Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

A PERFORMANCE MODEL FOR PARALLEL SIMULATION

Phillip M. Dickens
Paul F. Reynolds, Jr.

Institute for Parallel Computation
School of Engineering and Applied Science
University of Virginia
Charlottesville, VA 22903

ABSTRACT

Widowing algorithms are an important class of syn-
chronization algorithms for parallel discrete event simu-
lation. In these algorithms, a simulation window is
chosen such that all events within the window can be
executed concurrently without the possibility of a
causality error. Using the terminology of Chandy and
Sherman (1989), these are unconditional events. Win-
dowing algorithms, as all non-aggressive algorithms,
have been criticized for not allowing a computation to
proceed because there exists the possibility of a causality
error. We are interested in the impact of extending the
simulation window in order to allow the computation of
conditional events, that is, those events that may cause
an error. In this paper we develop a model to investigate
the probability of a causality error occurring when the
simulation window is extended to allow conditional
events into the computation stream. Also we give results
from simulation studies which validate our model.

1 INTRODUCTION

Most of the protocols developed for parallel
discrete event simulation fall into two basic categories.
One category (using the terminology developed by Rey-
nolds 1988) is protocols that are accurate, non-
aggressive and without risk (also known as "conserva-
tive" protocols, e.g. Chandy and Misra 1979, Lubachev-
sky 1988, Nicol 1991 and Peacock, Manning and Wong
1978). The second category is protocols that are accu-
rate, aggressive and with risk, also known as "optimis-
tic", e.g. Time Warp (Jefferson 1985). Protocols that are
non-aggressive and without risk do not allow a logical
process (LP) to process a message with timestamp ¢ if it
is possible that it will receive another message with a
timestamp less than ¢ at some point in the future. Proto-
cols that are aggressive allow LPs to process any events
received, and any causality errors that result from the
aggressive processing are corrected through a rollback
mechanism.

618

At least two researchers are investigating the
benefits of adding aggressiveness to existing non-
aggressive protocols (Lubachevsky et al. 1989c, Dickens
1990). This paper lays the groundwork for an analytical
investigation into the benefits of adding aggressiveness
to a very important class of non-aggressive protocols:
synchronous windowing algorithms (Nicol 1991,
Lubachevsky 1988, Chandy and Sherman 1989, Ayani
1989).

The windowing algorithms under consideration
proceed in three distinct phases, each separated by bar-
rier synchronization. In the first phase, LPs determine
the simulation window cooperatively. The floor of the
window is the minimum timestamp in the system. The
ceiling of the window is chosen such that all events with
timestamps falling within the window can be executed
concurrently without the possibility of any causality
errors. Using the terminology of Chandy and Sherman
(1989) events falling within the window are uncondi-
tional events. That is, their execution cannot be affected
by any other event in the system. Events with times-
tamps outside the window boundary are conditional
events: Their computation may be affected by some
other event in the system.

The second phase of a windowing algorithm con-
sists of the concurrent execution of all events having
timestamps within the window. In the third phase,
events generated as a result of the processing in the
second phase are passed on to other LPs. For the pur-
poses of this discussion, the mechanism used to deter-
mine the simulation window is unimportant. The pri-
mary difference among the various windowing algo-
rithms is the mechanism to determine which events can
be processed concurrently without causality errors.

As discussed by Lubachevsky (1989a), a very
important issue is whether the overhead associated with
the synchronization mechanism grows rapidly as the size
of the simulation grows. This question relates to the sca-
lability of a protocol. Both Time Warp (Jefferson 1985)
and the Null Message Protocol (Chandy and Misra 1979)
have the potential for explosive overhead costs: Time
Warp because of the potential for cascading rollbacks

A Performance Model for Parallel Simulation

and increasing state saving costs, and the Null Message
Protocol because of the potential for an explosion of null
messages (Lubachevsky 1989a). The windowing algo-
rithms represent an important class of protocols because
they are the only mechanisms for which scalability
results have been proven.

Windowing algorithms, as all non-aggressive pro-
tocols, have been criticized for not fully exploiting all of
the parallelism available in the simulation application
(Fujimoto 1990). This is because an event will not be
executed if it is possible that some other event in the sys-
tem can affect its execution. Thus if it is possible that
one event can affect another event’s execution, but
rarely does so, then the two events will be executed
sequentially even though most of the time they could be
executed concurrently.

