poker simulator and the con-
servative algorithm. Then we discuss the programs
that we used for our measurements. Next is a dis-
cussion of the results of the empirical study, includ-
ing both general overhead costs together with a more
specific breakdown of the overhead costs. Finally, we
conclude and discuss future directions.

2 THE PARALLEL SIMULATOR

At the core of our empirical work is the Poker simu-
lator and a Chandy-Misra algorithm. We will briefly

628

discuss each of these separately, and then will describe
the interactions between the two when we created the
Chandy-Misra version of the Poker simulator.

2.1 The Chandy-Misra Paradigm

In synchronous event-driven simulation, two indepen-
dent events may not execute in parallel if they have
different time stamps. Asynchronous strategies at-
tempt to increase the number of events available for
parallel evaluation by allowing independent events to
be executed in parallel. These parallel simulations
must produce the same result as an equivalent sequen-
tial simulation, so the focus is on developing strate-
gies for ensuring this correctness while completing the
simulation as quickly as possible. There are two gen-
eral strategies that are most prevalent in the liter-
ature: conservative and optimistic. In both asyn-
chronous strategies, as in the synchronous strategy,
the processes are divided among the simulation pro-
cessors, with each executing events for its partition of
the problem space. Each process also maintains a lo-
cal clock and one or more local event queues. Events
queued for this process can be executed if their time
stamps equal the value of the local clock. The two
strategies differ in the way the local clocks advance.
We focus on the conservative strategy in the remain-
der of this paper. The interested reader is referred to
Fujimoto (1990) for a more complete description.

In the conservative strategy, local clocks can ad-
vance only if it can be guaranteed that the process
will not receive an event with a time stamp less than
the new value of the local clock. In other words, no
events can arrive that are in the “past”. Chandy and
Misra (1979) and Bryant (1977) pioneered this strat-
egy. We will summarize the key ideas in the asyn-
chronous strategies. To simplify the explanation, we
will assume that there is one process per simulation
processor. This is not a requirement, and we do not
have this situation in our simulations, since we ex-
pect that there will be many more processors in the
multiprocessor than in the simulation engine.

Another requirement for the conservative strategy
is a static process communication graph. In this
graph, there is a directed arc from a process to an-
other if and only if the first process will send mes-
sage(s) to the second one. The graph may not change
as the simulation progresses as the graph is used to
determine when to increment the local simulation
clocks. Each simulation process maintains an input
queue for each incoming arc in the communication
graph and sends outgoing events to the appropriate
process queue as determined by the process commu-
nication graph. The conservative strategy requires

Bailey and Pagels

that for each arc in the process communication graph,
events arrive in increasing time stamp order. This en-
ables the receiving process to consider only a single
event from each incoming edge in deciding whether
to increase its simulation clock.

There are two rules that are used to ensure the
“conservative” requirements in the algorithm. The
first, the input waiting rule, states that a process
must wait for an event on each incoming edge in the
corresponding communication graph before advanc-
ing the clock. The clock time is then advanced to
the minimum of the time stamps of the events in all
queues. Because we know that on each arc, events
arrive in time stamp order, we know that there will
be no event arriving earlier than the minimum time
stamp. The second rule, the output waiting rule,
states that output messages cannot be sent until the
simulation clock time equals the time of the outgo-
ing message. This guarantees that output messages
are sent in time stamp order. There is an explicit as-
sumption that the hardware maintains this message
ordering when transmitting messages. The output
waiting rule is often relaxed if there is a minimum
delay between any event and resulting output mes-
sages. Its function is to ensure that no later event
will generate output messages with time stamps less
than those already transmitted.

As a consequence of these two rules, there can be
substantial idle time while a process waits for input
messages, and there can be substantial delays be-
tween creating an output message and its transmis-
sion. In particular, the system can deadlock because
of both the input and output waiting rules. Thus the
simulation strategy must be able to detect and re-
cover from deadlock or to avoid deadlock. The most
popular deadlock avoidance mechanism is to use “null
messages,” messages which only transmit timing in-
formation, to ensure that the simulation can proceed.
Thus the overhead in this system must account for
deadlock detection and recovery or transmission of
null messages. In these experiments we primarily use
null messages because it seems to be the most popular
implementation of the conservative strategy. How-
ever, we also have a deadlock detection mechanism,
since the simulated system can deadlock.

