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ABSTRACT

We present a parallel simulation protocol for Perfor-
mance Petri nets (PPNs), nets in which transition
firings take randomly selected amounts of time. This
protocol is interesting for two reasons. First, appli-
cation of standard conservative or optimistic paral-
lel simulation to PPNs results in either unnecessarily
low (possibly no) parallelism or simply fails to pro-
duce correct results. Thus, this new protocol may
be thought of as addressing a class of models not
amenable to standard parallel simulation, with PPNs
being a particular example. Second, PPNs are cur-
rently analyzed using numerical techniques that have
time and space requirements exponential in the size
of the net. Simulation, and particularly parallel sim-
ulation, is thus a practical alternate analysis method
for these models, as we show by measurement of ex-
ecution times.

We introduce a new technique called Selective Re-
ceive that loosens a fundamental rule of conservative
parallel simulation by allowing model components to
sometimes ignore certain of their input channels and
so to determine their local clock times based on only
a subset of their potential inputs.

Finally, we discuss a small modification to the def-
inition of PPNs that, while not affecting their ex-
pressive power, allows for much more efficient simu-
lations.

1 INTRODUCTION

Performance Petri nets (classical Petri nets aug-
mented with the notion of time) are a powerful tool
for the modeling of systems. Their application is lim-
ited, however, by the Markovian assumptions and ex-
ponential complexity of the analytic techniques typ-
ically employed in their analysis. For these models,
simulation provides an attractive alternative: few, if
any, restrictions need to be imposed and, as we will
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show, the execution time required to obtain model
performance results can be much less than that re-
quired by the analytic techniques.

It is natural to consider the use of parallel simula-
tion to reduce even further the elapsed time required
to obtain performance measures from Performance
Petri net (PPN) models. Using parallel simulation
for this purpose, however, requires modification of the
basic mechanisms on which it is structured.

Parallel simulation has been applied chiefly to sys-
tems in which the actions of a component (a physical
process) are determined solely by its local state. Both
the conservative [Misra 86] and optimistic [Jefferson
85] approaches to parallel simulation assume that in-
teraction among components occurs exclusively via
explicit messages.

When a physical system conforms to this paradigm
of interaction, a parallel simulation can be built in
a natural way by creating a set of logical processes
(LPs) that mimics the behavior of the physical pro-
cesses. The potential parallelism of the simulation
scales with the problem size, since a larger physical
system (i.e., one with more physical processes) maps
to a simulation with a larger number of logical pro-
cesses.

In contrast, as explained in Section 2.2, the dy-
namic behavior of each component of a PPN depends
on both internal and external (possibly global) state.
This reliance on external state prevents the standard
paradigm of parallel simulation from being applied in
a useful way.

The first goal of this paper, therefore, is to present
a parallel simulation protocol that is both correct and
provides parallelism that scales with the size of the
PPN model itself. A second goal is to determine the
amenability of PPNs to parallel simulation by im-
plementing our protocol and measuring its perfor-
mance. A final aspect of this problem, a compari-
son of the computational complexity of conservative
parallel simulation of PPNs to that of analytic tech-
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Figure 1: An Example PPN Multiprocessor Model

niques, is also addressed through measurement, using
GTPNA [Holliday & Vernon 86] (an analytic PPN
package) as the basis of comparison.

2 PERFORMANCE PETRI NETS AND
PARALLEL SIMULATION

In this section we briefly introduce PPNs, discuss var-
lous possible decompositions of nets for the purpose
of parallel simulation, and explain why the standard
paradigm of parallel simulation does not work for the
most promising decompositions. For more extensive
introductions to PPNs, [Ajmone Marsan & Chiola 87,
Murata 89] are recommended.

2.1 Performance Petri Nets

Figure 1 gives a graphical representation of a PPN
model of a bus-based multiprocessor computer sys-
tem consisting of four processors and four memory
modules connected by a single bus.

A PPN is a bipartite directed graph in which the
two types of nodes are places, drawn as circles, and
transitions, drawn as bars.

If there is an arc (p, t) from a place p to a transition
t, we say that p is an input place of t. Similarly, if
there is an arc (t, p) from ¢ to p, we say that p is an
output place of t. (The analogous definitions hold for
input transition and output transition.) A place that
is an input place for multiple transitions is called a
decision place.