One way to gain more parallelism in a windowing
algorithm is to extend the window boundary and allow
the execution of conditional events. The benefit of this
approach is that events that may affect each other, but
generally do not, can be executed concurrently. Such
events would be excluded from concurrent execution by
the basic algorithm because of the possibility of an error.
The disadvantage is that there must be some state saving
and rollback mechanism to correct causality errors that
do occur as a result of the processing of conditional
events.

When the window is extended to allow the compu-
tation of conditional events, the amount of progress
made by the system can be viewed as consisting of two
components. The first component, the unconditional
progress, is the amount of progress made as a result of
processing unconditional messages. The second com-
ponent, the aggressive progress, is the amount of pro-
gress made as a result of processing conditional events.

Nicol (1991) derives the expected amount of
unconditional progress made by a system synchronized
with his windowing protocol. We are interested in inves-
tigating the aggressive progress made by a system syn-
chronized by a protocol similar to the one developed by
Nicol (1991). There are three primary issues to investi-
gate. First, what is the probability of a causality error
occurring given that conditional events are admitted into
the computation stream? Second, what is the amount of
aggressive progress made by a system before the first
causality error occurs? Third, how much useful work can
be identified and maintained given that causality errors
have occurred?

In this paper we present the results of the first
phase of our investigation into the aggressive progress of
a system. We define the aggressive progress of a system
as a sequence of "steps”, and determine the probability
of a causality error occurring at a given step. Also we
report on simulation studies that validate our model.
The rest of the paper is organized as follows. In section 2

619

we discuss other analytic results that have been
developed to examine the behavior of various synchroni-
zation mechanisms. In section 3 we develop our model.
In section 4 we derive the probability of a causality error
at a given step. In section 5 the analytic results are com-
pared to simulation studies and in section 6 we give our
conclusions and discuss our future work.

2 BACKGROUND

As noted, windowing algorithms represent an
important class of synchronization mechanisms because
they are the only protocols which have been proven to
have scalability properties. Lubachevsky (1989a)
addresses the issue of the scalability of the Bounded Lag
Algorithm. It is shown that if it takes time T to complete
a simulation on one processor, then to simulate a prob-
lem K times larger using K processors will take
O(T1ogK) time to complete. Thus the proof is address-
ing the situation where both the problem size and the
size of the architecture grow proportionately while other
system parameters such as event density remain con-
stant.

Nicol (1991) also proves the scalability of his
approach, but in the context of a fixed size architecture.
It is shown that as the problem size grows relative to a
fixed architecture, the per event overhead approaches O
(log T) where T is the total number of events in the sys-
tem. The event overhead includes synchronization costs,
event list manipulation, lookahead calculation and idle
time due to synchronization constraints. Thus the over-
head of the method approaches the overhead of a
sequential simulation as the problem size increases.

Also Nicol shows that as the problem size grows,
the number of events available for execution in a given
iteration grows. It is shown that given some constant
minimum delay greater than zero, the average number of
events processed per window grows at least linearly as
the total event rate in the system increases. As pointed
out by Nicol, this shows that for large problems executed
on medium size machines, there will generally be
enough work to keep most processors from being idle.

Most other analytic studies have compared Time
Warp to a system synchronized by some other approach,
primarily the Chandy/Misra Null Message Protocol
(Chandy and Misra 1979). Lin and Lazowska (1989b,
1990b) develop a model comparing Time Warp and the
Chandy Misra Null Message protocol. State saving and
rollback costs are assumed to be zero. They show that as
long as "correct" computation is never rolled back by
"incorrect” computation, that Time Warp always per-
forms at least as well as the null message approach. Lip-
ton and Mizell (1990) perform a worst case analysis
between Time Warp and the Null Message protocol.
They assume the state of an LP is saved after every
event, but do not consider state saving costs. The authors

620

show that there exists a simulation such that Time Warp
can arbitrarily out perform Chandy/Misra. The authors
then prove the converse is not true: There is no simula-
tion problem such that Chandy/Misra arbitrarily outper-
forms Time Warp. But Time Warp can be worse by a
factor equal to the cost of a rollback.