2.2 Poker

The Poker Programming Environment consists of
a programming language, together with a simula-
tion/debugging environment used to simulate the
programming language (Snyder 1984 and Notkin et
al. 1988). We will provide a brief summary of the
programming environment here; for more informa-

Measuring the Overhead in Conservative Parallel Simulations 629

tion, see Snyder (1988). A Poker program is not a
monolithic text file, but is represented by a database.
The execution of a Poker program occurs in one or
more phases. Different phases often have different
interconnection structures.

There are two languages that are currently sup-
ported in Poker which are used for the sequential pro-
cess code , XX (dos equis) and Poker C. Poker C is the
more robust language and uses a faster, more generic
simulator; we use it as our experimental platform.

The current version of Poker C supports two mes-
sage primitives, one for sending a message and an-
other for receiving messages. In both of these a single
message is sent/received on a specific port. Processes
block on a receive until the message arrives; sends are
non-blocking. Events in the Poker simulator are gen-
erated by sending and receiving messages. The cur-
rent parallel implementation of the Poker simulator
uses a data-driven model since receives are blocking
and only a single port can supply the data to be re-
ceived. Thus there is no need for a more general syn-
chronization strategy to insure that the simulation is
correct.

In order to test the viability of the conservative
synchronization primitives, a second type of receive
primitive was added to the Poker C language, Mul-
tiRead. Here one can receive a message from one of
several specified ports, and whichever message arrives
first will be the one which is delivered!. The addition
of MultiRead eliminates the possibility of using the
data-driven paradigm for the parallel version of the
Poker simulator. The simulator now must insure that
the event corresponding to the message with the least
time stamp among the specified ports is actually sim-
ulated first; otherwise the simulation is not accurately
reflecting the performance of the sequential processes.

The addition of the MultiRead construct is actually
useful in many Poker programs. There are often cases
where one needs to get values from several ports and
the order that they arrive is immaterial?>. To make
the construct more meaningful, we allow the user to
check to see which port provided the message that
was read during the MultiRead.

!Note that the message delivery ordering must be in terms
of the local clocks on each multicomputer process, as opposed
to the simulator’s time.

%In an earlier version of Poker, the XX language supported
a similar construct, where the user could read from multiple
ports and these reads were done in order of message arrival
time. This construct was not implemented in the original Poker

C.

2.3 Chandy-Misra Poker Simulator

The Chandy-Misra version of the Poker simulator
uses much of the original Poker simulator code in-
tact. There were two major modifications to the data-
driven parallel version of the Poker simulator which
were necessary to create the Chandy-Misra version,
adding the MultiRead and adding null messages to
avoid deadlock. In addition we modified the parser
for Poker C to accept the new MultiRead construct.

Adding MultiRead to the simulator was relatively
straightforward. Because messages are generated and
sent in time stamp order, the output waiting rule is
not needed in this environment. The code for the in-
put waiting rule is isolated in the MultiRead function.
We basically execute a loop waiting for the input
waiting rule to be satisfied. In this loop we perform
a context switch if the waiting rule is not satisfied.
Thus we use the number of context switches when
the desired message is already present to provide an
estimate of the overhead from the input waiting rule,
since 1t 1s a measure of the substantive source of over-
head from the input waiting rule.

The other major change is the implementation of
null messages to the system to avoid deadlocks. Null
messages are implemented as “pokes” in shared mem-
ory, which generates less overhead than if they are
implemented as full-blown messages. When a pro-
cess performs a Read, it “pokes” all other processes
which are connected to it3. In our experiments 79%
to 99% of simulated time is spent in I/O. In programs
with lower I/O to compute ratios, or where the ratio
is very asymmetric between processes, a method to
“poke” processes during compute time would likely
be beneficial.

Besides these two changes, we modified the Poker
C deadlock detection algorithm. The original dead-
lock detection algorithm had some timing problems,
causing it to report that the simulator was deadlocked
when it wasn’t. These timing problems were exacer-
bated with the addition of MultiReads.

