Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

ENVIRONMENT PARTITIONED DISTRIBUTED SIMULATION OF QUEUEING
SYSTEMS

John Craig Comfort
School of Computer Science
Florida International University
Miami FL, 33199

ABSTRACT

Discrete Event Simulation (DES) is an extremely
useful tool, with applications in manufacturing,
computer science, management, engineering, and
the military. Simulation programs tend to consume
computer time in huge chunks. It is thus
reasonable to attempt to execute these programs
on super computers, or, better, on distributed
multi-processor systems. The published results of
these attempts have been disappointing, especially
for an important subclass of DES models involving
queueing systems. It is not even known how much
performance improvement (speedup) is possible in
a simulation of a general queueing system. In this
paper, an extension of object oriented design is
used to design computer systems to simulate
specific queueing networks, and the performance
of these systems is estimated through simulation.
Substantial speedups were obtained for all three
queueing networks. In addition, sensitivity tests
were performed on communication and interface
attributes of the system.

1 INTRODUCTION

A discrete system is one in which the state of the
system changes only at discrete, separated
instants of time. Discrete Event Simulation (DES) is
the simulation of such systems. Substantial
application of DES have been made in the fields of
manufacturing, design (especially of VLSI
components), computer system selection and
analysis, and military logistics. In all these
application areas, simulation programs have been
implemented which have consumed incredible
amounts of computing resources. As the systems
simulated contain significant concurrency, it would
seem reasonable either to run the simulation
programs on supercomputers employing fast

584

concurrent processors, or, with likely greater cost
effectiveness, to run the simulations on distributed
computer systems employing large numbers of
processors. This last approach is called Distributed
Simulation (DS). With a very small number of
exceptions, the attempts to realize distributed
simulations have been unsatisfactory.

All the application areas mentioned above have a
common factor in that they contain (priority)
queues of entities within the model. These queues
may represent collections of parts waiting to be
machined or shipped, logical signals waiting to be
combined, or perhaps requests for service within a
computer network. In addition, each simulation
possesses an explicit (or in some cases, implicit)
priority queue, the Event Set, of those events
which have been scheduled but have not yet
occurred. It is thus natural that a study of
Distributed Simulation applied to queueing
systems would provide insight into the nature of
the overall problem of DES, and suggest ways in
which the concurrency inherent in the real systems
could be exploited in their simulations.
Unfortunately, none of the empirical or theoretical
results published has been encouraging, and the
large question of the degree of parallelism inherent
in Discrete Event Simulation remains open.

A pair of metrics will be used to measure the
effectiveness of the methodologies employed. The
first is the Speedup Factor, which, for a given
simulation, consists of the ratio of the run time of
the enhanced system to that of the original
uni-processor simulation program. The second --
Processor Efficiency, sometimes denoted by alpha
-- is the quotient of the Speedup Factor by the
number of processors in the enhanced system.



Environment Partitioned Distributed Simulation

Two basic strategies have been applied to the
problem of mapping a simulation model onto a
network of processors. In the classical strategy, the
model is partitioned into components or
subsystems, and the components are assigned to
physical processors. In the alternative strategy
employed in this research, the environment in
which the model is run is partitioned into
components, and the components are assigned to
processors. Tasks (priority queue processing,
random number generation, etc.) required to
perform the simulation are identified, objects are
constructed to perform these tasks, and selected
instances of those objects are assigned to
independent processors. This second strategy
attempts to exploit parallelism latent in the system
running the simulation, rather than in the model
itself.

Empirical results suggest that the first approach
can be quite successful in applications permitting a
partitioning with a rather high level of
computational granularity (the ratio of time spent in
processors’ local computation to time spent in
message passing between processors.) Significant
successes have been recorded (Speedup Factors
of 28 in a 40 processor network by Lomow et al

ime 1/3
svc time Banch

probs. 1/3

s1

svc time
s2

svc time

s3

CR5

585

(1988)), but only in systems with granularities of
four or higher. Simulations of pure queueing
systems do very little computation per queue, so
have inherently low granularity. In one study of a
benchmark queueing system (here referred to as
CRS5), Wagner et al (1988) have presented a proof
that no conservative simulation can achieve a
speedup of more than 3.67, regardiess of the
number of processors employed.