Felderman and Kleinrock (1990) derive an upper
bound on the improvement of Time Warp over a time
stepped simulation. It is assumed that Time Warp incurs
no state saving or rollback costs, and that in the
timestepped approach each LP has an event to process at
each time increment. The authors show that when the
event computation time is exponentially distributed, the
maximum improvement of Time Warp over time stepped
simulation is In (P) with P processors.

Two researchers have developed models that study
the behavior of a system synchronized by Time Warp.
Madisetti, Walrand and Messerschmitt (1990) develop a
model to derive the average rate of progress of a system
under Time Warp. In this model LPs are categorized as
either fast or slow, where the fast LPs are at least twice
as fast as the slow LPs. They assume rollback costs are
constant and independent of rollback distance. Using this
model they investigate the relative advantages of dif-
ferent rollback schemes.

Gupta, Akyildiz and Fujimoto (1991) study the
behavior of a Time Warp system under the assumption
of no costs for state saving or rollback. They investigate
the probability of a rollback, the fraction of events that
are committed, and the expected amount of the rollback
distance. They then compare the analytic results with a
Time Warp system.

The model developed here is similar to the one
developed by Gupta, Akyildiz and Fujimoto (1991).
There are two primary differences. First, their model
assumes the system is in a steady state while ours does
not. Second, their model assumes that each LP has at
least one message to process at all times. Our model
handles the case where an LP has no messages to pro-
cess.

!n the following sections we analyze the benefits
of adding aggressiveness to a non-aggressive protocol.

3 MODEL

The system being modeled is synchronized by a
windowing algorithm, where the ceiling of the window
is extended to allow the computation of conditional
events. As noted, we are interested in the amount of
aggressive progress made by the system. Thus we are
interested in the amount of logical time advanced past
the window ceiling without a causality error. Note that
we use the term causality error and fault interchange-
ably. For simplicity, our analysis starts the system at
time ¢ = 0. The analysis can be generalized to begin at

Dickens and Reynolds

time W = Window Ceiling without difficulty.

The system consists of N LPs communicating
through time-stamped messages. For the purposes of
this analysis it is assumed that each LP begins the simu-
lation with M=1 messages. The number of messages
with which each LP begins the simulation can be
changed without difficulty. Messages are neither created
nor destroyed in the course of the simulation, thus there
will be N messages in the system throughout the simula-
tion.

Processing a message consists of adding a service
time to the timestamp of the message. All service times
are drawn from independent, identically distributed (iid)
exponential distributions with parameter A. After pro-
cessing a message, the LP randomly selects one of the N
LPs in the system, and sends it the message. Each LP is
equally likely to be selected. Note that an LP can send a
message to itself. It is assumed that the timestamps of all
messages in the system can be treated as statistically
independent. This is strictly true only if once a message
visits an LP it does not return. However assuming
independence is reasonable if there are a large number
of LPs in the system. Thus we do not preclude message
cycles, we just assume it rarely happens and does not
have a significant impact upon the analysis.

We assume the existence of a synchronization
mechanism that advances the system in a manner analo-
gous to a time stepped simulation. In a time stepped
simulation, a simulation step involves processing all of
the messages falling within a time increment. In our
model, a simulation step involves processing all of the
messages in the system. At the beginning of step j>1, an
LP has some number OSM <N messages in its queue as a
result of the processing of the previous step. We derive
the distribution for M below. As noted, we assume M=1
at the beginning of step 1.

The M messages are sorted according to times-
tamp order and processed. After each message is pro-
cessed, the LP randomly selects one of the LPs in the
system and sends it the message. Only those messages in
the queue at the beginning of the step are processed in
the current step. Any messages received as a result of
processing in the current step are placed in the input
queue to be processed in the next step. Once each LP
has processed all of its messages, the step is completed
and the system advances to the next step.