At any point in time, each place in a PPN is marked
with zero or more tokens, drawn as dots. The mark-
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ing of a place is the number of tokens at the place,
and the marking of a net is the vector of markings of
its places.

A net’s marking is affected by the firing of tran-
sitions. The firing of a transition ¢ removes a token
from each of ¢’s input places and, after a delay cho-
sen from the firing time distribution of the transition,
deposits a token in each of t’s output places.

A transition can begin to fire (i.e., consume tokens
from its input places) only when it is enabled. A
transition is enabled when each of its input places
contains at least one token. An enabled transition
may begin to fire even if it is already in the process
of firing (due to earlier enablings).

Let P be the set of places of a PPN, p; € P, OT(p;)
the set of output transitions of p;, and R* the reflex-
ive transitive closure of the relation R C P2, defined
by piRp; if and only if OT(p;) N OT(p;) # 0. R*
partitions P into a set of equivalence classes (called
locksets in [Taubner 88]). The places in such an equiv-
alence class, along with their output transitions, con-
stitute a static conflict set.

A dynamic conflict set is a set of transitions (and
their associated input places) that are actually en-
abled and competing for tokens (at decision places)
at some point in time. A dynamic conflict set is thus
a subset of some static conflict set. When a dynamic
conflict set exists, a subset of its transitions must be
chosen to fire. This is called conflict resolution.

Under our conflict resolution scheme, explained in
Section 5, the definition of the PPN is extended to
include weights on arcs from places to transitions.
Other extensions to PPNs have been made to increase
their modeling capability or their ease of use: arc mul-
tiplicity, deposit branching, and generalized inhibitor
arcs. These are described in [Thomas 91].

2.2 Parallel Simulation and PPNs

To perform a parallel simulation, the system to be
simulated—a PPN, in our case—is mapped to a net-
work of LPs that communicate through unidirectional
channels [Chandy & Misra 81].

There are a number of ways to map a PPN into a
network of LPs. In choosing one, the basic tradeoff of
parallel computing applies: increasing the number of
LPs working on the problem can decrease the elapsed
execution time (a benefit) but can also increase inter-
LP communication overhead (a cost).

Perhaps the most natural PPN-to-LP mapping is
an isomorphism: one LP per PPN node and one chan-
nel per PPN arc. This node-based decomposition has
the potential to address very large problems running
on massively parallel machines. However, neither the
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standard conservative nor optimistic method of par-
allel simulation can be used for this decomposition.

In standard parallel simulation, interaction among
physical processes occurs exclusively via explicit mes-
sages, with messages in the logical system correspond-
ing to messages in the physical system [Chandy &
Misra 81]. The node-based decomposition of PPNs
violates this paradigm because the behavior of a node
of the net may be determined by state that is global
with respect to that node rather than through ex-
plicit message exchange. For example, this is always
the case for decision places. This problem exists for
optimistic as well as conservative parallel simulation.

An alternative mapping of a PPN into a network of
LPs is one in which each LP represents a static con-
flict set of the net, with channels corresponding to
arcs between conflict sets. This mapping has charac-
teristics that are just the opposite of the node-based
mapping discussed above. The potential parallelism
of this decomposition is poor, as there is no direct re-
lationship between the size of a PPN and the number
of conflict sets it contains.

In the end, the most appropriate decomposition
of a PPN into a network of LPs is probably some
combination of these two approaches. With this un-
derstanding, in the remainder of this paper we con-
centrate on the node-based decomposition, since it
presents new challenges for parallel simulation. We
first consider the problem of simply correctly simulat-
ing a PPN using this decomposition. Subsequently,
we examine its performance using a prototype imple-
mentation.

3 THE TRANSITION FIRING PROTO-
COL

A protocol for the conservative parallel simulation of
PPNs, which we call the Transition Firing Protocol
(TFP), is presented in this section. We chose to fol-
low a conservative approach because we expected its
performance characteristics to be more stable (and
often better) than those of an optimistic approach.
Recall from Section 2.2 our chosen decomposition:
each place and each transition is represented by an
LP, and each arc in the net is represented by a chan-
nel. We augment this simulation model by introduc-
ing additional channels: there is a channel from LP
t; to LP p; if there is an arc from place p; to tran-
sition t; in the PPN. To distinguish these additional
channels from the “ordinary” channels (along which
tokens may flow) we refer to them as control channels.
The graphical representation of the simulation
model is identical to that of the PPN, except that
we include control channels (drawn as dashed arcs)
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Figure 2: Overview of TFP

when appropriate.