Thus, in such systems of low computational
granularity, environment partitioning seems
appropriate. Jones et al (1989) has proposed what
he calls Concurrent Simulation, in which the
simulation processes’ state space is updated in
parallel with the scheduling of pending events. He
has achieved some significant success (speedups
of 2.3 with 4 processors on the CR5 benchmark),
but it is not clear how to expand his technique to
deal with large models. The approach here
presented is an extension of that described by
Rajagopal and Comfort (1989).

MMc

cQn

Figure 1. Three Kinds of Queueing Systems



586

Comfort

memory

Figure 2. The Structure of the Simulation Computer

2 BASIS FOR THE RESEARCH.

2.1 The Queueing Models

Three queueing models were chosen to be
investigated. The first is a slightly modified version
of the CR5 benchmark mentioned above, a highly
simplified model of a computer system containing
a CPU and two I/O devices. The second is a closed
circular queueing network containing n queues
(CQn), which was included because it should
permit easy model scalability -- that is, as n
increases, it should be possible to maintain a
relatively constant efficiency by employing k*n
processors. The third is single level multi-server
queue (called MMc), which was included because
it is typical of the queues that appear in real
simulations, and allows the investigation of a
system under different object loadings, as the
relative object loadings may be varied by
(indirectly) varying the size of the event Figure 1.

2.2 The Target Hardware

The computer system visualized for running the
distributed simulation consists of n plus 1
processor homogeneous computers, each with
sufficient memory to contain the objects assigned
to it. One of these processors, the master, is

assumed to contain the controlling simulation
program. In addition, it contains the file system and
user interface for the aggregate system. The other
processors, called ancillae, contain instances of
object(s) to be employed in the simulation, and a
software interface to process messages from the
master. The processors are joined on a bus
(different from the master’s internal bus), whose
functions include loading programs from the
master’s file space to the ancillae, and providing
communication between the master and the
ancillae. As only the master may initiate
communication on the bus, there will be no
contention to degrade bus transfer efficiency.

Specific timing data were obtained from a PC clone
containing an 8086 processor running at 9.54
MHz., and 640K of memory. All processors in the
system are assumed to have these attributes. The
master/ancillae bus is assumed to-contain 16 data
lines, 8 address lines, and 3 synchronization lines.
It is assumed to have a bus speed of at least 10
MHz.

2.3 The Target Software

All the programs employed were implemented in
the object oriented extension of Borland
International’s Turbo Pascal (Version 5.5). Itis
assumed that the code for the individual objects,



Environment Partitioned Distributed Simulation

together with interface software written either in
Pascal or in assembly language, would be
transferred to the ancillae, and that, interface
details aside, the execution of the object instances
on the ancillae would be identical to that on the
master processor. The Pascal programs were
written to be maintainable, rather than fast. No
hand coding of any of the objects was performed.

2.4 Processor Coupling

To avoid unnecessary processor waiting, a cache
has been associated with each remote object, and
a cache management process (CMP) created to
run as a foreground task while the object task
remains in the background. A CMP is responsible
for apprehending all messages from the master -- if
the message serves as an input to the object, it is
queued. If it requests an output, the output is taken
from an output cache maintained by the object.
(For an example of such a cache used to maintain
the event set, see Comfort (1989)). The three
different primitive object types -- statistics
accumulator (STAT), priority queue (PRQ), and
Random Number Stream (RNS) -- require slightly
different cache organizations. STAT accepts
requests for state statistic updates. If the queue
becomes full, or if it is the end of a block, and
statistics must be output, the master must wait until
STAT has emptied its queue. If PRQ receives a
request to schedule an entity, the request may be
queued, unless the request requires that the cache
must be updated. RNS is the simplest of the three
objects -- it simply causes random numbers to be
generated until its output cache is full.

2.5 Object/Instance Partitioning

The objects employed in the system can be
assigned to the ancillae in various ways. The most
obvious include assigning all objects to the master,
and assigning each object to one ancilla. If either of
these assignments produce acceptable results,
then no more need be done. However, as the
maximum speedups obtainable are 1 and 4 (and
this assumes that the master and all object
executions are completely overlapped)
respectively, a finer partitioning will probably be

587

desirable.