Note that the "timestepped" model assumes that all
messages are processed at each step of the simulation. In
terms of the windowing algorithms we are investigating,
this is equivalent to assuming a simulation window that
is large enough to admit all conditional events to be pro-
cessed. This is clearly the extreme case of extending the
simulation window in order to compute conditional
events. As we discuss below, current research is aimed
at modeling the system when the window is extended to

A Performance Model for Parallel Simulation

allow some, but not all, conditional events into the com-
putation stream.

As noted, the assumption of the step synchroniza-
tion mechanism implies that each message is processed
at each step. Thus at the end of step 1, the timestamp of
any message in the system will be the sum of one
exponential random variable. At the end of step 2, each
message in the system will have a timestamp that is the
sum of two iid exponential random variables. At the end
of step i, the timestamp of each message in the system
will be the sum of i iid exponential random variables.
This simplifies the calculation of the Clock random vari-
able defined below.

The Clock value of a given LP; at step i (Clock; ;)
is a random variable defined to be the maximum times-
tamp of all messages received by LP; at that step. At
step 0, Clock, ; = 0 as all initial messages are assumed o
have a timestamp of zero. At step i,

Clock; j = Max [OverM Gamma;)

where M is the number of messages received by LP; dur-
ing step i, and Gamma; is the sum of i iid exponentials.
A fault occurs if LP; receives a message at step i with a
timestamp less than Clock;_; ;. In order to derive the
CDF of Clock; j, we first derive the probability distribu-
tion for M, the number of messages received by an LP at
a given step.

3.1 Probability Distribution for the Number of Mes-
sages Received

Consider the probability that some LP; receives M
messages during a given step. We first need to deter-
mine the probability that some LP (LP;) sends a message
o some LP; under consideration. LP; has N LPs to
which it can send a message, and each LP is selected
with equal likelihood. Thus the probability that it will
select LP; is 1/N. The probability that it will not select
LP; is (N-1)/N.

Now consider the probability that LP; receives
exactly one message during a given step. In order for
this to occur, one LP would have to send LP; its mes-
sage, and all of the other LPs would have to select
another LP. The probability of an LP sending LP; a
message is 1/N. The probability that all other LPs select
another LP is (N-1) /N)V!. This is because there are
N-1 LPs that must not select LP;, and each LP has a
probability of (N —1)/N of not selecting it. There are also
N ways that LP; can receive exaclly onec message.
Namely, any of the N LPs can be the LP 1o send it the
message. Without further elaboration, the formula for
the probability of receiving M messages during a step is
given below.

621

M (N—l) N-M

N

1

PM)= N

CINM). ()

The C (N,M) term is the number of M combinations out
of N objects. This term quantifies the number of ways
that an LP can receive exactly M messages out of N LPs.
Note that this is the binomial distribution.

Now that the probability distribution for receiving
M messages at a given step is established, the density
function for the clock can be computed.

3.2 Density Function for the Clock

Recall the Clock for LP; at a given step (Clock; ;)
is defined to be the maximum timestamp of all messages
received by LP; during step i. Consider Clock, ;. In step
1, LP; receives messages with timestamps that are
exponentially distributed. Assume LP; receives M21
messages. In order for the maximum of the M messages
to be less than some time ¢, all M messages must be less
than ¢. The probability that one exponentially distributed
random variable is less than some time c¢ is
P(C <c)= 1-e™. The probability that M iid exponen-
tially distributed random variables are all less than some
time ¢ is (1-e)". Note that this expression gives the
probability that the maximum of M iid exponentially dis-
tributed random variables is less than some time c. The
Cumulative Distribution Function of Clock, ; with M1
is:

CDF Clock, ; = (1-e™™ M=1,2,.N. ()

As can be seen, the CDF of Clock, ; is dependent
upon the number of messages received by LP; during
step 1. In order to calculate the unconditioned CDF, we
need to calculate the CDF given M=m messages are
received by LP;, times the probability that M=m mes-
sages are received, over all possible values of M=m.
This is done below for (M =m)2>1.

N
CDF Clock, j(m21)= ¥ (1-e ™)™ P (M=m). (3)

m=1

In the above Equation P(M=m) is the probability of
receiving M=m messages in a given step which, as
shown above, is binomially distributed.

