Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

PARALLEL SIMULATION OF TIMED PETRI-NETS

David M. Nicol
Subhas Roy
Department of Computer Science
College of William and Mary
Williamsburg, VA 23185

ABSTRACT

This paper considers the problem of using a paral-
lel computer to execute discrete-event simulations of
timed Petri-nets. We first develop synchronization
and simulation algorithms for this task, and discuss a
parallelized Petri-net simulator which has been imple-
mented on an Intel iPSC/2 distributed memory mul-
tiprocessor. Next we describe a graphics-based front-
end for the simulator, used to build timed Petri-net
models. Finally, we discuss empirical studies of the
simulator’s performance on a variety of timed Petri-
net models.

1 INTRODUCTION

Timed Petri-nets (TPNs) are an important model-
ing tool used to study the behavior of computer de-
signs, communication networks, and other complex
systems. While a great deal of study has gone into
the analytic properties of TPNs (e.g., see [Murata,
1989] and its references), in practical settings TPNs
are generally simulated. For example, TPNs are the
basis for the performance analysis in the ADAS mod-
eling tool [Frank et al., 1985]. Discrete-event simu-
lation of TPNs is thus an important modeling and
analysis activity, and is one known to require a great
deal of computational effort. Parallel architectures
offer the possibility of decreasing the execution time
of TPN simulations; the application of such architec-
tures to discrete-event TPN simulations is the focus
of this paper.

Parallelized discrete-event simulation has been ac-
tively studied over the last ten years; the survey in
[Fujimoto, 1990] is an excellent introduction to the
topic, and highlights current areas of research inter-
est. Synchronization between processors has been
and remains a subject of much interest, owing to the
complexity of the synchronization requirements im-
posed by discrete-event simulations. The difficulty

574

arises from the fact that the simulation model is typ-
ically partitioned among processors, each of which
maintains its own simulation clock. An event asso-
ciated with the submodel assigned to one processor
may affect some portion of a submodel assigned to
another processor, thereby necessitating an interpro-
cessor communication. A parallel discrete-event sim-
ulation can be viewed then as a collection of commu-
nicating discrete-event simulations of submodels. In
this context the notion of simulation time imposes
synchronization requirements. Consider: an event
(e.g. a job departure in a queueing network) com-
pletes at simulation time s on some processor, and
affects the submodel on another processor (e.g. the
Job is routed to a queue on a different processor).
If the affected processor has already simulated up
to time t > s, it may have done so incorrectly as
it has neglected to consider the effect of the event
at time s. Synchronization protocols deal with this
problem. Two fundamentally different styles of pro-
tocols have been studied. Conservative approaches
(e.g. [Chandy and Misra, 1979, Lubachevsky, 1989,
Nicol, 1988]) ensure that a processor does not ad-
vance its simulation clock until it is certain that it
will not bypass some simulation time at which an-
other processor affects it. Conservative protocols are
known to require lookahead in order to avoid dead-
lock, and to achieve good performance. Lookahead
is the ability of a processor to predict its future be-
havior, as regards when next (in simulation time) it
may affect another processor’s submodel. Optimistic
approaches ([Jefferson, 1985]) permit a processor to
simulate ahead under the anticipation that another
processor will not affect its submodel in the “past”,
but then correct these temporal errors as they occur.
Optimistic approaches require state-saving and roll-
back to function properly.

The approach we develop in this paper is conserva-
tive. A principal contribution of this paper is to show
how to find and exploit lookahead in TPN models.

Parallel Simulation of Timed Petri-Nets

The parallelized simulation of TPNs has not re-
ceived much attention. This is due in part to the
fact the conceptual model of parallel simulations that
is usually studied (based on the seminal work in
[Chandy and Misra, 1979]) precludes Petri-net se-
mantics, an observation detailed by [Thomas and Za-
horjan, 1991]. This conceptual model (originally in-
tended to support formal verification, not protocol
design) ascribes fixed communication channels be-
tween logical processes; time-stamped messages are
exchanged via these channels, and an LP’s simula-
tion clock is advanced as a result of consuming a
message. The solution described in [Thomas and Za-
horjan, 1991)] involves extension of this model to sup-
port Petri-net semantics. The conceptual model we
have used in recent years [Nicol, 1988, Nicol, 1990,
Nicol, 1991] is simply that of communicating discrete-
event simulations. Our model employs the same se-
mantics of event list manipulation as does traditional
serial discrete-event simulation, and so does not suffer
from the limitations of the message-consuming model.
Our treatment of TPNs differs from our treatment of
a number of other simulation models only in how we
compute lookahead. Lookahead is necessarily appli-
cation specific.