There are many random number streams
employed in each of the target simulations -- thus
assigning each stream to a different ancilla seems
reasonable. Similarly, each simulation employs
several priority queues, as well as an event set.
Assigning each of these to an ancilla is also
possible. Finally, the accumulation of statistics for
one state of the simulated system will be
independent of the accumulation of statistics for
any other state, provided that there are separate
invocations of the object for an entity entering and
leaving the state, and that the time of entry of an
entity into a state is maintained within the entity
itself, and passed as a parameter.

Thus, even for the innocuous CR5 system,
employing 4 random streams, 4 priority queues,
and 12 states (6 client states -- waiting and served
for each of the 3 servers, and 6 server states -- idle

queueing system parameters

sctual
main
rogr:

instrumented
main
program

queueing queueing _
simulation simulation engucgm
output ou
P tput flo
actual “verify objegt
runtimes consistency execution
/ times

compute
simulation
overhead

overhead
times

distributed
system
simulator

distributed
system performance
report

Figure 3. Data Flow Diagram of the Procedure



588

and busy for each of the 3 servers), it is possible to
assign 21 (!) (master plus 20 ancillae) processors
to its simulation. Whether it is desirable to do this,
of course, depends on the magnitude of the
speedup obtained.

3 METHODS

3.1 The Approach

The performance speedup obtainable was
estimated by simulating the performance of a
distributed computer system performing the
simulation of the target queueing models.
Simulation programs for the target queueing
models were implemented, and instrumented to
produce trace files containing parametric
information about each object invocation. The
information produced by the target simulation
programs is verified, then used as input by another
program simulating the distributed systems under
evaluation.

Estimates for object execution times were
determined by constructing independent programs
to invoke the desired functions a substantial
number of times (usually 100,000). After the effects
of the controlling software were eliminated,
confidence intervals for the functions’ execution
times were computed.

In addition to the object execution times, it was
necessary to estimate the invocation time (time
required for call/return) each instance, and the
interface time (time required to transfer the
required information to/from the ancillary cache) for
each instance. These estimates were obtained
either through other programs, performing their
respective operations repeatedly, or from
calculations based upon the bus timing data
presented above.

However it was obtained, the mean value for each
execution time for each object invocation, together
with its communication and interface times, was
inserted into a timing file to be used by the main
simulation program. Subsequent sensitivity
analyses were performed by varying some of these
times.

Comfort

The experimental procedure and its software and
informational components are shown
schematically in the data flow diagram of Figure 3.

3.2 The Experiments

For each queueing model, several simulation runs
were made. The first run made use of the
configuration containing only the master
processor. In this simplest case, the observed
Speedup Factor should theoretically be one.
However, discretization errors (an integer clock is
employed) result in a slight deviation from the
ideal, with observed speedups ranging from 0.995
to 1.004. The second run made use a three
ancillary processor configuration -- one each for
the statistic object (all instances), the priority queue
object, and the random generator object.

Subsequent experiments were guided by results
obtained from previous runs. If an ancilla assigned
to a collection of instances were heavily loaded
(busy more than 90 per cent of the time) its
instances were partitioned and reassigned. If two
or more ancillae (implementing instances of the
same object) were lightly loaded, their instances
were coalesced and assigned to one ancilla.

For the CR5 system, additional runs were made,
varying the communication and interface times, to
investigate the sensitivity of the system’'s
performance to these attributes.

4 RESULTS

In the following, a selection of the results obtained
in this study will be presented. The results of
experiments were made using different random
number streams for the simulations were
replicative of those shown, and have not been
reported. The experiments concerning the
system’s sensitivity to variations in communication
and interface time were performed only for the CR5
queueing system, as these results depend only on
the target system architecture, and not on the
system being simulated.



Environment Partitioned Distributed Simulation

In all the experiments, the original simulation
consisted of four or five blocks, each with a run
time of between 8 and 15 seconds. To eliminate
errors due to start up, results from the first block
were discarded, and the mean values from the
remaining blocks displayed.