Equation (3) defines the CDF of Clock; ; when the
number of messages received is greater than or equal to
one. It is slightly more complex when LP; receives zero
messages with probability P (0). In this case the Clock, ;
has a value of zero with probability one. That is, with
probability one, Clock, ; has not advanced. The CDF for
Clock, ; is therefore mixed. It is discrete when m=0, and

622

it is continuous when m=>1. We need to describe the
CDF of Clock, ; when m=0.

Recall that the CDF is defined to be the probability
that a random variable is less than some given valuc
(F(c)=P(C < c)). With m=0, there is zero probability
that Clock, ; is in the range of minus infinity to zero
minus epsilon, for any positive epsilon
(F(c)=0, ¢ <0). As the probability that Clock, ;
equals zero is one for m=0, it follows that the probability
that it is in the range of zero to infinity is also one.
Therefore F(c)=1, ¢=0.

The Heaviside function, H(c), is defined to be zero
when c is in the range of minus infinity to zero minus
epsilon, one when ¢ equals zero, and one for ¢ equals
zero to infinity. The CDF of Clock,; when m=0 is
therefore described by the Heaviside function H(c).

The final equation for the CDF of Clock, ; com-
bines Equation (3) which gives the CDF when m>=1,
and the Heaviside function H(c) which gives the CDF
when m=0.

N
CDF Clocky =Y, (1-e™)™ P(M=m)

m=1

+H (c)P (M =0). @)

The density function for Clock, ; is the derivative
of the CDF. This is straight-forward except with regard
to the derivative of the Heaviside function. The dcriva-
tive of the Heaviside function is the Dirac Delta func-
tion. For this analysis, the most important aspect of the
Delta function is that it is defined such that it has a unit
pulse at c=0. That is, the integral over any region that
includes zero is one. The integral over any region that
does not include zero is zero. It is also important to note
that the integral of the Dirac Delta function times any
other function f (c), evaluated from negative to positive
infinity, is f (0).

oo 0-€ oo 0+€
[8(c)de=1, [8(c)dc=0, [8(c)de=0, [&(c)de=1,
—oo —o O+e 0-¢

[8(c) f(c)de=f (0)

Now consider the CDF of Clock,; when the
number of messages received is greater than or equal Lo
one. At step 2, each of the M=m messages received by
LP; has a timestamp that is the sum of two cxponcntials,
and Clock,; is the maximum timestamp over all

Dickens and Reynolds

messages received during the step. The sum of two
exponentials has a gamma distribution. Consider the
maximum of M=m Gamma,.

In order for the maximum of M=m Gamma, to be
less than some time ¢, each of them must be less than c.
The probability that one Gamma,, is less than some time
¢ is the integral from 0 to ¢ over the density function.

(4
P (Gamma, < c)=P»20 e™ do = 1-e™-hce™,
0

The probability that all M=m (independent) Gamma,
are less than some time c is thus

[1—e ™ -Ace ™1™ m>1.

As this is the probability that the maximum message
received at step 2 is less than some time c, it is the CDF
of Clock, ;.

A generalized formula for the probability that one
Gamma; is less than some time ¢ is given below.

n=i-1 n
P(Gamma; <c)=1 —e™ > Q)"

a0 n! ®
The right hand side of Equation (5) raised to power
M=m gives the probability that the maximum of
m Gamma; is less than some time ¢, and is thus the CDF
of Clocki_j with m,i>1.

Now consider the CDF of Clock; ; with i>1 when
M =0 messages are received. In this case the CDF of
Clock; ; is unchanged from the previous step. Thus the
CDF of Clock; ; with i>1 is equal to the CDF at step i -1
with probability P (M =0). The CDF of Clock;; is given
below.

r%(l—e"“)’" P (M=m)+ H (c) P (M=0)

m=1
ifi=1
N i-1 m
CDF Clock,-.j=4 Tl —e™ T (e)] * ©)
= ’I=0

m=1
P(M=m)+ CDF Clock;_, ; P(M=0)
ifi >1

A Performance Model for Parallel Simulation

4 PROBABILITY OF A FAULT

Now that the CDF of Clock; j is known, the proba-
bility of a fault at a given step can be computed. A fault
occurs if any message received by LP; at step i is less
than Clock;_, ;. In order for LP; to progress safcly past
step i, the timestamps of all messages received at step !
must be greater than Clock;_; ;. We want to compute
this probability.

