Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIMULTANEOUS PARALLEL SIMULATIONS OF
CONTINUOUS TIME MARKOV CHAINS AT
MULTIPLE PARAMETER SETTINGS

Philip Heidelberger

IBM Thomas J. Watson Research Center, Hawthorne

P.O. Box 704

Yorktown Heights, New York 10598

ABSTRACT

An earlier paper of ours described how uniformization
can be used as the basis of a parallel algorithm for
simulating a continuous time Markov chain (CTMC)
at a single, fixed set of input parameters. In this
paper, we show how the algorithm can be extended so
as to simultaneously simulate the CTMC at multiple
input parameter settings. The effectiveness of this
approach is explored in experiments performed on a
16 node Intel iPSC/2 Hypercube.

1 INTRODUCTION

Consider a queueing network that can be modeled
as CTMC. The input to such a model consists of a
set of parameters, e.g., the arrival rate, service rates,
and routing probabilities. In Heidelberger and Nicol
(1991), we described a conservative parallel algorithm
(called “PUCS” for Parallel Uniformized Continu-
ous time Simulation) for simulating a CTMC at a
single, fixed set of input parameters. In that algo-
rithm, which is based on the technique of uniformiza-
tion (see, e.g., Gross and Miller (1984)), a relatively
short “presimulation” is performed to identify those
times, and only those times, at which the simula-
tion algorithm requires processor pairs to synchro-
nize. This presimulation, in effect, builds a commu-
nications schedule for the parallel simulation and can
be viewed as a “lookahead” calculation (see Nicol
(1988) or Fujimoto (1990)). Given the communica-
tions schedule, the simulation is carried out in such
a way as to produce statistically valid sample paths,
and an appointments protocol is used to synchronize
processors.

In practice, it is frequently of interest to simulate
a model at more than one parameter setting, e.g., at
several different arrival rates. In this paper, we de-
scribe how the “standard clock” technique (see Vak-
ili (1992)) for simultaneously simulating CTMCs at

602

David M. Nicol

Department of Computer Science
The College of William and Mary
Williamsburg, Virginia 23185

multiple parameter settings can be combined with
PUCS. In this approach, the presimulation is per-
formed in such a way so as to construct the same
communications schedule for all parameter settings.
Thus synchronization messages for the simulations at
the different parameter settings can be piggybacked
on top of one another, thereby amortizing the cost
of interprocessor communications across the multiple
runs. In addition, some statistical savings might be
obtained by inducing correlation between estimates
from the multiple runs. We call this approach to mul-
tiple parameter simulations “Multi-PUCS.” A differ-
ent approach that combines parallel processing and
standard clocks is described in Vakili and Lau (1991).

However, the effectiveness of Multi-PUCS is un-
clear when compared to alternative strategies of as-
signing processors to parameter settings. For exam-
ple, suppose there are 16 processors and we wish to
simulate the model at two input parameter settings,
6, and 0. One alternative strategy, that we call the
“Consecutive” strategy, is to first run a PUCS simula-
tion using all 16 processors at parameter 6, followed
by a run of a PUCS simulation using all 16 processors
at parameter 6,.

In this paper, we will consider the relative merits
of the Multi-PUCS and Consecutive strategies.

Note that a third potentially attractive strategy,
that we call the “Simultaneous” strategy, is to as-
sign 8 processors to a PUCS simulation at parameter
61, and a different 8 processors to a PUCS simula-
tion at parameter §5. These two PUCS runs are then
executed simultaneously. However, the Simultaneous
strategy will not be considered in this paper because
the way in which our PUCS implementation schedules
clusters of queues makes meaningful timing compar-
isons between 8 processors and 16 processors difficult.
(This point will be discussed further in Section 4.)

The rest of the paper is organized as follows. An
overview of the basic PUCS algorithm is given in Sec-
tion 2. The extension of PUCS to multiple parame-

Parallel Simulations of Continuous Time Markov Chains

ter settings is described in Section 3. Details of a
queueing network simulator that was implemented on
a 16 node Intel iPSC/2 Hypercube are described in
Section 4. Experiments exploring the effectiveness of
Multi-PUCS are described in Section 5. Finally, the
results are summarized in Section 6.