3 THE TEST PROGRAMS

Two test programs have been run to test the effi-
ciency of the Chandy-Misra strategy on Poker pro-
grams. One is a systolic Matrix Multiply algorithm.
The other program implements the Jacobi iterative
method for solving Laplace’s equation on a rectan-
gle. The Matrix Multiply algorithm and a single-
point version of the Jacobi Iteration are described in
Nelson (1987). Both are implemented on 64 Poker

3Since all arcs in the graph are bidirectional, this is equiv-
alent to “poking” all outgoing arcs.

630

processing elements (PPEs). Because the structure
of the algorithm impacts the resulting performance
and overhead, we will describe each of the algorithms
briefly.

3.1 Matrix Multiply

The matrix multiply algorithm is a well-known wave-
front algorithm first proposed by Kung et al. (1982)
to multiply two nxn matrices, A and B together. Our
implementation uses two 8 x 8 input arrays. It differs
from the original algorithm in that the matrix ele-
ments begin in the PPEs instead of being fed into the
matrix from the edges. The 64 PPEs are connected in
a 8 torus, created from an 8 matrix by connecting the
ends of each row and column. The matrix elements
flow vertically or horizontally around the torus. The
result matrix is also stored in the processors.

In this implementation, the elements A(z,j) and
B(t,) are pre-routed to the appropriate processor so
that the data is staged for the systolic portion of the
algorithm. The result array, C, has element C(z, j)
stored in processor (i,j). This algorithm is imple-
mented in two phases. In the first phase we load
random numbers into the appropriate processors to
form the matrices A and B. In the second phase the
matrix multiply is performed. All measurements re-
ported in this article pertain only to the second phase,
the matrix multiply.

3.2 Jacobi Iteration

The Jacobi Iteration is a parallel implementation
of the Jacobi iterative method for solving Laplace’s
equation on a rectangle. The rectangle is represented
by n discrete values which correspond to the voltages
at points in the rectangle. The boundary and the
voltage sources are fixed constants. In the algorithm,
an initial guess is computed for cach of the points,
and theén new values are iteratively obtained by aver-
aging the values of its four neighbors until the voltage
stabilizes.

In the Poker implementation, this process is repre-
sented as two phases, one for the iterations, and an-
other to determine whether the system has stabilized.
The iterate or compute phase uses a mesh intercon-
nection structure, since each processor must obtain
values from each neighbor. The aggregate phase uses
a tree interconnection structure since it must deter-
mine whether all processes have stabilized. In our
implementation a rectangular set of points is main-
tained in each processor, and in the compute phase,
a single message is sent to each of the four neighbors
containing the appropriate array of points necessary
for communication. Additionally, we iterate 10 times

Bailey and Pagels

in this phase to decrease the overhead of changing
phases. Increasing the number of iterations also in-
creases the resulting simulation time, so we obtain
more accurate measurements.

We took measurements on both phases of this prob-
lem since both phases are pertinent to the algorithm
and can use the MultiRead operator. Since in the
compute phase the algorithm receives a set of val-
ues from each of its 4 neighbors and then performs
the averaging, it doesn’t matter which values are re-
ceived first, so we used the MultiRead construct on
the four ports. Because four array boundaries of ele-
ments were being received, it was necessary to under-
stand which port was being read, which complicated
the code somewhat. Likewise in the aggregate phase
we arc simply taking the maximum of a set of values
stored one in each processor (the maximum voltage
change in the last ten iterations), so order is not im-
portant here.

4 EMPIRICAL RESULTS

The goal of the empirical tests is to determine the
amount and types of overhead present due to the
Chandy-Misra algorithm we added to the Poker sim-
ulator. We will first discuss the general experimen-
tal methodology used to take the measurements, and
then will discuss the actual experiments performed.

4.1 Methodology

All programs were run on a Sequent Symmetry, with
eight processors running at 16 MHz. On this ma-
chine, one processor must be reserved for the oper-
ating system, so the maximum number of processors
available for measurements is seven. All experiments
were run when the machine was in single user mode,
with “tmp_affinity” set so that processes are bound
to specific processors?

