Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

MTW: AN EMPIRICAL PERFORMANCE STUDY

Lisa M. Sokol

MRJ, INC.
10455 White Granite Dr., Suite 200
Oakton, Virginia 22124

ABSTRACT

This paper presents some performance results for the
Moving Time Window (MTW) parallel simulation
control protocol: a scheduling paradigm for parallel
discrete-event simulation. MTW supports both
optimistic and conservative event execution models via a
time window. The time window constrains simulation
object asynchrony by temporally bounding the difference
in local simulation time between objects. MTW also
provides a hierarchy of synchronization alternatives
aimed at reducing simulation execution time, while
maintaining temporal integrity. We describe the MTW
paradigm in some detail proposing several initial
hypotheses regarding MTW performance, and present
experimental evidence to support these hypotheses.

1 INTRODUCTION

Moving Time Window (MTW) is a hybrid simulation
control protocol for parallel simulation. MTW supports
varying degrees of optimistic event execution as well as
a variety of synchronization mechanisms.

The MTW protocol supports optimistic event execution
via asynchronous event processing between simulation
objects. Since simulation objects encapsulate distinct
and independent portions of the simulation, events
defined for different simulation objects have only local
effects and may be executed in parallel. In practice
however, this may be difficult to achieve because event
execution must not violate the causality constraints
inherent in the simulation. Because of the dynamic
topology of many simulation models, the event
interactions cannot be predicted without complete
execution of the simulation.

Pure optimistic paradigms, such as Time Warp
[Jefferson85], place no restriction on optimism: all
objects with events scheduled for execution are allowed
to proceed depending only on the availability of
processing resources. Additionally, such schemes rely
on temporal rollback as the primary synchronization

557

Jon B. Weissman and Paula A. Mutchler

The MITRE Corporation
7525 Colshire Drive
McLean Virginia 22102

strategy. While such optimism can support very high
rates of concurrency, the cost of rollback synchronization
can be great, both in storage and runtime overhead.

At the other extreme lies a set of purely conservative
paradigms for parallel simulation, such as the Chandy-
Misra [Misra86] protocol. Conservative synchronization
mechanisms such as blocking will trade-off concurrency
for conflict freedom. In such schemes, events are
sequenced to prevent causal conflicts.

Between these two extremes, a spectrum of protocols
varying in the degree of optimism (or conservatism) can
be imagined. It is clear that the efficacy of any
synchronization protocol very much depends on the
structure of the simulation and is application dependent.
This suggests that more flexible synchronization
strategies may be required for general-purpose protocols.
MTW is one such paradigm. Within MTW, object
asynchrony is temporally bounded by limiting the
difference in local simulation time between objects via a
time window. An event outside this window (later in
time) is blocked (ineligible) until the window is advanced
to include the event. Consequently, MTW supports
constrained optimism via blocking.1 In addition to
parallel event execution between distinct simulation
objects, MTW supports concurrent execution of query
events within a simulation object with minimal
additional overhead. Finally, MTW provides a set of
synchronization strategies which enables more flexible
event synchronization.

2 MTW

The paramount MTW design goal has been to minimize
the overhead associated with maintaining simulation
integrity under an optimistic scheduling paradigm. The
focus of the research has been to reduce simulation
execution time by limiting the runtime cost of

1 This is in contrast to Chandy-Misra in which
blocking occurs at the object level. MTW objects block
only when they run out of eligible events.

558

synchronization. To this end, MTW provides a hierarchy
of synchronization alternatives, as shown in Figure 1,
including a simple mechanism for adjusting the degree of
conservatism-optimism (the time window). Such
alternatives provide a framework for optimizing
synchronization.

The first level of MTW synchronization is a
conservative time window mechanism. The degree of
conservatism-optimism is a function of the window size
(see Section 2.1). However, in contrast to Chandy-Misra
in which conservative blocking is fundamental to event
synchronization, MTW uses conservatism
parsimoniously in an attempt to avoid more expensive
synchronization such as rollback. The belief is that
events outside the time window (events later in time) are
more likely to violate causality and compromise an
object's temporal integrity.

Time
Window
[]
Query Optimization Rollback
\
»
Lazy Aggressive

Figure 1: Synchronization Hierarchy

After time window synchronization, optimistic query and
rollback synchronization may be applied, if necessary.
Of the possible cancellation strategies [Reiher90), only
lazy cancellation has been implemented.

Each alternative in the hierarchy has associated runtime
overhead. It is possible that our selection strategy may
be suboptimal in some cases. For example, time
window synchronization might reduce object asynchrony
sufficiently to adversely impact execution time. Each of
the synchronization mechanisms are described fully in
the following sections.