TFP is basically a double handshake between tran-
sitions and their input places, as indicated in Fig-
ure 2. The notation Message(n)@T7 means Mes-
sage, passing parameter n, is sent at simulation time
Ti. Ti is the timestamp of Message; every message
has a timestamp. TFP’s double handshake is moti-
vated by decision places; a streamlined protocol can
be adopted for certain simple net topologies.

In what follows, we describe the four steps in the
handshake without explicitly considering how they
are integrated with the messages corresponding to
the token deposits due to transition firing. This in-
tegration, which is somewhat subtle, is provided in
[Thomas 91]. For the sake of simplicity in the follow-
ing discussion we assume regular (i.e., noninhibitor)
arcs of multiplicity one. TFP handles the general
case—regular and inhibitor arcs of any multiplicity.

o Activate(n)@TO

The first handshake starts when place p1 receives
a deposit of n tokens at time TO, causing it to
send an Activate(n)@TO message to each of its
output transitions, indicating that it has n to-
kens available at time TO.

® Request(m)@T1

Once t1 has received an Activate from each of
its input places it calculates T1 > TO, the latest
timestamp of any of the Activate messages it has
received, and m < n, the smallest of the Activate
parameters. t1 then updates its (local) simula-
tion clock to T1 and responds to each input place
with a Request(m)@T1 message, asserting that
it is ready to fire m times at time T1 if all of
its input places (still) contain sufficient tokens
at that time.

o Grant(k)QT2

p1 waits to receive a Request from each output
transition it has sent an Activate. (This is why
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our approach is conservative.) Let T2 < Tl
be the earliest timestamp among these Requests.
(In Figure 2, T2 = T1.) When p1 has received all
Requests timestamped T2, it executes a conflict
resolution algorithm (explained in Section 5) to
choose among competing earliest Requests, and
then replies to each with a Grant(k)@T2 mes-
sage, indicating that k£ < m tokens are available
to the sender of the Request for firing. (Note that
k could be zero.)

o Confirm(j)@T2

t1 collects a Grant message from each of its input
places. Let j be the minimum parameter of these
Grants. (Thus, j could be zero.) t1 ends the
second handshake by sending a Confirm(j)@QT2
to each input place, indicating that t1 has fired
Jj times.

If appropriate, t1 schedules one or more De-
posit(h)@T3 messages, where 0 < h < j and T3
> T2, to be sent (when the corresponding firing
delays have elapsed) to one or more of its output
places.

The protocol just described resembles in some ways
several of the protocols developed by Taubner [Taub-
ner 88]. That work was performed in the con-
text of “Petri net driven execution” of distributed
programs—the firing of a transition causes the invo-
cation of a procedure, with the Petri net itself used
to determine the flow of control (e.g., [Hartung 88])—
rather than in the context of simulation of PPNs.

Our work differs significantly from Taubner’s in at
least three ways. First, Taubner assumes untimed
nets, so there is no notion of simulation time. Sec-
ond, our conflict resolution strategy is different from
those proposed by Taubner. Finally, because each
transition firing results in a procedure execution, the
amount of overhead required to run the protocol is
less important for execution of distributed programs
than it is in our simulation context, where a transi-
tion firing involves very little inherent work. Thus,
we have been more sensitive to these overheads in de-
signing our protocol and prototype implementation.

4 SELECTIVE RECEIVE AND TFP

A basic tenet of the conservative approach to paral-
lel simulation is that messages on each channel must
be sent in nondecreasing timestamp order. It is this
property that distinguishes conservative from opti-
mistic simulation.

The standard conservative algorithm achieves this
output ordering goal by imposing an input ordering
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restriction. Associated with a channel from LP; to
LP; is a channel clock value, ¢;j, which is equal to the
earliest timestamp of any undelivered message pend-
ing on that channel, if one exists, or else the time of
the last message sent on it. LP; is prevented from
receiving a message m having timestamp T}, unless
Tm is equal to Hj, the message acceptance horizon of
LP;, where H; = m'_in Cij-

This input ordering restriction is a major source of
performance problems for conservative simulations,
including the possibility of deadlock. Consequently,
a great deal of work has focused on minimizing its
impact (e.g., [Reed et al. 88, Nicol 88, Wagner &
Lazowska 89, Fujimoto 90]).