The remainder of this paper is organized as follows.
In Section §2 we discuss how TPNs work. Section
§3 develops our synchronization and simulation algo-
rithms. Section §4 describes, our X-Windows based
tool pntool for developing TPNs to be simulated in
parallel, and Section §5 presents the performance re-
sults of models developed under pntool which are
simulated using the algorithms described in this pa-
per. Section §6 summarizes this paper.

2 BACKGROUND

A Petri-net can be viewed as a bipartite graph, with
each graph node classified as either a place, or a tran-
sition. The usual graphical conventions depict a place
by a circle, and a transition by a straight line. Places
may direct arcs to transitions, and transitions may
direct arcs to places. Each place that directs an arc
to a transition t is known as one of t’s input places;
likewise, each place to which ¢ directs an arc is known
as one of t’s output places. Input and output transi-
tions are similarly defined with respect to a place.
A place may hold any number of tokens; the tokens
may move from place to place in accordance with the
transilion firing rule. A transition ¢ may fire if each
of its input places has at least one token each. The
effect of ¢’s firing is to remove one token from each of
t’s input places, and to add one token to each of its
output places. These graphical conventions and the

575

effect of a transition firing are depicted in Figure 1.

o | - -

place transition token arc

initial marking

marking after one transition firing

Figure 1: Graphical Petri-net Conventions

A place with more than one output transition is
known as a decision place. The arrival of a token at
a decision place may fulfill the firing requirements of
more than one transition. However, only one of these
transitions should actually be permitted to fire, as the
firing of the first such will remove the enabling token
from the decision place. A standard means of resolv-
ing this dilemma is to non-deterministically choose
which transition (among those able to fire) will actu-
ally fire.

An ordinary Petri-net has no notion of “time”. The
most common variant of timed Petri-nets associates
time with transition firings, as follows. Suppose the
conditions to fire a transition are met at time s, and
the firing time associated with that transition is é.
Then

e At time s, one token is removed from each of t’s
input places;

e From time s to time s + é the transition is con-
sidered to be firing;

e At time s + 6 a token is added to each of t’s
output places.

We say that the transition firing is enabled at time
s, and completes at time s + §. A firing transition
cannot be enabled (again) until the firing completes.

576

Using the rules above, we may construct a
discrete-event simulation of a TPN whose events are
TokenArrival, BeginFire, and EndFire, which
denote the arrival of a token to a place, the begin-
ning of a transition’s firing, the removal of a token
from a place, and the ending of a transition’s firing,
respectively. Assuming that the initial marking of to-
kens to places appropriately initializes the event list
with TokenArrival events, the simulation may be
implemented using the following sequence.

1. Fetch the next event from the event list, say with

time Ty;,,. Advance the simulation clock to time
Taim-

2. Execute the event, in one of the following man-
ners.

Case: TokenArrival Let p denote the associ-
ated place. Increment the token count at
p. If the previous token count was non-
zero, then the event processing is finished.
Otherwise, this token’s arrival may enable
the firing of some transition. In this case,
among all of p’s output transitions, iden-
tify those now enabled to fire due to the to-
ken’s arrival. Choose one of these uniformly
at random, say ¢, and insert a BeginFire

event for t in the event list, with time-stamp
nim .

Case: BeginFire Let ¢ denote the associated
transition, and let §; denote its firing time.
Decrement the token count at each of t’s
input places. For every one of t’s output
places p’, insert a TokenArrival event with
time-stamp Ty;,, + 6; into the event list. Fi-
nally, insert an EndFire event with time-
stamp Ty;m + 6 into the event list.

Case: EndFire Let t denote the associated
transition. If each of t’s input places has
at least one token, then refire the transi-
tion using the same logic as given for the
BeginFire event.