4.1 Results from the CR5 System

Figure 4 shows the experimental process used to
determine an effective assignment of instances to
processors, and Figure 5 shows the specific
performance obtained for all four configurations.
When one ancilla was assigned to each object, a
Speedup Factor of 1.57 was obtained. The heavy
processor loading of the "stats” processor, and the
somewhat less stringent loading of the "RNG"

A. Performance for a
Four Processor CRS System

f md. streams1-4

pri. queues 1-4

statistics 1-12

5 0 —~ 0O D3 C

s s s G s s g
000.10.2030405060.708091.0
loading

C. Performance for a
Seventeen Processor CR5 System

random streams 4
random stream 3

t random streams 2
random stream 1
statistics 12,
statistics 11
statistics 10
statistics 9|
statistics 8|
statistics 7|
statistics 6|
statistics 5|
statistics 4
statistics 3|
statistics 2,

tatistios 1

main|

5350 —-—~03C

000.102030405060.708091.0
loading

589

processor suggest that the functions assigned to
these processors might be partitioned. One such
partitioning employing ten processors produced a
speedup of 3.92. To determine the relative
loadings imposed by all the random number
generation and statistical accumulation, each
instance was assigned to an ancilla, resulting in a
speedup of 7.20, but a processor efficiency of only
.422. Pooling lightly stressed instances lead an
eleven processor system, with a speedup of 7.33,
and an efficiency of .666. While no claim is made
that this performance is optimal, it certainly is
respectable, especially considering previously
reported results.

B. Performance for a
Ten Processor CRS System

random streams 34| [
f random streams 1-2
pri. queues 1-4

statistics 11-12
statistics 9-10
statistics 7-8
56

34

statistics 1-2

530 —~ 032 C

main

e i s G G oo -/
0.00.10.20.30.40.50.60.70.80.91.0
loading

D. Performance for an Optimized
Eleven Processor CR5 System

random stream 4

f random streams 2-3
u random stream 1
n pri. queues 1-4
c statistics 11-12
t statistics 9-10
. statistics 8
! statistics 7
0 statistics 3-6
n statistics 1-2
main

0.00.10.20.30.40.50.60.70.80.91.0
loading

Figure 4. Processor Loading for Various CR5 Simulation Computers



590
CRS5 Simulation
Processor Speedup
p ﬁ SIS IITIIITITIIIIITITITS
om0
o i
c . )
e
s
s 10
(o]
r 4
s Z Z

speedup

» ~0 unvw nmn o O 0 ~1T

Comfort

CRS5 Simulation
Processor Efficiency

11 (opt) m

22222222272,
%
10 m
‘ W
Zz 7 2 Z A Z Z.

II 1 T —1 1 1 1 1 1 V
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
efficiency

-
~N

Figure 5. Speedup Factors for Various CR5 Simulation Computers

4.1.1 Communication/Interface Sensitivity

As the eleven processor system seemed to yield
satisfactory performance, it was used as a target for
an analysis of its sensitivity to variations in the
communication and link speed. These (simulated)
speeds were originally varied by the ratios of .5, 2,
and 4 of the speeds used in the previous simulation.
To obtain more information, in particular for the
sensitivity to communication speeds, additional
ratios of 3, then of 2.5 were employed. The results,

Sensitivity of the Optimized CR5 System
to Normalized Overhead

interface

® O~ 0O < O

Acommunication

Q

7 77
—f—1—1 — (1

45678 91011
speedup

Figure 6. Sensitivity to Variations in Communication
and Interface Times

presented in Figure 6, show that a variation of up to a
factor of two in either parameter would not
significantly excess of twice the values used would.
An interesting result may be observed when the
ratio is one half, for the resulting run time is slightly
lower than that with the communication speeds
actually employed. This phenomenon (not
statistically significant) occurs because the master
processor’s time spent in "busy" state increased
from 8 to 44 per cent, and master processor
overhead, which had been hidden from the total run
time through overlap, now becomes visible.

4.2 Results from the CQn System

Results from the CQ3, CQ4 and CQ5 simulations
are shown in Figure 7. As this queueing system was
included to investigate model scalability, the
following configurations were selected for
experimentation. First, the (by now) standard four
processor system, a system containing two "stats"
(client and server states, respectively) and one RNS
processor per queue, and one global priority queue
processor; and finally, a system as above with four
"stats” and one RNS per queue. Results from the
four processor systems were consistent and
uninteresting. From the second class of systems,
worthwhile speedups (in the range of 6.7 to 8.1)
were obtained, although with decreasing processor
efficiency. This declining efficiency is probably due



Environment Partitioned Distributed Simulation

to the use of only one priority queue processor.
The most spectacular improvement was made in
the third case, for the 22 processor CQ4 system.
The average displayed (10.9) is conservative, for
the system required a substantial time to stabilize.
The speedups for the three blocks used to
compute the graphed mean are 7.98, 13.18, and
13.34. Memory limitations precluded the simulation
of the CQS5 class three (27 processor) system.