2 PUCS SUMMARY

In this section, we outline the basic PUCS algorithm;
see Heidelberger and Nicol (1991) for more details.
Let 6 denote a set of input parameters that serve to
define a CTMC Xy = {X4(t),t > 0} with a gener-
ator matrix Q(#). In a queueing network context, 8
might represent the arrival rates, service rates and
routing probabilities. We assume that there are P
processors on which a simulation of Xy is to be ex-
ecuted. We assume that the state space of Xy can
be represented by P-dimensional integer valued vec-
tors s = (s1,...,5p). In the queueing context, we
think of assigning queues to processors in which case
s; 18 an encoding of the states of all the queues as-
signed to processor ¢. There are two types of transi-
tions: internal and external. An internal transition is
one in which only one component of the state vector
changes. For example, if queues 1 and 2 are assigned
to processor i, then a job departing queue 1 and en-
tering queue 2 is considered to be an internal tran-
sition (to processor i). An external transition is one
in which two (or more) components of the state vec-
tor change. For example, if queue 3 is now assigned
to processor j, then a job departing queue 1 and en-
tering queue 3 is considered to be an (¢,j) external
transition. Similarly, a job departing queue 3 and
entering queue 1 is considered to be a (j,¢) external
transition.

We assume that Q(6) has the following structure.
This structure will make parallel simulation of the
CTMC (potentially) effective. If s and s’ differ only
in component ¢, then Q(s, s’; §) = ¢;(s;, s};6). If s and
s’ differ only in components i and j, then Q(s,s’;6) =
q;’j(&‘, S5,y S:') S;, 0), or Q(S, Sl; 0) = qji'(siy S5, S;, S‘/;' ; 0)1
depending upon whether we view the transition from
s to s’ as being an (4, j) or a (j, i) external transition.
For simplicity, we assume that at most two compo-
nents of the state vector can change on any transition.

Let A(s; 6) = —Q(s, s;8) denote the total transition
rate out of state 8. From the above assumptions,
A(s; 8) can be written as

Ms;0)= Y X(saif)+ D Xij(sis550) (1)

1<i<P 1<i#j<P

603

where

Mi(si;0) =) qilsi, 853 0) (2)

si#si
is the total internal transition rate on processor i and

Aij(si,85;0) = Z

(35,:95)#(34,95)

q;j(s;,Sj,s:,S;;a) (3)

is the total rate of (4, j) external transitions.
We assume that the external transitions can be uni-
formized, i.e., there exist finite constants A;; such that

[Aij(si,8550)] < Aij (4)

for all states s.

Equation (1) allows us to view the occurrence of
events as being the superposition of internal event
processes and external event processes. By Equa-
tion (4), the external event processes can be uni-
formized (with rates A;;).

Given this framework, PUCS works as follows. In
parallel, a presimulation is performed to generate
Poisson processes {N;;(t)} with rates A;; (i # j).
The events in {N;;(t)} represent the potential times
of (i,j) external transitions. In a communications
phase, each processor is made aware of all the po-
tential external event times that affect it. Specifi-
cally, processor 7 receives the times of all the events
in {N;;(t)} for some j and all the events in {Nj;(t)}
for some j. Processor ¢ then sorts these event times to
produce a list {(Z;(n), Ci(n)),n > 0} of its external
events where T;(n) is the time of the n-th event and
C;(n) is the type of the n-th event, i.e. Ci(n) = (3, j)
or (j,1) for some j.

Next processors simulate their events. Suppose
that the state of processor i is s;, that the last event
on processor ¢ occurred at time ¢;, and that T;(n;) is
the time of the next (potential) external event. An
exponential holding time F; with mean 1/X;(s;;6) is
generated. If t; + E; < Ti(n;), then the next event
to occur on processor ¢ is an internal event. In this
case, processor i chooses its next state s! with prob-
ability qi(si, s};0)/Ai(si;0) and updates it’s clock to
time t; + F;. If t; + E; > T;(n;), then the next event
to occur on processor i is an external event. Suppose
that Ci(n) = (4, j). Then processors ¢ and j synchro-
nize and select their next states (s;,s;) with prob-
ability q,-j(sg,s_,-,sﬁ,s;;G)/)\,-j. Note that this transi-
tion is a pseudo transition (i.e., the state does not
change) with probability 1 - X;;(s;,s;;0)/Xij. Both
processors then advance their clocks to time Tj(n;).
If Ci(n) = (j,1), the transition is handled similarly.