Two versions of the Poker Simulator and two ver-
sions of each test program were used in the measure-
ments. Table 1 shows the names that we use for
each of the measurements. Original is the original

Table 1: Naming Conventions used in the Measure-
ments

| No MultiRead | MultiRead
Original Simulator Original —
Modified Simulator Plain MultiRead

4 This decreases the operating system overhead by reducing
cache conflicts.

Measuring the Overhead in Conservative Parallel Simulations 631

2
MultiRead T
----- Plain i
— -— Original | T
" J
° E
c
) —
o
Q 4
n
\ b
s L% \]
. - R - \
L =~ \Nb -~ \u-_:
N -~ " ——
T *-::~" - oo _l
0 !
1 2 3 4 5 6 7
Processors

Figure 1: Execution Times for Matrix Multiplication

Poker simulator, with the algorithm written without
the MultiRead construct. This provides a baseline
for our comparison, since there is no overhead here
due to the Chandy-Misra algorithm. Plain uses the
Chandy-Misra version of the Poker simulator but run
on the version of the algorithm which does not use
MultiRead. Thus there is no input waiting rule over-
head in this version, but there is overhead due to null
messages. MultiRead uses the Chandy-Misra ver-
sion of the Poker simulator run on the version of the
algorithm which uses MultiRead. Both null message
and input waiting rule overheads will be present in
this version.

In both versions, there is a heavy-weight UNIX pro-
cess associated with each running Symmetry proces-
sor. Poker PPEs are implemented as light-weight pro-
cesses using a light-weight threads package provided
in the original Poker parallel simulator. The heavy-
weight processes are actually just parked (suspended)
after the first phase of a Poker program; in subsequent
phases these processes are simply signaled.

We begin by presenting the execution times of the
three simulators on each of the algorithms. These are
shown in Figure 1, Figure 2, and Figure 3. The aver-
age execution times are plotted in the graphs. Stan-
dard deviations are shown using error bars. Each of
the points in the figure represents the average of 22
runs. The execution times were printed out as part

60T 4
MultiRead]
----- Plain]
— - — Original 1
P]
°
2 i
o .
9 -
m -
3 -]
-~ o \
S -
— T
i 4
1
1 2 3 4 5 6 7
Processors

Figure 2: Execution Times for the Jacobi Compute
Phase

04T]
0.357 MultiRead § T
- -= Plain]
0.3 — .— Original f— T
L i
» C]
Tk]
o
o 0.257]N" i)
o -\]
R \ 1
0.2 \ e
I o]
r D A]
o E- - 4+ ~F - b
0.15 5 Y .:_E_ - —_E?g-
0.1
1 2 3 4 5 6 7
Processors

Figure 3: Execution Times for the Jacobi Aggregate
Phase

632
1 J
E i lain §---— —
0.8 MultiRead vs P
B Plain Vs Original
o 0.6\]
v -
c .
s L
o i
b L
O R
0.4 : : |
S) \\1:
L ~‘__m""=u-=--—-=i--_...,.=,___.;
0
1 2 3 4 5 6 7
Processors

Figure 4. Difference in Simulation Execution Times
for the Matrix Multiply

of the program and measures the execution time for
each phase from the point just before the processes
are forked to the point when the last forked process
has completed. The measurements do not include any
overhead time to print the statistical information that
was gathered during the run®.

In the following sections we will discuss the over-
heads found in each of the two algorithms. See Bai-

ley and Pagels (1991) for more detailed experimental
data.

4.2 Matrix Multiply

The easiest way to visualize the overheads in the mod-
ified Poker simulator is to consider the difference in
execution times between the three experimental mod-
els: Original, Plain, and MultiRead. Figure 4
shows these for the Matrix Multiply algorithm.

We begin by considering the difference in execu-
tion times for the Original and Plain measurements.
Since the same algorithm is used in both measure-
ments, and no MultiReads are used, this difference
must be completely due to null message overhead.

We computed the total number of null messages in

®We compared the execution times both with and without
measurements and found no significant difference. Thus all
results here are with measurements turned on.