The problem of deadlock is particularly extreme for
TFP. Because transitions send messages along their
control channels only in response to messages received
from the input place connected there, no messages
can be received by places at the beginning of a TFP
cycle.

Our solution to this problem is to change the rules
governing the receipt of messages by LPs. In particu-
lar, we allow each LP to specify that certain channels
should be ignored in computing that LP’s message
acceptance horizon, thus allowing the receipt of mes-
sages that would otherwise have to remain pending.
We call this feature Selective Receive.

Selective Receive can be applied when an LP can
deduce that the next message it will receive (in simu-
lation timestamp order) cannot arrive on one or more
of its input channels. Under TFP in particular, a
place LP knows statically that any output transition
not sent an Activate message by it will not send it any
messages. Thus, the LP is free to receive the earliest
message from the remaining channels.

Note that Selective Receive is distinct from ap-
proaches based on null messages, lookahead, and fu-
tures. Unlike null messages, Selective Receive does
not involve the transmission of any extra control mes-
sages. Unlike lookahead and futures, Selective Re-
ceive can be used to avoid performance problems in-
volving message channel loops even when the lower
bound on the message propagation delay around the
loop is zero. In fact, our use of Selective Receive in
TFP serves exactly this purpose.

Under TFP, a place LP never ignores a channel
from an input transition LP. It ignores a channel
from output transition LP; except between the time
at which it sends an Activate to LP; and the time
at which it receives the corresponding Confirm. A
transition LP ignores a channel from input place LP;
after it receives an Activate from LP; until it sends
Requests, and after it receives a Grant from LP; until
it sends Confirms.



568

5 CONFLICT RESOLUTION

When one or more decision places in a conflict set
contain tokens, a decision must be made about which
set of transitions to fire. While a number of proposals
have been made for this decision procedure, there is
no standard agreement on this aspect of PPNs. Our
technique is modeled on a flexible approach offered
by [Holliday & Vernon 87]. They allow the user to
specify weights that are the basic parameters of a
function that assigns probabilities to each mazimal
set (a set of transitions within a dynamic conflict set
such that, if those transitions were to fire, no other
transitions in the conflict set could also fire). A single
maximal set is then chosen for firing according to this
probability distribution. While Holliday and Vernon
proposed this scheme for use in analytic approaches
to PPN analysis, their technique is easily applied in
a sequential simulation.

In a parallel simulation, however, applying this
technique is much more complicated. The reason
for this is that determining maximal sets requires a
global view of the net at a particular simulation time,
a difficult prospect in a parallel simulation. Further,
because each LP has information about only its lo-
cal state, no LP is naturally in a position to compute
maximal sets. To do so requires the creation of a new
LP for this purpose, and cooperation from place and
transition LPs in registering state information with
this LP. This is a complicated protocol to implement,
and tends to serialize execution of the simulation.

When constructing a parallel simulation of PPNs,
a decentralized approach is more natural. The one we
use is based on “trial-and-error”: each decision place
selects at random according to the user-supplied arc
weights one or more transitions that it would like to
fire, and offers them tokens. If any transition is lucky
enough to receive offers from all input places, it then
fires. Otherwise, it replies that it cannot use any of
the tokens and its input places try again.

This procedure, which is incorporated in the TFP
policy described in Section 3, is completely decen-
tralized: each place makes decisions based solely on
information available to it either locally or through
communication with its own output transitions only.
Thus, we might expect the decentralized approach to
have better performance than the more serial maxi-
mal set-based approach.

While this reduction in serialization may have im-
portant performance implications, experience with
our simulator shows that an even more important ef-
fect is the change in computational complexity that
results from the decentralized approach. Enumerat-
ing maximal sets is of exponential complexity [Holli-
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day & Vernon 87], both in terms of time and space.
Thus, if conflicts involving a large number of tran-
sitions or tokens occur with any frequency, conflict
resolution by this approach can be extremely slow.
On the other hand, the time requirement of the de-
centralized scheme depends on the arc weights. Since
each decision place selects transitions independently,
an unfortunate set of arc weights could lead to a very
large expected time to determine a firing.