In queueing applications, an (i,j) transition typ-
ically involves processor ¢ sending a time-stamped

604

message to processor j indicating that either the tran-
sition is a pseudo transition, or that a job is departing
some queue on processor ¢ and is destined for some
queue on processor j. Processor i is then free to pro-
ceed with its simulation. In conservative simulations,
processor j waits until the message from processor ¢
is received.

3 MULTIPLE PARAMETER PUCS

Suppose now that we wish to simultaneously gener-
ate the sample paths of two processes Xy, and Xg,
corresponding to two sets of input parameters 6, and
6. Suppose that the uniformization bounds {);;} of
Equation (4) hold for both 6, and 6;. Then the same
presimulation is valid, and can be used, for both sim-
ulations. Thus the same communications schedule
{(Ti(n), Ci(n)),n > 0} can be used for both simula-
tions. By doing so, the time to presimulate and com-
municate the global event schedules is shared among
the two parameter settings.

In addition, by appropriately coding the simulator,
the synchronization messages can also be shared, or
piggybacked. For example, suppose processor i has
advanced to time T;(n) in both the 6; and 6, simu-
lations (and has processed the external event at that
time). Then processor i can simulate all the internal
events at parameter setting 6; until time T;(n + 1)
and then simulate all the internal events at param-
eter setting f; until time T;(n + 1). Now suppose
that Ci(n+1) = (3, j), i.e., the external event at time
Ti(n + 1) is of type (¢, 7). Then processor i can send
a single message to processor j describing the specific
external events for both the #; and 8, simulations.
Similarly, if Ci(n + 1) = (j,4), i.e., then processor i
would wait until receiving a message from processor j
describing the external events for both the 8, and 6,
simulations. In this way, all synchronization messages
are shared among the two simulations. On the other
hand, suppose the #; simulation proceeds faster than
the 6, simulation. Then, the #; simulation is slowed
down by tying its execution to the 5 simulation.

4 IMPLEMENTATION DETAILS

We applied the Multi-PUCS method to a queueing
network simulation, implemented on a sixteen pro-
cessor Intel iPSC/2 distributed memory multiproces-
sor. The queueing network studied has 512 “central
server clusters” (see Buzen (1973)): each cluster is
comprised of a central server model having one CPU
server, which feeds twenty I/O servers. There are
a total of 10752 queues in this network. Each clus-
ter is identical; this model can be described by three

Heidelberger and Nicol

input parameters: 8 = (pc, pr,p.) where pc is the
service rate at each CPU, ur is the service rate at
each 1/O device, and p, is the probability that a job
goes to the CPU in the same cluster after leaving
an I/O device. The destination for a job leaving a
cluster is chosen uniformly at random from among
all other clusters; the job joins the target cluster’s
CPU queue. The network is closed; each cluster
initially has ten jobs, distributed randomly among
the cluster’s queues. The clusters were distributed
evenly among the sixteen processors. Observe that
the model is fully connected, in the sense that the
model may require communication between any pair
of processors.

The implementation supports multiple parameter
settings simply by adding another index—the param-
eter index—to state-dependent data structures that
appear in a one-parameter simulation. One simulates
additional parameter settings by iterating over this
index, as needed. Further details concerning this it-
eration are described later.

The communication lists are created in a mapping-
independent fashion, as follows. We generate the
communication lists as though each cluster were to be
simulated on its own processor. Each cluster there-
fore generates a schedule of its interactions with every
other cluster. Knowledge of the cluster-to-processor
mapping then allows the disparate cluster schedules
to be sent to the appropriate processors. A pro-
cessor’s complete communication schedule is created
by receiving all such schedules (including ones de-
scribing the interactions between co-resident clusters)
and sorting them by time-stamp. Observe then that
interactions between co-resident clusters is logically
treated as though the clusters are on separate pro-
cessors. However, implementation of the interaction
between co-resident clusters is quite efficient, being
aware of, and taking advantage of the fact the clus-
ters reside on the same processor. One might ar-
gue that treating clusters in a mapping independent
fashion requires unnecessary generation of communi-
cation schedules between co-resident clusters. The
benefits of a mapping independent implementation
(relative ease of debugging, and direct comparison of
the same sample path implemented under differing
strategies) temper this objection. Furthermore, our
earlier studies (Heidelberger and Nicol, 1991) suggest
that the cost of generating communication schedules
is comparatively small. Our implementation does not
cause any more inter-processor communication than
would one that minimizes the length of communica-
tion schedules.