3. Return to step 1 if termination conditions are
not met.

Two features of this solution are noteworthy. First,
it may seem curious that we insert TokenArrival
events into the event list as a result of BeginFire
processing, instead of EndFire processing. We de-
liberately formulated the solution this way in or-
der to highlight the lookahead that exists in TPN
simulations—at the time a transition begins its firing
we can predict exactly when tokens generated by the

Nicol and Roy

firing appear in their new places. Our parallel solu-
tion will exploit this fact. Lookahead of this type
is not necessary in purely serial simulations. Sec-
ondly, the correctness of the simulation depends on
a two-level priority structure among events. Sim-
ulation time is, of course, the primary key. The
event type serves as a secondary key; the sequence
TokenArrival, BeginFire, and EndFire defines the
event orderings, by decreasing priority. Without this
priority ordering, a TokenArrival event could sched-
ule a BeginFire event for transition ¢’ at the same
time, but an intervening EndFire event for ¢’ that
shares a common input place with ¢ can refire ¢, and
“steal” one of the tokens that enable t to fire. Of
course, other solutions to this problem exist, but this
seems to us to be quite clean.

In the section to follow we show how to implement
this algorthm on a parallel computer.

3 PARALLELIZATION

We anticipate that parallel simulation will be practi-
cal primarily when large simulation models are dis-
tributed over a moderate number of processors. The
usual use of discrete-event simulations is to construct
confidence intervals from simulation output. Confi-
dence intervals call for independent replications, and
there is scarcely any easier way to exploit parallelism
than to concurrently run independent replications.
However, one rarely wants to run more than, say,
twenty replications, because the width of a confidence
interval decreases only in proportion to the inverse
square root of the number of replications. The impli-
cation is that given a 500 node multiprocessor, one
is more likely to devote 25 processors to each of 20
independent replications than one is to devote an in-
dependent replication to each processor. Thus we
believe that techniques for medium-scale parallelism
have practical interest. We also believe that parallel
simulation will be useful primarily on large simula-
tion models. Small simulation models are simulated
sufficiently quickly on workstations or PCs. Parallel
architectures offer increased main memory size over
conventional architectures, which helps to avoid run-
ning the simulation in virtual memory and its atten-
dant paging costs.

For the reasons outlined above we have concen-
trated on simulation techniques suitable for large
simulation models on medium-grained multiproces-
sors. We have studied a conservative synchronous
approach to synchronization and demonstrated ana-
lytically that it can achieve good performance when
the size of the simulation model is large [Nicol, 1990,
Nicol, 1991]. The approach we now develop for TPN

Parallel Simulation of Timed Petri-Nets

simulations is an application of this approach to the
TPN problem.

The remainder of this section is divided into three
parts. The first part provides some general informa-
tion needed to understand the parallelization. The
second part discusses the parallelization itself, while
the third part illustrates the method with an exam-
ple.

3.1 Preliminaries

We assume that a TPN model is partitioned by first
assigning each place and each transition to a Logical
Process, or simply LP. An LP is usually composed of
a set of places and transitions that are logically re-
lated; examples of this will be shown in Section §5.
LPs are then mapped to processors. We assume that
every LP maintains its own event list. For the sake
of simplicity, our solution assumes that every out-
put transition of a decision place is assigned to the
same LP as the decision place, and that every input
place for a transition ¢ is assigned to the same LP as
t. These restrictions serve to simplify the synchro-
nization mechanism. They ensure that a single LP
naturally has available all the information it needs to
resolve conflicts over token consumption. For exam-
ple, consider a token arrival to a place p, which is an
input place for some transition ¢t. The TokenArrival
event processing described earlier needs access to the
token counts in all of ¢’s input places, in order to
determine which of p’s output transitions may begin
firing, if any. Our restrictions ensure that all these
places reside on the same LP (and hence processor) as
p; the decision to begin firing a transition is based en-
tirely upon on-processor information. Without these
restrictions, the synchronization and communication
needed to implement the simulation properly is rather
more complex, as demonstrated by [Thomas and Za-
horjan, 1991].

Automated techniques for LP construction and
mapping are topics of interest to us, but are beyond
the scope of the present paper.

In our framework, one LP sends another LP a
time-stamped TokenArrival message whenever a
firing transition places a token in an off-LP place.
The event processing logic on every processor is
identical to the event processing described in Sec-
tion §2, save that the code must detect when to
send a TokenArrival message rather than insert
a TokenArrival event in an event list. Our syn-
chronization protocol establishes control over these
inter-LP message communications. The protocol
relies on two key activities: the pre-sending of
TokenArrival messages, and the computation of

577

lower bounds on the time-stamp of the next mes-
sage an LP might send. We have already introduced
the notion of pre-sending Token Arrival messages—
these messages are sent as part of BeginFire event
processing, rather than EndFire event processing.