2.1 Time Window

The time window defines a temporal interval [GVT,
GVT+w] of length w over which an object's active
events (i.e. events not yet executed) are partitioned based
on their time-stamps. GVT refers to the global virtual
time (i.e. the minimum time of all events and of all
object clocks in the system). GVT is recomputed
whenever a time interval is defined. In the current

Sokol, Weissman and Mutchler

implementation, a single global window size w is user
specified, with all simulation objects constrained by this
global time window. Events in the interval [GVT,
GVT+w] are termed current events and are eligible for
execution, while events in the interval (GVT+w , o]
are termed later events and are ineligible to run. As the
time window is moved forward (during GVT
computation), later events may move into the window
and become eligible to run (i.e. current events). Note
that the object's local simulation time must always be
between GVT and GVT+w . Also note that by
definition, events preceding [GVT, GVT+w] have
already been executed correctly. A polling process is
responsible for moving the window to keep up with the
earliest event in the simulation. The basic premise of
MTW is that events in the near future are more likely to
be committed than events far into the future. Executing
events far into the future makes an object more
vulnerable to rollback. Thus, the time window
mechanism prioritizes earlier events for execution by
excluding later events until the window advances to
include them.

Adjusting the single parameter w determines the
degree of conservatism-optimism by limiting the
potential asynchrony between simulation objects. While
a small window may encourage simulation objects to
remain in time synchrony (conservatively) and therefore
reduce the likelihood of applying high-cost
synchronization (such as rollback), it is likely to allow
fewer events to become eligible for concurrent execution.
A larger window encourages greater asynchrony
(optimistically) and can better exploit object-level
parallelism, but it increases the likelihood that
simulation events will get executed out of order.
Therefore, the penalty for a large window is the
synchronization overhead required to maintain simulation
integrity. The choice of w is discussed in Section 5.0.

Window movement is controlled by an additional
parameter a, the polling threshold or trigger. When an
object runs out of eligible events, it may initiate window
movement. If the number of active objects n (i.e.
objects with current events) < a, a polling process to
determine GVT is initiated by the inactive object. To
compute GVT, all objects report the time of their earliest
event to the poller. If all objects have moved beyond the
old GVT, the window may be safely moved forward
bounded by the new GVT. The poll trigger is based on
the following premise: if enough objects are active, it is
likely that there are enough eligible events to keep the
processors busy, and polling would be premature.
Polling proceeds concurrently with event execution and
continues until n>=a.

Altl)ough polling is concurrent with event execution,
ther@ 1s some overhead associated with polling. Because
polling requires holding read locks on an object's event

MTW: An Empirical Performance Study

queue (to compute GVT), event scheduling (which
requires exclusive write access to such queues) may be
delayed because of the need to synchronize access to these
shared data structures. Furthermore, the polling process
runs on a processor which could otherwise be dedicated to
event processing. As long as the window contains
enough events to keep the processors busy, the overhead
of polling is not justified. The frequency of polling
must be adjusted so that it provides an adequate flow of
new events into the time window with justifiable
overhead.

In summary, MTW can be classified as "loosely
synchronous" in Fox's taxonomy [Fox88]. MTW
objects execute independent threads asynchronously, but
must be globally synchronized during periodic window
movement and GVT computation.

2.2 Event Tagging

In MTW, events are distinguished as either query events
or side-effecting events. Query events do not change the
internal state of the object, while side-effecting events are
mutable events. Currently, it is the responsibility of the
simulation designer to provide such event tags during

system Speciﬁcationz.

Two important optimizations are possible given this
type of knowledge embedding: intra-object parallelism
and efficient query synchronization. Since query events
do not change the state of the executing object, it is safe
to execute multiple queries within the same object in
parallel if the queries are temporally adjacent (i.e., there
are no intervening side-effecting events for the object).
In this case, time-stamp causality is unnecessarily
restrictive, and is thus relaxed. For query-intensive
simulations, such an optimization may have a
significant impact on performance. Additional
optimizations such as parallel execution of independent
side-effecting events (i.e. events that modify distinct
portions of the object) within an object could be
supported with more elaborate tag information.

2.3 Query Event Optimization

MTW provides very efficient synchronization for query
events. Suppose query event g arrives at tq for object A
at local time ty There are two situations to consider:

the query is a late event or it is a future/present event.

For late arriving queries (tq < to) the semantics of ¢
become "what was your value at tq?". Instead of rolling
A back, MTW searches for a previous state of A (in A
's checkpoint queue) at time tqor earlier, and returns the

2 In the absence of tag information, all events must
conservatively be assumed to be side-effecting.

559

old value. Since the query does not change A 's state,
there is no need to rollback.

For future/present queries (tq >= to): the semantics of ¢
become "what will your value be at tg?". MTW
optimistically executes the query for A attgy - thus
assuming that the state of A at to will be identical to
the state at tq with respect to query ¢ . Only if a side-
effecting event at time tg intervenes for A, t,<=t S<=tq

will query ¢ become invalid. Query optimization is an
effective rollback avoidance strategy in both the
frequency and depth of rollback.