We note that the decentralized conflict resolution
scheme has slightly different semantics than the max-
imal set-based approach, reflecting the difference be-
tween the “repeated trials” approach of the former
and the one-time enumeration of the latter. In gen-
eral, neither scheme is able to simulate the other, i.e.,
no choice of weights for the decentralized scheme re-
sults in a distribution identical to that of the max-
imal set scheme and vice versa. However, this is
not considered a significant problem since there is no
standard for conflict resolution semantics and neither
scheme provides a significantly more convenient way
for the user to express the desired behavior of the
model.

We also note that while the decentralized scheme
employed in TFP could be emulated in a sequential
simulation, resulting in performance gains compara-
ble to those we observed in the parallel simulations,
this would be somewhat unnatural. It therefore seems
unlikely that the new scheme would have been devel-
oped in a sequential environment.

6 IMPLEMENTATION AND PERFOR-
MANCE

We have two goals in this section. The first is to
examine how well a parallel simulation using a node-
based decomposition of a PPN is able to exploit avail-
able processors. We address this by measuring the
speedups obtained for simulations of a number of
realistic PPNs. Our second goal is to evaluate the
growth in the running time of our PPN simulation as
the size of the PPN increases, and to compare these
times with those obtained using analytic approaches
to PPN evaluation. In this case, we take a single PPN
model and increase its size in a natural way (as ex-
plained below), and evaluate these models using both
analytic and simulation approaches.

6.1 Persephone

Persephone [Thomas 91] is a prototype implementa-
tion of TFP written in C++ [Stroustrup 86]. Perse-
phone is built on top of a modified version of Synapse
[Wagner 89], a library of C++ classes for conservative



Parallel Simulation of Performance Petri Nets

Figure 3: Instruction Pipeline Net

parallel simulation. Synapse runs on a Sequent Sym-
metry multiprocessor, and exploits the shared mem-
ory of this machine in an attempt to achieve good
performance [Wagner & Lazowska 89].

The implementation of TFP required several mod-
ifications to Synapse. The primary changes involve
its lookahead, deadlock detection and recovery, and
message delivery mechanisms. Selective Receive—
the major enhancement made to Synapse—violates
the normal message delivery semantics of conserva-
tive simulation (and thus of Synapse), so many of the
changes are directly related to Selective Receive.

Because Persephone is built on top of Synapse, and
Synapse itself is built on top of yet another run time
system (a user-level threads package named PRESTO
[Bershad et al. 88]), determining where the bottle-
necks are in a Persephone simulation is a signifi-
cant challenge. The three systems together comprise
40,000 lines of C++ code.

6.2 Speedup Versus Number of Processors

In this section we examine the speedups achieved by
Persephone on six distinct PPN models. Each of the
PPN models represents an interesting computer sys-
tem, and while certain aspects of these models have
been given less attention here than would be appro-
priate if our purpose were in fact to model these com-
puter systems, their basic structures could be used to
answer performance questions about those systems.
We first briefly present the six PPNs and then the
set of speedups observed in their simulations. The
initial markings of the PPN models are shown in their
respective figures.

Figure 3 shows Pipe, our first PPN model. Pipe
represents an instruction pipeline in a CPU. There
is a token source, representing instruction issue, fol-
lowed by a number of pipeline phases, each repre-
sented as a single place and transition pair. Control
channels are shown explicitly, as dashed arcs, to em-
phasize the fact that the net is not truly feed-forward.

Our second application, called Multiprocessor, is
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the bus-based multiprocessor computer system intro-
duced in Section 2.1 and appearing in Figure 1.

Our third application is the performance evalua-
tion of a simple time-shared computer system. This
is an application often addressed using queueing net-
work models. We include it here because much of
the work on parallel simulation techniques has used
queueing models (and especially this one) as an appli-
cation [Reed et al. 88, Nicol 88, Wagner & Lazowska
89, Greenberg & Lubachevsky 90] and because queue-
ing models are easily represented by PPNs. In this
model, named CentralServer and appearing in Fig-
ure 4, each token represents a job in a multiprogram-
ming system, and circulates between the CPU and
I/O devices acquiring service.

A window flow controlled communication channel
is our fourth application. The PPN model for this
application, called CommChannel, is shown in Fig-
ure 5. In this case, a source machine sends mes-
sages to a destination machine using a communication
network. Each message is broken into a number of
frames for transmission (in the model, each message
creates three frames), and each frame is individually
acknowledged. Packets are placed on the network one
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at a time, and for a window size W there can be up
to W unacknowledged packets sent.