Given that TokenArrival messages are pre-sent,
one can, at any time, compute a lower bound on the
time-stamp of the next message an LP may send. For
any LP, consider the set of border transitions, those
transitions assigned to it which have output places
assigned to a different LP. Let é,,;, be the minimum
firing time among all the LP’s border transitions, and
suppose that T;,, is the value of the LP’s simula-
tion clock after completing some event’s processing
(the lookahead we discuss here is computed between
the processing of events, not during). The next mes-
sage the LP sends cannot have a time-stamp smaller
than Tyim + 6min, for only BeginFire events send
messages, and the time-stamps on these messages are
constructed by adding the LP’s clock value to the
transition’s firing time. Thus, Ty +6min always pro-
vides the desired upper bound. A potentially larger
conditional bound can be constructed with very lit-
tle extra cost by replacing Ty, with the least time-
stamp on any event in the event list, say F,.;,. We
take Epin = oo if the list is empty. The validity of
this bound is conditioned on the LP not receiving a
TokenArrival message with a time-stamp smaller
than E,;,. It turns out that bounds conditioned
on the absence of further message arrivals suffice for
our protocol. Our parallel solution assumes the ex-
istence of a routine BoundNextMsgTime() which
finds En;y, and returns the sum E,,;n+6min. We turn
next to a discussion of the protocol and its integration
into the simulation algorithm.

3.2 Parallel Algorithm

The following is a brief overview of the protocol.
Suppose that all simulation events in all LPs up to
(but not including) time Ty;,, have been simulated.
Our protocol will compute a simulation time w(Tyipm,),
such that all events with time-stamps in the window
[Tyim, w(Tsim)) can be executed without further com-
munication between LPs. Messages generated in the
course of processing BeginFire events are delivered
at the end of the window processing; upon receipt a
message is converted into a TokenArrival event and
is inserted into the recipient’s event-list. Once all
events up to time w(Tyim) are known to have been
simulated, a new window is computed, and the pro-
cess repeats.

From the description above it is clear that the
time w(T,im) must be chosen carefully. Given that

578

all LPs have simulated all events up to time Tj;yy,,
W(Tyim) is computed by having each LP call Bound-
NextMsgTime(). w(Tyim) is defined to be the min-
imum conditional bound returned, among all LPs.
The global minimum computation can performed in
O(N/P +log P) time on most multiprocessors, where
N is the number of LPs, P is the number of proces-
sors, and we assume that each processor is assigned
N/P LPs. We have proven elsewhere [Nicol, 1990]
that every message the simulation will send after this
point has a time-stamp of at least w(Ty;m). Thus, all
events that the simulation will generate in the inter-
val [Tyim,w(Tyim)) have already been identified and
reside in the appropriate event lists. Every LP may
therefore simulate its submodel up to (but not in-
cluding) time w(Ty;m) without danger of receiving a
“late” message. This property leads us to the proto-
col given below.

1. For every initial token, insert a TokenArrival
event in the appropriate LP’s event queue, with
time-stamp 0.

2. Set sy =0, set i =1.

3. For every LP, call BoundNextMsgTime().
Use a logarithmic time min-reduction to com-
pute w(s;)—the minimum value returned by any
BoundNextMsgTime() call. We may assume
that every LP learns the value of w(s;).

4. Every LP may now simulate its submodel up
to time w(s;), independently of and in parallel
with all other LPs. Event processing is iden-
tical to that described in Section §2, save that
TokenArrival events destined for off-LP places
are passed as time-stamped messages.

5. The LPs synchronize globally. Following the
synchronization, every LP may receive all mes-
sages sent to it during the processing of window
[si,w(si)). An LP processes a received message
simply by inserting the described event into the
LP’s event list.

6. Define s;4+1 = w(s;), then increment i. Check
termination conditions, return to step 3 if the
termination conditions are not satisfied.