4.3 Results from the MMc System

The MMc simulator was used to test the effect of

CQn Simulation
Processor Speedup

591

varying the load on one component (the priority
queue processor). The algorithm for priority queue
management was one developed by the author,
with an observed asymptotic performance of
O(sqrt n) for insertion, and O(1) for deletion. If all
inserted entities have the same priority, both
insertion and deletion are O(1). The results, shown
in Figure 8, show a remarkable consistency. The
event set ancilla was busy between 40 and 45 per
cent of the time, regardless of event set size.
Experiments with larger event set sizes were
(again) precluded by memory limitations. Even with
that observation, consistent speedups of 6 or more
have not been yet reported for distributed

CQn Simulation
Processor Efficiency

 — ———

1 1 1 1 1 I, l', vV
00 01 02 03 04 05 06 07 08 08 10
efficiency

Figure 7. Performance of CQn Computer Systems

MMc Simulation
Processor Speedup

E 4 proc.
@ 8 proc

MMc Simulation
Processor Efficiency

ﬂ 4 proc.
ﬂ 8 proc

y.a Z Z va 4 a4 Z y.a

Z (05070203 040506 07 08 08 1.0
e affiriannv

Figure 8. Performance of MMc Computer Systems



592

simulations of this kind of queue, so these results
are encouraging. Further improvement, however,
will probably require investigation into assigning
fragments of instances to processors.

5 CONCLUSIONS

Environment Partitioned Simulation appears to
provide an effective means of substantially
reducing the run time of queueing simulation
programs. The simulated results here presented
for the CR5 and MMc systems are impressive, and
should carry over into any queueing simulation
composed of the three standard objects employed.
In a simulation requiring additional primitive or
higher level objects (for example, conveyor belts,
in a shop floor simulation), the analysis and
partitioning process could be extended to include
these objects.

The strategy here employed would seem to be
applicable to any discrete simulation model of low
computational granularity. If a general simulation
model can be partitioned into submodels, where
the submodels have low internal computational
granularity, but the macro-level system composed
of the aggregated submodels has high
computational granularity, then the model
partitioned and environment partitioned
approaches could be employed in fitting a
distributed system to the complete model. The
mechanism of assigning instances to ancillae here
proposed is static. The problem of dynamic
assignment and resultant load balancing appears
interesting and challenging.

REFERENCES

Comfort, J. C., "The Simulation of a Master-Slave
Event Set Processor", Simulation, 42,3 , pp.
117:124, March 1989

Jones, D.W., Chou, C., Rink, D., and Bruell, S.C.,
"Experience with Concurrent Simulation”,
Proceedings of the 1989 Winter Simulation
Conference, Dec. 1989, |IEEE Press, pp.
756-64

Comfort

Lomow, G., Cleary, J., Unger, B., and West, D., "A
Performance Study of Time Wamp", Distributed
Simulation 1988, SCS, pp. 50-55

RajaGopal, R., and Comfort, J.C., "Contrasting
Distributed Simulation and Parallel
Replication: a Case Study of a Queueing
Simulation on a Network of Transputers",
Proceedings of the 1989 Winter Simulation
Conference, Dec. 1989, IEEE Press, pp.
746-54

Wagner, D.B., and Lazowska, E.D., "Parallel
Simulation of Queueing Networks: Limitations
and Potentials", Technical Report 88-09-05,
Department of Computer Science, University
of Washington, Seattle, 1988

AUTHOR’S BIOGRAPHY

John Craig Comfort received his Ph. D. in
Computing and Information Science from Case
Western Reserve University in 1974. He
immediately joined the Computer Science Faculty
of Florida International University, where he
currently holds the rank of Professor. He has
written many papers on simulation methodology
and applications, specializing in Distributed
Simulation. He has been an Associate Editor of
Simulation, an ACM National Lecturer; has been
Secretary, Vice President, and President of the
Annual Simulation Symposium, and has held the
Local Arrangements, Associate General, Associate
Program, and Program Chairs of the Winter
Simulation Conference. He occasionally designs
puns.