In our final application, which involves two distinct
PPN models, we compare two schemes for acquir-
ing multiple locks in a database system. We assume
that the database consists of some number of lockable
units, called granules, and that arriving transactions
require one or more granules for execution. For sim-
plicity, we assume a very simple and regular pattern
to determine which granules an individual transaction
will require. In particular, each transaction acquires
a sequence of consecutively numbered granules. For a
system with G granules, each arriving transaction ac-
quires a sequence starting with granule g, 1 < ¢ <G,
with probability 1/G. A transaction requiring a gran-
ule r also requires granule r + 1 (if it exists) with
probability 0.5.

The comparison we make is between a locking
scheme in which an arriving transaction must wait
until it can simultaneously acquire all the locks it
will need (we call this scheme “All-At-Once”) and a
scheme in which each transaction acquires each lock
it needs as it becomes available, but runs only once
all locks are acquired (we call this scheme “One-At-
A-Time”). For One-At-A-Time, to avoid deadlock
the granules must be acquired by all transactions in
a specific order.

The PPN models for these schemes are shown in
Figures 6 and 7. Because the size of the PPNs
grows quickly with the number of granules, the fig-
ures are for systems containing only three granules.
Our experiments, however, are for systems containing
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five granules. (In both models, deposit branching out
of transition RequestT is used to determine which
granules a transaction will require. The branching
probabilities are set to reflect the transaction charac-
teristics outlined above.)

The speedup curves for the aforementioned PPNs
are given in Figure 8. We define speedup for a Perse-
phone simulation using p processors to be the exe-
cution time for Persephone on one processor divided
by the execution time for Persephone on p processors.
Note that the CentralServer and CommChannel mod-
els have fewer than sixteen data points because they
have fewer than sixteen LPs.

The linear speedup exhibited by Pipe would not
ordinarily be surprising, since the net is largely feed-

16-Al-A-Time
-Once
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Table 1: Conflict Sets and Maximum Speedup of PPN
Models

[ Model | Conflict Sets | Speedup |
Pipe 8 9.8
CommChannel 3 3.8
Multiprocessor 6 3.6
DB One-At-A-Time 6 2.9
DB All-At-Once 2 2.8
CentralServer 5 2.1

forward. The presence of the control channels, how-
ever, introduces a large amount of feedback into the
topology of the simulation model, which makes the
linear speedup somewhat unexpected. We hypothe-
size that the feedback due to the control channels is
what prevents the speedup from being perfectly lin-
ear, i.e., of slope one.

The remaining models each exhibit speedups flat-
tening out at between four and eight processors and,
not coincidentally, contain large amounts of feedback
in the PPN itself. There are several factors limit-
ing these speedups. First, a model may have poor
speedup potential regardless of the degree of concur-
rency in the system being modeled [Wagner 89]. As
an example, Wagner shows that the queueing network
model from which CentralServer is derived has a theo-
retical limit of 3.67 on its achievable speedup despite
the fact that the queueing network simulation con-
tains five LPs. Thus, for some models the limit on
speedups is intrinsic to the problem and cannot be
fixed by tuning.

Second, there are theoretical limits on the perfor-
mance of conservative parallel simulation that are re-
lated to the topology of the simulation model [Lin
90]. Lin shows, for example, that under certain con-
ditions the speedup of a conservative parallel simula-
tion cannot exceed the number of strongly connected
components in the simulation model. In the TFP
simulation model used by Persephone, the strongly
connected components are precisely the static conflict
sets of the PPN. Table 1 gives the number of static
conflict sets in each of the models and the maximum
speedup achieved by Persephone on the model. Since
Persephone does not meet Lin’s criteria exactly, in
some cases it does achieve speedup greater than the
number of strongly connected components, but over-
all these results can be viewed as experimental evi-
dence that supports Lin’s work.

We hypothesize that another factor limiting
speedup is serialization due to critical sections in the
underlying software systems on which Persephone is
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built. For example, Synapse’s scheduling of LPs on
processors, which happens in concert with PRESTO,
requires a queue of ready LPs. Access to this queue
must be serialized to ensure correct execution. While
we have been unable to verify directly (because of lack
of appropriate measurement tools) that contention for
this queue is limiting speedup, this hypothesis is con-
sistent with our experience with other applications
using the PRESTO system.