The reason why this protocol will work well on large
models is quite intuitive. Imagine the simulation time
line, and mark it wherever an event occurs. This pro-
tocol slides a window across the time-line, allowing
LPs to be simulated in parallel during the span of a
window. Now suppose that a transition’s firing time
is always at least §,,;, time units long. Then the win-
dow width will always be at least §,,,;,. As we increase

Nicol and Roy

the size of the simulation model, the density of events
on the simulation time line will increase, and so the
number of events within a window will increase. The
overhead of the protocol lies only in determining the
size of the window; hence, as the model size grows
the protocol’s overhead is amortized over an increas-
ing number of events. Of course, one still strives to
keep the overhead low, but it is reassuring to know
that regardless of its cost, it can be spread over the
processing of many, many events on large models.

3.3 Example

The protocol’s mechanics are more easily understood
by way of an example. Figure 2 illustrates a TPN
partitioned into three LPs. LP; models a producer of
data. It has one place, BufferFree (BF) which holds
a token when a buffer associated with LP, is free.
The transition firing models the process of produc-
ing a data item, and is assumed to require 1 simula-
tion time unit. LP, models a data processor. It has
two places, DataReady (DR) and BufferFree (BF).
The DR place holds a token following the production
of a data item by LP;; the BF place holds a token
when a buffer associated with the third LP is empty.
LP,’s transition is enabled once a data item has been
produced by LP;, and LP3’s buffer is ready to re-
ceive the results of LPy’s processing. We assume this
transition’s firing time is also 1 simulation time unit.
Completion of this transition’s firing serves both to
provide a processed data item for LP3, and to free a
buffer for LP;’s output. Finally, LP3 models a data
consumer. It has a single place, DataReady, which
holds a token after LP, makes a processed data item
available. The single transition models the consump-
tion of the data item, assumed to require 1 simulation
time unit. Completion of the consumption activity
frees a buffer for LP;’s output.

Producer Processer Consumer

8 Vi N
v
7 Z AP0 7
LP LR, LP,

Figure 2: Three LP Petri-net Model of a Pro-
ducer/Processor/Consumer System

Parallel Simulation of Timed Petri-Nets

Consider an initial marking that places a token in
LP;’s place, and another in LP3’s DR place. LP,
is thus free to produce a data item, and LPj is free
to consume one. We may assume then that there
is a TokenArrival event in LP;’s event list, and a
TokenArrival event in LP3’s list, both with time-
stamp 0. LP»’s list is empty. According to the pro-
tocol, s; = 0, and we compute w(s;) by having each
LP call BoundNextMsgTime(). This function re-
turns value 1 for both the LP; and LPj calls (since
Emin = 0 and 6min = 1); the LP3 call returns oo
since LPy’s event list is empty. w(s1) = 1, and all
LPs are now free to simulate all events up to, but
not including, time 1. LP; is idle during this win-
dow’s processing. LP; processes its TokenArrival
event, which generates a BeginFire event at time 0.
The BeginF'ire event is processed, and as a result a
TokenArrival message for LP2’s DR place is gener-
ated, with time-stamp 1. An EndFire event at time
1is inserted into LP;’s event list. LP3’s processing is
similar; as a result of the processing a TokenArrival
message for LP2’s BF place is generated with time-
stamp 1, and an EndFire event at time 1 is inserted
into LP3’s event list. After processing all events in
the window, the LPs receive the messages generated
during the window processing. LP; is the only recip-
ient; it transforms its two TokenArrival messages
into TokenArrival events, both with time-stamp 1.
s, is defined to be time 1, and the protocol is again
engaged. Every LP has an event with time-stamp
1 in its event list, hence every LP’s call to Bound-
NextMsgTime() returns the value 2. w(sz) is thus
2, and the LPs are free to simulate up to time 2.
LP, processes its EndFire event at time 1; the tran-
sition’s firing is not re-enabled, so no messages are
generated as a result of this processing. The pro-
cessing of LP3’s EndFire event also fails to gener-
ate messages. The processing for LP, is more inter-
esting. LP, executes its first TokenArrival event,
say, for the BF place. The processing of this event
notes that the transition is not enabled to be fired,
as there is no token in the DR place. However, a
TokenArrival event for the DR place is processed
immediately afterward, enabling LP,’s transition to
fire. A BeginFire event at time 2 is scheduled, and
then executed. Processing of this latter event causes
TokenArrival messages with time-stamp 3 to be
sent to LP;’s BF place, and to LP3’s DR place. At
the end of the window’s event processing LP; and
LP3 transform their respective TokenArrival mes-
sages into TokenArrival events, which are inserted
into their event lists. The lower edge of the next win-
dow is defined to be 2, and the process repeats.