Bailey and Pagels

the runs and found it to be invariant with respect
to the number of processors. There are exactly 4.25
null messages sent per read in all cases, and there
are a total of 1024 reads, 16 per PPE. Whenever a
read is done, all 4 neighbors are poked. Addition-
ally, all neighbors are poked when each PPE finishes.
Thus we obtain an average of 4.25 pokes per read.
There is no additional overhead from extraneous con-
text switches due to processors waiting for Reads ex-
cept when the number of processors is five or six. In
these cases the total number of extraneous context
switches is small. Thus we can conclude that the
overhead due to null messages is essentially linear in
the number of PPEs, since every PPE generates and
receives the same number of null messages. Addition-
ally, the PPE’s are mapped to simulator processes in
row-major order, so in most cases the same number
of PPE’s are mapped onto every processor.

If we assume that the original Poker simulator re-
flects a “typical” parallel execution curve, then we can
approximate the execution time of the simulation as:

W
Torig(p): CP+ C?, (1)

where p is the number of processors, W is the total
amount of work, ¢ is a constant related to the extra
code due to the original Poker parallel version, and ¢
is a small constant involved with initialization, such
as forking processes. Since we have basically added
a constant amount of work to W per processor, we
can compute the difference between the Original and
Plain versions to be:

W
A(p) = c_p_’ ()

where 6§W is the amount of work we added to each
processor.

Using the 6 processor value as the basis point we fit
Equation 2 to the difference curves in Figure 4. With
the exception of the single processor case, the data
from Plain vs. Original fits within one standard de-
viation of the calculated values. The single processor
difference is less than predicted, indicating that based
on multiprocessor performance, single processor per-
formance is faster than expected. More analysis is
required to exactly determine the cause of this effect.

Now we consider the overhead differences between
the Plain and MultiRead execution times. In the
one to four processor runs, the total number of null
messages did not change. In addition, there were
no extraneous context switches due to MultiReads.
For the larger numbers of processors, there were ad-
ditional null message and context switches. These
all occurred on the processor with the least balanced

Measuring the Overhead in Conservative Parallel Simulations 633

load. For instance, when 5 processors are used for 64
PPEs, four processors contain code for 13 PPEs and
the other processor contains code for only 12 PPEs.
It is this fifth processor which generates all of the con-
text switches and additional null messages. An anal-
ogous situation holds for the six and seven processor
case, although in the six processor case there are two
processors which are unbalanced so both are perform-
ing context switches and sending extra null messages,
causing the total number of context switches in the six
processor case to be much larger than in the five and
seven processor cases. These extra context switches
have a minimal effect on the overall simulation time,
since it is the fast processors which are wasting time.
They are likely to have higher idle rates in Original
and Plain.

Thus the difference in execution time is due to the
overhead of performing MultiReads instead of Reads,
together with additional simulation time required to
process the additional code present in the MultiRead
version of the algorithm. In fact, we see that the
MultiRead vs Plain curve fits the predicted differ-
ence formula, implying that there are no additional
overheads due to the input waiting rule which impact
the execution time of the simulation.

In summary, we found that in this example, the
overheads due to the addition of Chandy-Misra were
completely accounted for by the typical execution
curve for any parallel algorithm. There are no addi-
tional factors related to the Chandy-Misra algorithm,
except for computing the increment in the total work.
Thus it is straightforward to compute the extra work
in this problem which is due to the Chandy-Misra
algorithm.

4.3 Jacobi Iteration

We will discuss each phase of the Jacobi Iteration
separately since each has a different interconnection
structure. We begin with the compute phase, which
uses a mesh interconnection structure. As in the ma-
trix multiply, we begin by considering the difference
in execution times in the Original and Plain mea-
surements (see Figure 5).