As noted, the timestamp of a message at step i will
be the sum of i iid exponentials, and will thus have a
gamma density function with parameters i and A. Con-
sider one such Gamma;. We want the probability that
Gamma; is greater than some particular Clock;; value
Clock; j=c. In Equation (5), we gave the probability that
one Gamma; is less than some particular value
Clock; j = c. One minus this is the probability that one
Gamma; > Clock; j=c.

-1 x n
3 B o
)

P (Gamma;>Clock; ;| Clock; j=c) = e ¥, ~——
n n.
Due to the (assumption of) independence of the mes-
sages received by an LP during a given step, the proba-
bility that M=m > 1 messages have timestamps greater
than Clock; j=c is Equation (7) raised to the power m.

P(m Gamma; >Clock;; | Clock;j=c) =

i-1 n m
[e™™ E(—)‘—C)—] m>1 (8)

|
a0 :

Equation (8) gives the probability of not faulting
given some particular value M =m and a particular Clock
value Clock; j=c. The analysis is complicated by the fact
that both the number of messages received and the Clock
value are random variables. The probability of not fault-
ing is thus conditional, dependent upon two random vari-
ables.

To determine the unconditioned probability of not
faulting, we need to determine the probability of not
faulting given a particular value for M=m and
Clock; j=c, over all possible values for M=m and
Clock; =c, times the probability that M=m and
Clock; j=c. Equation (8) gives the probability of LP; not
faulting at step i given M =m is greater than zero, and a
particular value of Clock; j=c. Below we give thc uncon-
ditioned probability of not faulting at step i for M =m=1.

623
_ N = i-1 n m
P(F); = Z_‘,l '([[e_k 20:1_6')_] *
PM=m) f(c)im,j dc. m21)

The f(c);-1,; term is the density function of Clock;_ ;,
which is the derivative of the CDF Clock;; given in
Equation (6). The

term is the probability of not faulting given a particular
value of M=m and C; j=c. This is summed over all possi-
ble values of M =m and multiplied times the probability
that M =m. For each value of M =m, all possible values
for C;;=c (or more precisely being in a small range
around c), times the probability that C;;=c, are con-
sidered. This is done by integrating the density function
of Clock; ; over the range of zero to infinity.

The probability of not faulting when zero mes-
sages are received is slightly different. In this case, the
probability of not faulting is exactly the same as in the
last step. That is, the probability of making it to step i is
exactly the same as the probability of making it to step
i—1 if zero messages are received during step i. The base
case is step 1, where the probability of not faulting is
one. This is because Clock jis zero, and there is no pos-
sibility of receiving a message with a timestamp less
than zero during step 1. Equation (10) gives the final for-
mula for the probability of not faulting at step i.

P(F);= P(F)o,; P(M=0)+

N = i-1 n m
s Jier T L) p(=m) f(ehny de. (10)
m=1 0 n=0 n.

5 VALIDATION OF MODEL

Our model predicts the behavior of a "typical” LP
in the system. Simulation studies show the model
predicts the behavior of a "typical" LP in the system
almost perfectly. The differcnce between predicted and
observed behavior is less than one half of one percent.
The obvious question is how well can system perfor-
mance be cxtrapolated from the behavior of a "typical”
LP. One approach to predicting the performance of a
system with N LPs is (o take the probability of a "typi-
cal" LP making it safely to a given siep, and raising this
probability to power N. This approach assumes the

624

faulting behavior of the LPs in the system is indepen-
dent. To determine the feasibility of this approach, we
predicted the probability of the system making it to step
2 without a fault for N=M =(4,6,8,10,12) LPs. We then
ran simulation studies to determine the actual faulting
behavior. The results of this study are shown in Figure 1.

As can be seen, the predicted system performance
based on the independence assumption overestimates the
actual probability of the system making it to a given step
safely. In fact, the prediction based on the independence
assumption can be considered an upper bound on the
actual system performance as illustrated in the following
example.