The Multi-PUCS algorithm is applied using the
processor’s aggregate communication schedule, as fol-

Parallel Simulations of Continuous Time Markov Chains

lows. The time of the next “communication event” is
retrieved from the schedule, say with time time-stamp
to. The internal work up to time ¢, is then performed,
which consists of the internal simulation of all the pro-
cessor’s clusters, at all the parameter settings, up to
time to. While this is a simple and intuitive mecha-
nism, an important point to remember is that some
clusters may be unnecessarily blocked. Consider: all
clusters may wait for an off-processor communication
at time g, even though only one cluster (the one from
whose schedule ¢ is derived) is logically required to
synchronize. A more sophisticated scheduler might
be used to allow the asynchronous advancement of
co-resident clusters.

Our implementation attempts to keep the random
number streams associated with the different param-
eter settings in synchronization. This is accomplished
by the use of functionally dedicated per-cluster-per-
setting streams, synchronized whenever the cluster
engages in a communication event (real or pseudo).
For example, every parameter setting for every clus-
ter has its own stream for selecting holding times in
the current internal state. Whenever a communica-
tion event for the cluster is encountered, the sepa-
rate streams for the different settings for the cluster
are synchronized by having their seeds set to a com-
mon value obtained from an orthogonal stream which
is dedicated to this purpose. The random number
streams used to select queues, route jobs, and so on
were synchronized to achieve the property that the
4t random number used in a functional stream for
a given cluster at a given setting following the clus-
ter’s last communication event is the same for every
setting in that cluster, for j = 1,2,.... Note that
different settings may call upon these synchronized
streams a different number of times between a clus-
ter’s communication events: depending on the cluster
state—a cluster under one setting may execute more
internal events before “the next” communication time
to than it does under a different setting.

5 EXPERIMENTAL RESULTS

Let Tp(6;) be the time it takes to run the model (for
a given amount of simulated time) on P processors at
parameter setting 6;, and let Tp(6;,62) be the time
it takes to run Multi-PUCS (for the same amount of
simulated time) on P processors at parameter set-
tings 8; and 2. The completion time of the Consec-
utive strategy is Tp(6;) + Tp(f2) so the Consecutive
to Multi-PUCS execution time ratio is

Tp(ol) + Tp(02)
Tp(61,02))

605

We ran experiments to compute these ratios for
P = 16 and a variety of parameter settings on the In-
tel iPSC/2. Each simulation was run for 500 seconds
of simulated time, and involved at least three million
events. In addition, at least three replications of each
run were made and averaged; very stable estimates of
run times were thus obtained.

We ran three sets of experiments: a first set with
pe = 0.99, a second set with p. = 0.90, and a third
set with p. = 0.75. As p. decreases, a greater fraction
of events become external events and thus a greater
amount of interprocessor synchronization is required.
The effect of decreasing p. is thus to make the single
parameter version of PUCS less efficient. For exam-
ple, when pc = 20 and gy = 1.0, then approximately
1.5% of the events are external when p. = 0.99, 15%
of the events are external when p, = 0.90, and 37%
of the events are external when p, = 0.75.

For each value of p., we fixed the CPU (I/0O) rate
and varied the I/O (CPU) rate by both 10% and 50%.
When the I/O rate is fixed, the best possible external
uniformization bounds {);;} are obtained (and used)
by assuming all I/O service centers are busy. How-
ever, when the CPU rate is fixed, the Multi-PUCS
external uniformization bounds {};; } are obtained by
assuming all I/O service centers are busy serving at
the faster of the two I/O rates. This results in addi-
tional external events in the Multi-PUCS simulation
of the system with the lower I/O rate. In the Consec-
utive strategy, the best possible external uniformiza-
tion bounds are used.

The issue of performance is paramount in parallel
computation. One useful measure of performance is
processor utilization, or the average fraction of time
a processor spends performing “useful” simulation
work. The time spent in list generation, communi-
cation and synchronization is not viewed as “useful”
(although it is necessary), in the sense that an opti-
mized serial application does not spend time in such
activities. Speedup can be estimated by the prod-
uct of processor utilization and the number of proces-
sors. One can often measure utilization in situations
where it is inconvenient (or impossible) to measure
true “speedup” (ratio of optimized serial execution
time to parallel execution time).