Once again, the total number of null messages is
independent of the number of processors. Here there
are a total of 3.63214 null messages sent per read.
This number is lower than four because the PPEs
on the edges of the mesh send only three messages
(the corner PPEs send two), and there are many
more Reads, an average of 140 per PPE. Unlike the
matrix multiply, there is some context switch over-
head in all versions from processes waiting for Reads
being awakened by receiving null messages. These

20]

‘| —— MultiRead vs Plain |1
----- Plain vs Original ||

Seconds

v

=

. e,

T

1 2 3 4 5 6 7
Processors

Figure 5: Difference in Simulation Execution Times
for the Jacobi Compute Phase

seem to be mainly in the PPEs on the edges of the
mesh when the number of processors is small, but
becomes widespread as the number of processors in-
creases. The largest number of context switches oc-
cur when five, six, or seven processes are used. Un-
like the matrix multiply, although there is often more
context switch overhead in the processors with unbal-
anced numbers of PPEs, there is a significant amount
of context switching in other processors. This extra
context switching doesn’t seem to adversely affect the
execution time of the simulation, because we can fit
the difference curve to the simple parallel execution
model. Hence, the extra “thrashing” which occurs
in unbalanced processors is not affecting the overall
simulation time.

The overheads due to changes between the Plain
and MultiRead execution times are more difficult to
characterize. There is a superlinear decrease in over-
head going from one to two processors, which implies
that the total overhead in the system actually de-
creased. In fact, we see this for other numbers of
processors also. The data points here do not fit the
simple parallel execution model, implying that there
are additional overhead terms due to the dynamic
characteristics of the Chandy-Misra algorithm which
affect the simulation execution time.

The measurements of conservative algorithm over-

634
48T E
47.5T //.
s 477] T b)
c i {]
©
g o 4
0 £ / \]
£ 46.57 \/)
@ []
b4 1
< [H i .
a 467 \(i
4557 _
L J
L i 4
45 T
1 2 3 4 5 6 7
Processors

Figure 6: Total Number of Pokes Sent in the Jacobi
Compute Phase

heads indicate that the number of null messages in-
creased over Plain, and additional context switches
due to the input waiting rule were also present. In
fact, there is on average between 1 and 1.38 context
switches per read. More interestingly, the number
of context switches per Read has a similar shape to
the average number of null messages per Read. The
number of null messages per context switches is not
constant, but ranged from 3.9 to 5.1. One interesting
phenomenon that we observed is that these overheads
decrease when three or five processors are used. We
saw a “zig-zag” shaped graph for many of the mea-
sured overheads, with the magnitude of the peaks and
valleys generally increasing with the number of pro-
cessors. For example, Figure 6 shows the total num-
ber of pokes sent as a function of the number of pro-
Cessors.

In summary, we see overheads in the Jacobi com-
pute phase, due to both the presence of null messages
and the input waiting rule. This increase is likely due
in part to the imbalances caused by edge effects in the
mesh, since the PPEs on the edge of the mesh have
different communication patterns from those in the
interior of the mesh. This problem does not fit the
typical parallel execution model, demonstrating that
the conservative overheads are impacting the simula-
tion execution time. We did measure the ratio of null

Bailey and Pagels

0.127]
0.1 x
[MultiRead vs Plain]
0.08 1\t T T Plain vs Original T

0.06

Seconds
l
'/
l
1
i
1

0.04

|
1
l\
/
pai]
1
o T P N R |

0.027 —
J e gy
L r~“‘~—‘—_,-_ e T~o A
-0.02 an
1 2 3 4 5 6 7

Processors

Figure 7: Difference in Execution Times for the Ja-
cobi Aggregate Phase

messages to context switches and found that there
were on average four to five null messages sent per
context switch. Thus we can begin to quantitatively
compare the overheads spent in the input waiting rule
and time spent in processing null messages.

We now consider the overheads in the aggregate
phase. This phase uses a binary tree as its inter-
connection structure, with the modification that the
root node has a third child, which is the remaining
PPE. Just over half of the PPEs are leaf nodes, which
perform no reads, but simply write a value to their
parent nodes. The inner nodes of the tree require two
MultiReads, and the root node requires three. Thus
there are many fewer Reads than in the other phase.
Consequently the execution times are much shorter.