6.3 Execution Time Versus Model Size

For these measurements we compare the execution
times of Persephone and an analytic solver, GTPNA
[Holliday & Vernon 86], on the Multiprocessor PPN
model as the number of processors in the model varies
from 1 to 32 (achieved by varying the initial mark-
ing of place BusyProcessors). All measurements are
of Persephone running on eight physical processors
of a Sequent Symmetry and GTPNA running on a
DEC VAXstation 3500 with 16 Mbytes of memory.
The execution times from the different systems can-
not meaningfully be compared directly, so the metric
we use is normalized execution time—the time for
model size s divided by the time for model size 1.

The normalized execution times for Persephone
and GTPNA on the Multiprocessor PPN model are
plotted in Figure 9. For each Persephone run, we used
the sequential stopping procedure of Law and Carson
(as described in [Law & Kelton 82]) to terminate the
simulation when it reached a 99% confidence interval
of relative precision 0.2 for an estimate of the average
time spent by a token at place BusFree.

The exponential time complexity from which the
analytic techniques all suffer is evident in the curve
for GTPNA: GTPNA requires over 42 times as long
to evaluate the 3-processor model as it does the 1-
processor model, and it is infeasible to use it on larger
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Table 2: Execution Time (Seconds) of Persephone
and Seq on DB Models

[ Model [ Persephone  Seq |

DB All-At-Once 61.5 658.2
DB One-At-A-Time 104.4 129.6

models. (We observed runs of the 4-processor model
that consumed more than 150 CPU hours without
finishing.) The execution time of Persephone, on the
other hand, is nearly constant across the entire range
of model sizes. (Actually, as explained in [Thomas
91], the execution time decreases as model size in-
creases.) Although we cannot claim, based on this
single example, that simulation will always dominate
the analytic methods so convincingly, we are encour-
aged by these results because they demonstrate that
such domination is at least possible.

One of the advantages Persephone has over
GTPNA is its decentralized conflict resolution
scheme, presented in Section 5, which allows it to
avoid computing maximal sets. Note, however, that
any PPN evaluation technique that resolves conflicts
in the standard centralized way is at a similar disad-
vantage. To illustrate this concretely, we constructed
a sequential PPN simulator (call it “Seq”) that pro-
vides a subset of the functionality of Persephone but
that resolves conflicts by computing maximal sets.
Seq is written in C++ and runs on the same ma-
chine as Persephone, so its execution times are di-
rectly comparable. Table 2 lists the execution time
in seconds for Persephone (running on a single pro-
cessor) and Seq to simulate two of the PPN models.
Persephone running on one processor is faster than
Seq, a simulator that provides less functionality, and
the gap in execution times widens as the sizes of the
conflict sets grow.

7 SUMMARY

We have examined the use of parallel simulation for
the analysis of Performance Petri nets. Because the
actions of the “physical processes” of PPNs require
global information, these networks present new chal-
lenges for parallel simulation methodologies, which
have assumed that physical processes interact only
through the explicit exchange of messages.

We have developed a parallel simulation protocol
for PPNs, the Transition Firing Protocol, that copes
with the global nature of their actions. This proto-
col is based on the conservative approach to parallel
simulation. We have introduced a new technique to
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conservative simulation, Selective Receive, that re-
laxes the traditional message receipt rules by allow-
ing a logical process to sometimes ignore specific in-
put channels when attempting to receive messages.
Using information about the PPN simulation known
statically, we use Selective Receive to allow receipt of
messages that would normally have to remain pend-
ing, leading quickly to deadlock of the simulation.

We have also introduced a new conflict resolution
procedure for PPNs that was inspired by the parallel
simulation approach. This conflict resolution proce-
dure has been observed to be much faster in practice
than the exponential procedures used previously.

Finally, we have created a prototype implementa-
tion of our parallel PPN simulator and measured its
performance. Its speedup characteristics are similar
to those obtained in other applications of parallel sim-
ulation, despite the apparently sequential flavor of
PPNs induced by their global decision making proce-
dures. More importantly, we have demonstrated that
simulation can in fact be used to evaluate PPN mod-
els which are too large for the analytic PPN evalu-
ation techniques, thereby extending the applicability
of PPN modeling to larger systems.
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