The processor utilizations we measured are insensi-
tive to changes in pc and pr in the ranges considered
by our experiments (the execution times were sen-
sitive to these parameters, but relative performance
was not). For single-parameter runs using p. = 0.99
we observed 82% efficiencies; for p, = 0.9 we observed
55% efficiencies, and for p. = 0.75 we observed 45%
efficiencies.

The results of these experiments are displayed in

606

Table 1: Consecutive/Multi-PUCS Timing Ratios

(uc,pr) p.=0.99 | p. =0.90 | p. =0.75
6, = (20,1.0) 1.06 1.13 1.17
6, = (22,1.0)

6, = (20,1.0) 1.05 1.13 1.17
82 = (30, 1.0)
0, = (20,1.0) 1.04 1.10 1.13
6, = (20,1.1)
6, = (20,1.0) 1.02 1.02 1.02
6, = (20,1.5)

Table 1 which lists the Consecutive to Multi-PUCS
timing ratios as defined in Equation (5). These ratios
should be interpreted in view of the single-parameter
utilizations just mentioned. Multi-PUCS simply at-
tempts to amortize the cost of list generation, and
communication, over more parameter settings. We
can bound the degree to which such amortization im-
proves performance very simply. Suppose that a one-
parameter setting model achieves a processor utiliza-
tion of p, and an execution time of X. We may write
X = E 4+ O where E is the time spent executing
useful work, and O is the time spent in overhead ac-
tivities. Thus p = E/X; or equivalently, £ = pX
and O = (1 — p)X. Consider two one-parameter
runs, and assume they have the same execution time,
X. The time required by the Consecutive strategy is
2X, the time required by Multi-PUCS is no less than
2E + 0 = 2pX + (1 - p)X. The ratio of Consecu-
tive performance to Multi-PUCS performance is no
greater than 2/(1 + p). Thus we cannot hope for ra-
tios larger than 1.09, 1.29, and 1.38 for the p. = 0.99,
pe = 0.9, and p. = 0.75 models, respectively.

Reading across rows in Table 1, we see that Multi-
PUCS becomes more efficient relative to the Consec-
utive strategy as p. decreases. As p. decreases, a
greater fraction of the events are external and are
therefore shared by both parameter settings in Multi-
PUCS. For a fixed value of p., Multi-PUCS is more
efficient when the CPU rate is varied and the I/O rate
is fixed than when the I/O rate is varied and the CPU
rate is fixed. When the I/O rate varies, Multi-PUCS
has to simulate at an unnecessarily high external uni-
formization rate for one of the parameter settings, a
cost which dominates the overhead. Furthermore, the
relative efficiency of Multi-PUCS decreases as the dis-
crepancy between the I/O rates increases.

These figures (and intuition) suggest that relative
performance will improve as the number of settings

Heidelberger and Nicol

increases without inducing further uniformization.
This was confirmed by another p. = 0.75 experiment,
where we simulated four models with fixed u; = 20
but varied uc € [20,30]. In this case the relative
ratio of Consecutive to Multi-PUCS was 1.28. Thus,
when the cost of communication is high, one can hope
to achieve significant performance gains with Multi-
PUCS provided the external uniformization does not
induce additional communication overhead.

As mentioned earlier, another potential benefit of
the Multi-PUCS approach (or other common random
number techniques) is the induction of correlation be-
tween estimates from the multiple runs. We obtained
moderate positive correlation. For example, the es-
timated correlation coefficients for the mean CPU
queue length estimates corresponding to the runs in
Table 1 with p, = 0.99 ranged from between 0.44 to
0.48.

6 SUMMARY AND CONCLUSIONS

In this paper we described Multi-PUCS, an approach
based on uniformization for simultaneously running
parallel simulations of CTMCs at multiple param-
eter settings. In Multi-PUCS, interprocessor com-
munications messages are shared among the multi-
ple simulations. The efficiency of Multi-PUCS, rel-
ative to another multiple parameter simulation ap-
proach, the Consecutive strategy, was studied empir-
ically through simulations of a large queueing network
on a 16 node Intel iPSC/2. Generally speaking, if the
parameter being varied is such that the external uni-
formization rates are unaffected, then Multi-PUCS
becomes (relatively) more efficient as the amount of
interprocessor communications increases. However,
the efficiency gains over the Consecutive strategy
were fairly modest when combining two parameter
settings. Better performance can be achieved when
more parameter settings are included. In addition,
moderate positive correlation was induced using this
approach.