State-saving overhead can be reduced as well: since
object checkpoints need only be computed after state
changes, query event execution is never checkpointed.
Only side-effecting events require state saving. As a
result of fewer checkpoints, rollback and query
synchronization are more efficient: checkpointing can be
slow for large objects, and there are fewer "old" states to
search.

3 SIMULATION MODEL

All experimentation has been performed using a small
combat simulation. The simulation is written in an
extended object-oriented simulation language which
resembles the ROSS simulation language [McArthur85].
Like ROSS, the system simulates the execution of
activities or behaviors attached to independent agents.
As in all object-oriented systems, the agents and other
entities used to model the simulated world are represented
as a hierarchy of objects. Object behavior is controlled
via a hierarchical message passing protocol.

The scenario developed to test MTW consists of
approximately 30 objects representing regimental,
battalion and brigade units together with a select set of
radars. Unit behaviors include the ability to maneuver,
fire, sense and communicate. Units move along a 1500-
node transportation network and attempt to sense enemy
units using various types of sensing behaviors associated
with organic radars. If enemy units are detected, the
sensing unit may initiate a firing mission. The initial
portion of the simulation consists of units being ordered
to move, determination of shortest path routes to the
designated destination, and subsequent movement along
the node network. Following this, units attempt to
detect opposing units and fire when achieving detection.
The simulation concludes with another series of unit
movements. Total simulated time is approximately 800
minutes.

4 IMPLEMENTATION

MTW has been implemented on an 8-node processor-
configurable Sequent Symmetry shared-memory (32M)
machine in Allegro parallel Common Lisp (CLiP). The

560

Symmetry is a bus-based MIMD multiprocessor machine
with 386-family processors. MTW objects and
application-level (scenario) objects have been
implemented in our parallel object-oriented language
Possum [Sokol88], which has been built on top of
CLiP. All the experimental runs were made using seven
processors.

MTW has an efficient shared-memory implementation.
Since objects reside in shared-memory, potentially
expensive operations such as object-wide polling to
compute GVT can be done efficiently. Also, since event
scheduling and execution are distributed across
independent objects, there is minimal contention for
locks to shared data structures (except during global
synchronization operations such as GVT, as discussed
above).

5 EXPERIMENTAL RESULTS

Our work with MTW has led to the development of
several hypotheses:

1) the graph of simulation execution time as a function
of window size has an S shape with several minima.

2) there is some "optimal” combination of window size
w and poll trigger a (i.e. the global minimum of graph
in Figure 1) that allows MTW to exploit sufficient
parallelism to overcome the associated synchronization
overhead.

3) large windows encourage greater asynchrony and may
increase both the temporal errors and the number of
executed simulation events.

4) MTW can efficiently exploit parallelism within the
application and has nice scaling properties.

Sokol, Weissman and Mutchler

We have investigated these hypotheses running MTW
for the battlefield simulation model discussed in Section
3.0. We are careful not to overstate our results. In most
cases, our experience with the battlefield model has
served to validate the hypotheses, but other applications
may behave somewhat differently. However, we feel that
the stated relationships capture "average" or typical
MTW behavior.

5.1 Hypothetical Execution Characteristics

Both window management and polling contribute to the
overhead of synchronizing event execution. We predicted
that the efficacy of the window with respect to execution
time would be as follows: assuming an optimal window
size (i.e. a window for which the execution time is a
minimum), windows sized below this would prevent
MTW from exploiting sufficient parallelism to overcome
synchronization overhead; and windows sized above this
would introduce enough additional temporal errors (and
synchronization overhead) to dominate any gains from
increased parallelism. Additionally, we postulated that
the window and the poll trigger interact in the following
way: smaller window sizes require more frequent window
adjustment and therefore more frequent polling. Figure 2
below illustrates these hypothesized relationships.

The global minimum occurs at A. If the window is
increased to a point beyond which no additional temporal
errors will occur (B), polling will begin to have a more
noticeable effect. At B, the synchronization overhead due
to temporal errors remains constant. At this point,
increasing the window further will only serve to reduce
the frequency of polling, and the execution time will fall
into a local minimum (C). Beyond this point, no
additional polls will be initiated and the execution time

Asynchrony
Toomuch 1 optimal ~ Rollbacks | No
synchrony Small # of fincreasing, additional No polls
rollbacks idominate polls No
asynchrony | Increasing additional
asynchrony rollbacks

CPU Time (Msec)

Lt 1 o0 1 e i el 12l

\A//

T T~N— | °

C

Window Size

Figure 2: Hypothetical Curve: Execution Time vs. Window Size

MTW: An Empirical Performance Study

561

170 1
160 1
1 Poll

g 150 Pl s
FEIINT S (Toesrs
&3 E e W/Trlgger 4

120 1

1o \ Poll

100 Tri gger 3.

0 100 200 300 400 500

600 700 800 900 1000

Window Size

Figure. 3: Execution Time vs. Window Size (for different a)

will be approximately constant with no additional
overhead (D). Notice that until point B is reached, we
have assumed that expensive synchronization such as
rollback dominates the overhead - a reasonable
assumption.