Assume a simple system with three LPs (A,B and
C) and three initial messages (MO, M1, M2). Figure 2
shows the possible paths the three messages may follow
from step O to step 2. Assume the following path for
message M0O. LP, begins the simulation with message
MO, and after processing the message sends it to LPg. In
step 1 LPg processes MO and then sends it to LP.. Thus
the path of message MO is A-B-C. Note that at step 1
MO will have a timestamp that is exponentially distri-
buted, and that in step 2 its timestamp will be the sum of
two exponentials. Assume its timestamp is oy in step 1,
and oy+0y in step 2. Similarly, assume message M1 fol-
lows path B-C-A, and has a timestamp of B, in step 1
and Bo+P; in step 2. Further assume message M2 fol-
lows path C-A-B, and has a timestamp of 7, in step 1
and Yo+y, in step 2. Now consider the necessary condi-
tions for the system to make it safely to step 2.

48] O - predicted

.46 . = observed

Probability of .32
not feulting

Number of LPs

Figure 1: Predicted Versus Observed Performance

Dickens and Reynolds

Figure 2: Possible Message Paths

In step 2, LP. receives message MO, having a
timestamp of o + ;. Note that in step 1, LP. received
message M1 with timestamp [By. Thus for there to be no
fault at LP¢, og+0oy > Bo. Similarly, for there to be no
fault at LPy in step 2, it must be the case that By+B; >v,.
Finally, for there to be no fault at LP, in step 2,
Yo+Y1>0. Thus we have the following three conditions
which must all be true for the system to progress to step
2 without a fault.

A: 0g+oy > Bo
B: Bo+By > Yo
C: Yot > 0

If the three events are independent, then by sym-
metry their individual probabilities are equal. In this case
the probability of all three events occurring is the pro-
duct of their individual probabilities, or equivalently, one
probability raised to the third power. However the three
events are not independent, and the dependence among
them restricts the number of ways in which all three can
occur simultaneously. That is, due to the dependence
among the events the range of values for which all three
events is true is narrower than the range of values if they
were independent. Thus the probability that all three
events occur given that they are not independent is less
than the probability of one event occurring raised to the
third power.

Currently our model ignores this dependence
among message timestamps in the system, and the
influence this has upon the faulting behavior. For this
reason, it consistently over estimates the probability of
the system progressing to a given step safely. Analyti-
cally capturing this dependence, and how it influences
the faulting behavior of the system, is a difficult task and
is the focus of current research.

6 DISCUSSION

We have a developed a model to study the
behavior of a system synchronized by a windowing pro-
tocol when conditional events are allowed into the com-
putation stream. Our model accurately predicts the pro-
bability that a "typical" LP in the system will make it to

A Performance Model for Parallel Simulation

a given step without faulting. Using this probability, and
extrapolating system performance, gives what we expect
to be an upper bound on system performance.

Extrapolating system performance from the
behavior of a "typical" LP requires the assumption of
independence among the LPs. We are currently investi-
gating ways to relax this assumption and capture the
dependence among the LPs in the prediction of system
performance.

The model gives the probability of a causality
error at a given step. We are in the process of determin-
ing the expected amount of progress made by the system
before the first causality error, and from this deriving the
amount of useful work performed before the first error.
Also we are investigating ways to model the amount of
useful work that is performed after a causality error has
occurred.

As noted, these results are obtained under the
assumption that the simulation window is large enough
to allow all messages to be processed at each step. This
is essentially the same as assuming an infinite simulation
window. We would like to modify this assumption of an
infinite window, and examine the behavior of the system
when the window is extended to allow some, but not all,
conditional events to be processed. This is also the focus
of current research.

ACKNOWLEDGMENTS

The authors wish to thank David Nicol and Marc Duva
for their valuable input into the development of this
paper.

REFERENCES

Ayani, Rassul 1989. A Parallel Simulation Scheme
Based on Distances Between Objects. Proceedings of
the 1989 SCS Multiconference on Distributed Simula-
tion, Volume 21 Number 2, 113-118. Society for
Computer Simulation, March 1989.

Chandy, K.M. and J. Misra 1979. A Case Study in the
Design and Verification of Distributed Programs.
IEEE Transactions on Software Engineering SE-5,5
May 1979, 440-452.