The first two windows in the sequence just de-

579

scribed are illustrated by Figure 3. Each window
summary lists the contents of each LP’s event at
the point the w(s;) computation is engaged, lists
the lookahead value returned by BoundNextMsg-
Time() to each LP, lists the events executed by each
LP after the window’s edge is computed, and lists the
messages sent by each LP as a result of this process-
ing.

4 PNTOOL

One of the goals of our efforts is to develop algo-
rithms for automatically clustering places and tran-
sitions into LPs, and for automatically assigning LPs
to processors. We believe this study should be con-
ducted on large, realistic Petri-nets, and recognize
that the construction of text files describing such nets
is tedious and error-prone. Consequently we devel-
oped pntool, an X-Windows based graphical tool for
rapidly developing large Petri-net models. In this sec-
tion we describe some of the more important features
of pntool.

pntool allows a user to graphically create and edit
a timed Petri-net. Panel buttons permit the cre-
ation/deletion of places, transitions, and arcs; these
are graphically placed using the cursor, as are ini-
tial markings of tokens to places. Every transition
and place is labeled automatically with an integer id;
transitions are also labeled with their firing times,
which again can be edited.

An important feature of pntool is its ability to
iconify a net design and duplicate it. Many large
petri-nets exhibit a great of replication. pntool ex-
ploits this by permitting one to design a portion of
the net and iconify it. Iconification makes the de-
sign available for rapid inclusion into larger models.
A pntool icon with the subnet name is created to
represent the subnet. At any time a user may select
an iconified design, and cause a duplicate of the net-
work represented by the icon to be placed in the net
design window. The user then must “connect” the
subnet with places and transitions already resident
in the design window.

pntool permits the construction of very large nets;
however, only a portion of a net can be viewed at a
time. pntool provides scollbars to position the user’s
view of the network.

Another important pntool feature allows the user
to cluster places and transitions into LPs, and to as-
sign LPs to processors. At present it is necessary to
use these features if one wishes to simulate the devel-
oped net on our parallelized Petri-net simulator. LP
clustering is accomplished using the cursor to create a
polygon enclosing a region of the net design space; all

580

Summary: Window [0,1)

Marking prior to time 0

V% "J/IA" ’/4
)) Y

N

Look- infini
ahead 1 infinity 1

Msgs TA@1 ->LP2 none
sent

Summary: Window [1,2)

Marking prior to time 1

7 L, A,
7

)
A / 7

Look-
ahead

sent none TA@2 > LP3 none

Figure 3: Example:Synchronization and Processing
of Two Windows

Nicol and Roy

Figure 4: Example of pntool Presentation Screen

transitions and places within the region are assigned
to the same LP. The region one creates may be com-
pletely general. In theory one could cluster any set of
transitions and places together into an LP; in prac-
tice it is much easier to cluster places and transitions
that are contiguous in the net design window. The
final step in clustering an LP is to assign the LP to
a processor. An integer giving the processor’s iden-
tity is then displayed in a corner of the LP. pntool
permits one to edit this assignment.

Figure 4 illustrates an example of the pntool pre-
sentation screen. Icons representing iconified subnets
are shown along the right side; the panel selection
items are shown along the left side. The dark regions
within the design window show how places and tran-
sitions have been clustered.

pntool produces a text file describing the net and
its initial marking. This file serves as the input file to
a parallel timed Petri-net simulator implemented on
an Intel iPSC/2 distributed memory multiprocessor.
Aside from this input file, all that is required of a user
at run-time is a specification of the number of pro-
cessors to use, and the length of simulation time one
wishes for this run. The performance of the simulator
on three pntool models is described next.

5 EMPIRICAL STUDIES

Three pntool models are the basis of our empirical
studies. These models were developed under pntool
and executed on a timed Petri-net simulation running

Parallel Simulation of Timed Petri-Nets

Figure 5: pntool representation of a Model 2 LP

under the YAWNS (Yet Another Windowing Network
Simulator) parallel simulation testbed [Nicol et al.,
1989]. These models are described briefly below.