As before we begin by considering the difference in
execution times between Original and Plain (Fig-
ure 7). We have a really unusual case here. If we
look at Original compared to Plain, we see that by
adding null messages we actually improved the run-
ning time of the simulation in all cases except the
uniprocessor case! We once again found the total
number of null messages sent was invariant, although
the total number sent here was only 315, substantially
less than in the other two examples. We see a large
number of pokes sent per read, five. As in the matrix
multiply, this is due to null pokes being sent as PPEs

Measuring the Overhead in Conservative Parallel Simulations 635

terminate. The effect is even more dramatic here be-
cause half of the PPEs perform no reads, but all ter-
minate. There is also a rather substantial number of
extraneous context switches due to null message ar-
rival, an effect seen in all runs. We believe that the
increased performance of the Plain over Original
can be attributed to the small amount of additional
code which is executed, together with its impact on
scheduling of PPEs. Transmission of null messages
does impact the scheduler, and in this case, it ap-
pears to have increased its efficiency.

The overheads seen in the MultiRead experiments
are relatively straightforward. The total number of
null messages generally decreases with the number of
processors, although there is an increase in the cases
when the processors are more poorly balanced. We
also see that there are a number of instances when
null messages are considered but not sent. In our
code, we only send null messages if the time stamp
differs from the last null message that was sent. In
this phase, there seem to be a large number of times
when the null message being sent has the same time
stamp as the last null message the PPE sent. This
seems to be most pronounced in the three and five
processor experiments. We also see some overhead
due to the input waiting rule, although there are
many fewer context switches than in the compute
phase. In fact, the number of null message per con-
text switch ranges from 20 to 70, a huge increase over
the compute phase. Four processors seems to be par-
ticularly susceptible to extraneous context switches.
It is the instance where poor PPE balancing is most
evident,.

To summarize the results for the aggregate phase,
we see very different behavior in this phase than in
either of the two other experiments. This is likely due
in part to the small execution time of this phase. Be-
fore any concrete conclusions can be drawn concern-
ing the effect of the tree interconnection structure on
the overheads in the conservative algorithms, a more
time-consuming example needs to be used.

5 CONCLUSIONS

We were able to measure many of the overheads
present in the conservative algorithm. In the first ex-
ample, the matrix multiply, we saw that a simple exe-
cution model was generally able to explain the differ-
ence in the MultiRead and Plain versions, demon-
strating the minimal effects of overhead due to the
conservative algorithm. The major overhead present
in this case was the addition of null messages which
increased the overall workload. The absence of other
effects is likely due to the well-balanced algorithm.

In the mesh interconnection structure, we saw some
impact of edge effects. Here, the simple execution
model no longer explained the difference in execution
times. The total number of pokes increased, as well as
the number of context switches due to the input wait-
ing rule. The number of pokes per Read ranged from
5.08 to 5.32 and generally increased with the num-
ber of processors. The number of pokes per context
switch ranged from 3.9 to 5.1 and generally decreased
with the number of processors.

The binary tree interconnection structure behaved
quite differently from either of the other two. We saw
that the addition of null messages actually decreased
the simulation time. Unfortunately, the run times
were so small, that the data drawn from this experi-
ment is inconclusive. However, we did see that poor
balance of PPEs to processors had an large impact
on both execution time and context switch overhead.

There is still a great deal of work to be done in
characterizing the overheads in conservative simula-
tions. The interconnection structure seems to have
a major impact on the resulting overheads. We were
able to discuss only a single algorithm using each in-
terconnection structure in this paper. Imbalances in
communication patterns and structures appear to re-
sult in increased overheads.

In the future, we hope to quantify the effects of the
dynamic overheads, such as the effects of the input
waiting rule, so that they can be used in analytical
models. The data here suggests that this is a viable
task, that it is feasible to characterize the overheads
in the conservative algorithm for this class of pro-
grams.

ACKNOWLEDGEMENTS

We would like to thank John Luiten and the Lab Staff
in our department for providing support and single-
user access to the Sequent Symmetry. We would also
like to thank Larry Snyder for providing access to
the Poker programming environment and sample pro-
grams, and Richard Fujimoto for giving us his parallel
simulators which provided an excellent point of ref-
erence for our work. This work is funded in part by
National Science Foundation Grant CCR-9110443.

REFERENCES

Bailey, M.L. and M.A. Pagels. 1991. Measuring
the overhead in conservative parallel simulations of
multicomputer programs: Detailed measurements.
Technical Report TR 91-14, Computer Science De-
partment, University of Arizona.