Chandy, K.M. and R. Sherman 1989. The Conditional
Event Approach to Distributed Simulation. Proceed-
ings of the 1989 SCS Multiconference on Distributed
Simulation, January, 1989, 93-99.

Dickens, P.M. and P.F. Reynolds 1990. SRADS with
Local Rollback. Proceedings of the 1990 SCS Mul-
ticonference on Distributed Simulation, January,

625

1990, 161-164.

Felderman, R.E. and L. Kleinrock 1990. An Upper
Bound on the Improvement of Asynchronous vs. Syn-
chronous Distributed Processing. Proceedings of the
1990 SCS Multiconference on Distributed Simulation,
January, 1990, 131-136.

R. M. Fujimoto 1990. Parallel Discrete Event Simula-
tion. Communications of the ACM, Volume 33,
Number 10, October 1990, 30-53.

Gupta, A., I. Akyildiz and R. FUjimoto 1991. Perfor-
mance Analysis of "Time Warp” with Homogeneous
Processors and Exponential Task Times. Sigmetrics
Conference, May 1991,

Jefferson, D.R. 1985. Virtual Time. ACM Transactions
on Programming Languages and Systems, 7,3 (1985),
404-425.

Lin Y.B. and E.D. Lazowska 1989. Optimality Con-
siderations for Time Warp Parallel Simulation.
Technical Report 89-07-05, University of Washing-
ton, July, 1989.

Lin Y.B. and E.D. Lazowska 1990. Optimality Con-
siderations for Time Warp Parallel Simulation.
Proceedings of the 1990 SCS Multiconference on Dis-
tributed Simulation, January, 1990,29-34.

Lubachevsky B. 1988. Bounded Lag Distributed
Discrete Event Simulation. Proceedings of the 1988
SCS Multiconference on Distributed Simulation, Janu-
ary, 1988,183-191.

Lubachevsky B., A. Shwartz and A. Weiss 1989c. Roll-
back Sometimes Works... If Filtered. Proceedings of

the 1989 Winter Simulation Conference. December,
1989, 630-639.

Lubachevsky, B. 1989a. Scalability of the Bounded Lag
Distributed Event Simulation. Proceedings of the
1989 SCS Multiconference on Distributed Simulation,
January, 1989, 100-105.

Madisetti V. and J. Walrand 1990. Synchronization in
Message-Passing Computers. Proceedings of the
1990 SCS Multiconference on Distributed Simulation,
January, 1990, 35-48.

Mizel D. and R. Lipton 1990. Time Warp vs. Chandy-
Misra: A Worst Case Comparison. Proceedings of the
1990 SCS Multiconference on Distributed Simulation,
January, 1990, 137-143.

Nicol D.M. 1991. The Cost of Conservative

626 Dickens and Reynolds

Synchronization in Parallel Discrete Event Simula-
tion. JACM, to appear, 1991.

Peacock, J.K, E.G. Manning and J.W.Wong 1979. Dis-
tributed Simulation Using a Network of Processors.
Computer Networks 3 (1979), 44-56, North-Holland
Publishing.

Reynolds, P.F. 1988. A Spectrum of Options for Parallel
Simulation. Proceedings of the 1988 Winter Simula-
tion Conference, December 12-14, San Diego, Cali-
fornia, 325-332.

AUTHOR BIOGRAPHIES

PHILLIP M. DICKENS received his M.S. degree in
Computer Science in January of 1986 from the
University of Virginia. His research interests include
algorithms for distributed simulation and parallel
computation, parallel languages and compiler design.
He is currently completing his dissertation involving
an investigation into analytic models for parallel simu-
lation.

PAUL F. REYNOLDS, JR., Ph.D., University of
Texas at Austin, 79, is an Associate Professor of
Computer Science at the University of Virginia. He
has been a member of the faculty at UVa since 1980.
He has published widely in the area of parallel com-
putation, specifically in parallel simulation, and paral-
lel language and algorithm design. He has served on a
number of national committees and advisory groups as
an expert on parallel computation, and more
specifically as an expert on parallel simulation. He
has been a consultant to numerous corporations and
government agencies in the systems and simulation
areas, and he has been a Research Associate at NASA,
Langley, in Hampton Virginia since 1985.