Model 1 Each LP models a processing element in
a mesh-connected parallel system. The element
waits for four inputs (one from each of its four
mesh neighbors), performs a computation, then
sends the result to each of four mesh neighbors.
The Petri-net ensures that no element sends an-
other result to a neighbor until that neighbor
has consumed the previously sent result. Each
LP has 17 places, and 9 transitions.

Model 2 Each LP models a processing element, two
memory controllers and four banks of memory;
such ensembles are connected in a ring network.
A processing element receives a data item from
both of its ring neighbors, fetches two words
from randomly chosen banks. The petri-net is
constructed to handle memory contention in the
event both words are chosen from the same bank.
An LP has 26 places, and 23 transitions.

Model 3 Each LP models one stage in a feed-
forward pipeline. A pipeline stage can execute
when the results from the previous stage are
available, and a buffer is free in the next stage.
An LP has 4 places and 2 transitions.

A graphical description of a Model 1 LP is found
shown as the selected region in Figure 4. Figure 5
below describes one LP of a Model 2 system. A Model
3 LP is similar to LP; in Section §3.3.

These three basic models were simulated in con-
figurations of 16,32,64, and 128 LPs. Each model
was distributed evenly among 16 processors of an In-
tel iPSC/2 [Bomans and Roose, 1989]. Each model

581

Model 1 Model 2 Model 3
16 LPs 0.26 0.40 0.28
32 LPs 0.40 0.52 0.36
64 LPs 0.52 0.66 0.48
128 LPs 0.65 0.77 0.63

Table 1: Measured Processor Utilizations (for 16 Pro-
cessors) as Function of Model Type and Size

Model 1 Model 2 Model 3
16 LPs 60 154 48
32 LPs 120 309 96
64 LPs 240 618 192
128 LPs 480 1237 384

Table 2: Average Total Events Processed Per Win-
dow, as Function of Model Type and Size

was executed for approximately 3 real-time minutes
(within which a few millions of events are executed)
and the performance measured. YAWNS summarizes
performance via four distinct per-processor averages:
the time spent sending/receiving inter-processor mes-
sages, the time spent in synchronization and window-
edge computations, the time spent transforming LP
messages into events, and the time spent executing
events. Of these, the first two are considered to be
overhead—costs which would not be suffered in a se-
rial implementation. The last two measure activities
which are part of serial implementations, event list
manipulation and event processing. YAWNS com-
putes utilization to be one minus the relative fraction
of time spent in overhead activities, or equivalently,
the fraction of time spent engaged in activity that
a serial implementation would also perform. Sixteen
times utilization thus provides a rough measure of
“speedup”, although speedup ought to be measured
using an optimized serial implementation, which we
have not done.

Table 5 gives the utilizations so measured, as a
function of model type and size.

Table 2 gives the average number of events pro-
cessed per window, also as a function of model and
size.

These figures agree with the intuition that perfor-
mance improves as the size of the simulation model
increases. This is suggested both by scanning down a
column, and by comparing the relative performance
among models. A Model 2 LP is significantly more
complex than a Model 3 LP, and can be expected to

582
Time Distribution, Model 1
1.0 1 —
fi 0.8 -
§0.4-. \Q \\ » &
N \
16LPs 32LPs 64LPs 128LPs

Model Size

Events Synch
B Msg->Evts Comm.

Figure 6: Distribution of Time Spent in YAWNS Ac-
tivities

induce more simulation activity per window.

It is also interesting to note the proportions of
time spent in each of the four activities YAWNS
times. Figure 6 illustrates these proportions for
Model 1, as a function of model size. It is apparent
that as the model size increases, the proportion of
time spent executing events increases. The propor-
tion of time spent in message communication or in
message-to-events conversion is decreasing, reflecting
greater computation/communication ratios enjoyed
under larger model sizes. The proportion of time
spent in synchronization increases slightly, approxi-
mately as the log of the number of LPs.

The Intel iPSC/2 is a distributed memory multi-
processor. It is thus is not the optimal architecture
for the parallel simulation algorithm, because of the
relatively tight global synchronization the algorithm
imposes. The significant proportion of time spent in
inter-processor communication would be reduced dra-
matically if the messages were exchanged through a
global memory. Nevertheless, despite the high cost
of communication, our performance data shows that
good performance gains are being achieved.