636

Bryant, R.E. 1977. Simulation of packet communi-
cation architecture computer systems. Technical
Report MIT-LCS-TR-188, Massachusetts Institute
of Technology.

Chandy, K.M. and J. Misra. 1979. Distributed sim-
ulation: A case study in design and verification of
distributed programs. IEEE Transactions on Soft-
ware Engineering SE-5(5): 440-452.

Felderman, R.E. and L. Kleinrock. 1991. Two pro-
cessor time warp analysis: Some results on a unify-
ing approach. In Proceedings of the SCS Multicon-
ference on Distributed Simulation, eds. V. Madis-
etti, D. Nicol, and R. Fujimoto, 3-10. SCS, San
Diego, California.

Fujimoto, R.M. 1989. Time warp on a shared mem-
ory multiprocessor. Transactions of the Society for
Computer Simulation 6(3): 211-239.

Fujimoto, R.M. 1990. Parallel discrete event simula-
tion. Communications of the ACM 33(10): 30-53.

S.Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. B. B.
Rao. Wavefront array processor: Language, archi-
tecture, and applications. IEEE Transactions on
Computers, C-31(11): 1054-1065, 1982.

Lin, Y.-B. and E.D. Lazowska. 1990. Optimality
considerations for “time-warp” parallel simulation.
In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, ed. D. Nicol, 29-34. SCS, San
Diego, California.

Lin, Y.-B., E.D. Lazowska, and M.L. Bailey. 1990.
Comparing synchronization protocols for parallel
logic-level simulation. In Proceedings of the 1990
International Conference on Parallel Processing,
ed. P.-C. Yew, I1I-223-111-227. Penn State, Uni-
versity Park, Pennsylvania.

Lipton, R.J. and D.W. Mizell. 1990. Time warp vs.
chandy-misra: A worst-case comparison. In Pro-
ceedings of the SCS Multiconference on Distributed
Simulation, ed. D. Nicol, 137-143. SCS, San Diego,
California.

Madisetti, V., J. Walrand, and D. Messerschmitt.
1990. Synchronization in message-passing comput-
ers — models, algorithms, and analysis. In Pro-
ceedings of the SCS Multiconference on Distributed
Simulation, ed. D. Nicol, 35-48. SCS, San Diego,
California.

Mitra, D. and I. Mitrani. 1984 Analysis and opti-
mum performance of two message-passing parallel
processors synchronized by rollback. Performance
’84, 35-50.

Nelson, P.A.1987. Parallel Programming Paradigms.
PhD thesis, Computer Science Department, Uni-
versity of Washington, Seattle, Washington.

Nicol, D.M. 1990. Performance bounds on parallel
self-initiating discrete-event simulations. Technical

Bailey and Pagels

Report 90-21, ICASE.

Notkin, D., L. Snyder, D. Socha, M.L. Bailey,
B. Forstall, K. Gates, R. Greenlaw, W.G. Griswold,
R.J. Holman, R. Korry, G. Lasswell, R. Mitchell,
and P.A. Nelson. 1988. Experiences with poker.
In Proceedings of the ACM/SIGPLAN PPEALS,
10-20. Association of Computing Machinery, New
York, New York.

Reynolds, P.F. and P.N. Dickens. 1989. SPEC-
TRUM: A parallel simulation testbed. In Proceed-
ings of the 4th Annual Hypercube Conference.

Snyder, L. 1984. Parallel programming and the Poker
programming environment. Computer 17(7): 21-
36.

Snyder,L. 1988. Poker (4.2) programmer’s refer-
ence guide. Technical Report TR88-10-05, Com-
puter Science Department, University of Washing-
ton, Seattle, Washington.

AUTHOR BIOGRAPHIES

MARY L. BAILEY is an assistant professor in
the Department of Computer Science at the Univer-
sity of Arizona. Her research interests include paral-
lel and distributed simulation, computer-aided design
for VLSI, and parallel computation.

MICHAEL A. PAGELS is a research assistant in
the Department of Computer Science at the Univer-
sity of Arizona. His research interests include multi-
processor architecture and operating system simula-
tion.