In order to obtain greater efficiency, more of the ex-
ecution code would have to be shared among the mul-
tiple simulations. However, this might prove difficult
in practice. For example, an efficient PUCS imple-
mentation uses dynamic tree-like data structures for
selecting the next internal event. Effectively sharing
the code and data structures to simultaneously search
multiple such trees (one for each parameter setting)
appears complicated.

While it would have been desirable to com-
pare Multi-PUCS to the Simultaneous strategy, a
meaningful comparison requires a more sophisticated
scheduler. We discovered this following a compari-

Parallel Simulations of Continuous Time Markov Chains

son of the Simultaneous and Consecutive strategies,
which showed Consecutive to be clearly faster. At
first this seemed counter-intuitive, since Simultaneous
ought to enjoy a better computation/communication
ratio (with high p.). Further investigation showed
that processors under the Simultaneous strategy suf-
fer far more “blocking time” — time waiting for a
synchronization message — than they do under the
Consecutive strategy. We conjecture that this is due
to our simple scheduling strategy, which blocks all
clusters on a processor waiting for the cluster which
is farthest behind to receive a synchronization mes-
sage. Under the Simultaneous strategy a processor
holds twice as many clusters as under the Consecutive
strategy, thereby worsening the problem. This phe-
nomenon might be avoided using a more sophisticated
scheduler. With such a scheduler, we believe that the
absolute efficiency of both PUCS and Multi-PUCS
would increase, although the effect on the Consecu-
tive to Multi-PUCS execution time ratio is, at this
point, unknown.

REFERENCES

Buzen, J.P. 1973. Computational algorithms
for closed queueing networks with exponential
servers,” Commun. ACM 16, No. 9: 527-531.

Fujimoto, R.M. 1990. Parallel discrete event simula-
tion. Commun. ACM 33, No. 10: 31-53.

Gross, D. and D.R. Miller. 1984. The randomization
technique as a modeling tool and solution proce-
dure for transient Markov processes. Operations
Research 32: 343-361.

Heidelberger, P. and D.M. Nicol. 1991. Conserva-
tive parallel simulation of continuous time Markov
chains using uniformization. IBM Research Report
RC16780, Yorktown Heights, New York.

Nicol, D.M. 1988. Parallel discrete-event simulation
of FCFS stochastic queueing networks. In: Pro-
ceedings of the ACM/SIGPLAN PPEALS 1988.
Parallel Programming: Ezperiences with Applica-
tions, Languages and Systems, 124-137. ACM
Press.

Vakili, P. 1992. Using a standard clock technique
for efficient simulation. To appear in: Operations
Research Letters.

Vakili, P. and E. Lau. 1991. Massively parallel simu-
lation and optimization of queueing networks. In:
Computer Science and Statistics: Proceedings of
the 23rd Symposium on the Interface.

AUTHOR BIOGRAPHIES

PHILIP HEIDELBERGER has been a Research

607

Staff Member at the IBM Thomas J. Watson Re-
search Center since receiving a Ph.D. in Operations
Research from Stanford University in 1978. He is an
Area Editor of the ACM’s Transactions on Model-
ing and Computer Simulation and is currently serv-
ing as the Program Co-Chairman of the ACM Sig-
metrics/Performance ’92 Conference. He was the
Program Chairman of the 1989 Winter Simulation
Conference.

DAVID M. NICOL received an B.A. in Mathe-
matics from Carleton College in 1979, worked as a
programmer analyst with the Control Data Corpora-
tion from 1979 to 1982, and received a Ph.D. in Com-
puter Science from the University of Virginia in 1985.
He spent the subsequent two years at the Institute
for Computer Applications in Science and Engineer-
ing at the NASA Langley Research Center, and then
joined the faculty of the College of William and Mary,
where is currently an Assistant Professor. He is an
associate editor for the ACM’s Transactions on Mod-
eling and Computer Simulation and for the ORSA
Journal on Computing, and has served as the 1989
Program Chairman and the 1990 General Chairman
of the Workshop on Parallel and Distributed Simu-
lation (PADS). His interests are in parallel simula-
tion, performance analysis, and algorithms for map-
ping parallel workload.