6 SUMMARY

This paper studies the problem of parallelizing the
discrete-event simulation of large timed Petri-nets on
medium-scale multiprocessors. We describe a syn-

Nicol and Roy

chronization algorithm, a graphical tool for designing
TPNs to be simulated in parallel, and study the per-
formance of the simulation on 16 processors of an In-
tel iPSC/2. Significant performance benefits are ob-
served, with the promise of even better performance
on shared-memory architectures.

ACKNOWLEDGEMENTS

This work was supported in part by NASA Grant
NAG-1-060, the Army Avionics Research and Devel-
opment Activity through NASA grant NAG-1-787,
NASA Grant NAG-1-1132, and NSF Grant ASC-
8819373.

References

[Bomans and Roose, 1989] L. Bomans and D. Roose.
Benchmarking the iPSC/2 hypercube multiproces-
sor. Concurrency: Practice and Ezperience, 1(1):3-
18, Sept. 1989.

[Chandy and Misra, 1979] K.M.
Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed
programs. IFEE Trans. on Software Engineering,
5(5):440-452, September 1979.

[Frank et al., 1985] G.A. Frank, D.L. Franke, and
W.F. Ingogly. An architecture design and assess-
ment system. VLSI Design, pages 30-38, August
1985.

[Fujimoto, 1990] R. M. Fujimoto. Parallel discrete
event simulation. Communications of the ACM,
33(10):30-53, October 1990.

[Jefferson, 1985] D. R. Jefferson. Virtual time. ACM
Trans. on Programming Languages and Systems,
7(3):404-425, 1985.

[Lubachevsky, 1989] B.D. Lubachevsky. Efficient
distributed event-driven simulations of multiple-
loop networks. Communications of the ACM,
32(1):111—123, 1989.

[Murata, 1989] T. Murata. Petri nets: Properties,
analysis, and applications. Proceedings of the
IEEE, 77(4):541-580, April 1989.

[Nicol et al., 1989) D. Nicol, C. Micheal, and P. In-
ouye. Efficient aggregaton of multiple LP’s in dis-
tributed memory parallel simulations. In Proceed-
ings of the 1989 Winter Simulation Conference,
pages 680-685, Washington, D.C., December 1989.

Parallel Simulation of Timed Petri-Nets

[Nicol, 1988] D.M. Nicol. Parallel discrete-event
simulation of FCFS stochastic queueing net-
works. SIGPLAN Notices, 23(9):124-137, Septem-
ber 1988.

[Nicol, 1990] D.M. Nicol. The cost of conservative
synchronization in parallel discrete-event simula-
tions. Journal of the ACM, to appear. Avail-
able as Technical Report 90-20, ICASE, Mail Stop
132C, NASA Langley Research Center, Hampton,
VA 23665.

[Nicol, 1991] D.M. Nicol. Performance bounds on
parallel self-initiating discrete event simulations.
ACM Trans. on Modeling and Computer Simula-
tion, 1(1):24-50, 1991.

[Thomas and Zahorjan, 1991] G. Thomas and J. Za-
horjan. Parallel simulation of performance petri
nets: Extending the domain of parallel simulation.
In Proceedings of the 1991 Winter Simulation Con-
ference, Phoenix, Arizona, December 1991. To ap-
pear.

AUTHOR BIOGRAPHIES

DAVID M. NICOL received an B.A. in Mathemat-
ics from Carleton College in 1979, worked as a pro-
grammer analyst with the Control Data Corporation
from 1979 to 1982, and received a Ph.D. in Computer
Science from the University of Virginia in 1985. He
spent the subsequent two years at the Institute for
Computer Applications in Science and Engineering at
the NASA Langley Research Center, and then joined
the faculty of the College of William and Mary, where
is currently an Assistant Professor. He is an associate
editor for ACM Transaction on Modeling and Com-
puter Simulation, and for the ORSA Journal on Com-
puting; he has served as the 1989 Program Chairman
and the 1990 General Chairman of the Workshop on
Parallel and Distributed Simulation (PADS). His in-
terests are in parallel simulation, performance analy-
sis, and algorithms for mapping parallel workload.

SUBHAS ROY received the B.E. degree in
Computer Science and Engineering from the
Jadavpur University, India, in 1987. He received the
M.S. degree in Computer Science from the College
of William and Mary in 1990, and is presently
pursuing a Ph.D. there on the topic of automated
load-balancing of parallel simulations.

583