5.2 Optimal Window and Polling Efficacy

Because of the window-polling interaction, the poll
trigger has the following effect: if polling is initiated
prematurely (i.e. there are enough objects/events to keep
the processors busy), CPU resources required by polling
may not be committed to event processing, hence event
execution may be delayed; if polling is initiated too late,
there will be system idle time (i.e. under-utilized
processors) and simulation execution time may increase
as well. The poll trigger can also be thought of a
mechanism which attempts to guarantee a minimal level
of parallelism. When the available level of object
parallelism (i.e. active objects) falls below a, the polling
process attempts to introduce enough active simulation
objects to increase the degree of object level parallelism
>=a.

For a chosen window size, an optimal poll trigger can
be empirically determined. We believe, however, that
the precise relationship between a and w is highly
application-dependent, and is difficult to characterize in
general. Figure 3 illustrates the effect of window size on
execution time with a number of different poll triggers
for the given simulation model. A polynomial curve of
order 3 fits the data with a fairly high level of confidence.
The graphs exhibit the hypothetical S shape curve
discussed previously. Note that the optimal window
changes with the poll trigger a, and changes in a cause
distinctive shifts in the curve. For these experiments,
lower a resulted in better performance which suggests a
fairly active simulation with high processor utilization.

The optimal a appears to be between 2 and 3: initially,
a=2 is best, but when the window is increased beyond
300 time units, a =3 is optimal.

5.3 Temporal Errors

As the window size is increased, we hypothesized that
the probability of temporal errors (events that are
scheduled to execute in an object's logical past) will
increase since a wider discrepancy between object
simulation clocks is tolerated. An intuitive explanation
for this is as follows: given an object A, there are a
potentially greater number of (communicating) objects
which may lag behind A in time and therefore
compromise A's temporal integrity by sending tardy
messages. This is the synchronization penalty for the
increased asynchrony required to exploit concurrency.
Figure 4 indicates that our simulation only weakly
exhibited a correlation between window size and temporal
errors. Each data point represents a single run of the
simulation - variance is because of scheduling non-
determinism. One explanation of this weak correlation
might be the high degree of event independence in our
simulation model. Further experimentation with other
applications is required to establish this as a general
property of MTW-based simulations.

562

Total Number of Errors
®

s ¥ ¢
*
3

75 & B
{ 8% & 8 %
5

25 bt

I
$ B
8

&

8 @e® P
L

0 100 200 300 400 500 600 700 800 900

Window Size

Figure 4: Temporal Errors vs. Window Size

Finally, we had hypothesized that as the number of
temporal errors increased, the probability of worst-case
rollback synchronization should increase. Consequently,
we expected the number of executed simulation events to
increase as well, because of event re-execution. This
relationship is shown in Figure 5. The data suggests
that total events and window size are correlated.

470 4

460 |
450 |

N
S

Total Events
S
w
o

0 100 200300 400 500 600 700 800 900
Window Size

Figure 5: Total Events vs. Window Size
5.4 Processor Scalability

One of the most important aspects of parallel scheduling
protocols is how effectively they can control parallelism
and exploit inherent concurrency as the number of
physical processors is increased. The expected benefits
of increased parallelism will diminish at the point where
the system has exploited all the inherent parallelism of

Sokol, Weissman and Mutchler

the application. Figure 6 illustrates a strong correlation
between execution time and the number of processors.
For this application, near linear speedups are possible for
certain parameter settings and processor configurations.
Although MTW clearly benefits by the addition of
processors, such promising speedup numbers are partly
because of the high degree of independence in the
simulation, and generalizations should not be made.

® Poll Trigger = 3

280 , Window Size =200
260] { w Poll Trigger =3

240) Window Size = 400
220 1
200
180]
160]
140
120
100

CPU Time (Msec)

1 2 3 4 5 & 7
Processors

Figure 6: Execution Time vs. Processors
6 CONCLUSION

The performance results have been quite promising and
have provided much opportunity to gain useful insights
into the MTW protocol. Novel MTW features such as
the synchronization hierarchy and time window
mechanism appear to support efficient parallel
simulation. The results also helped validate several
important hypotheses about the efficacy of the time
window with respect to various simulation characteristics
including: synchronization overhead, number of events,
and simulation execution time. The poll trigger
parameter, required to globally synchronize all objects,
was also shown to impact performance. Finally, MTW
appears to scale well as the number of processors is
increased.

Since system performance is critically dependent on
the window size and poll trigger, our current research is
focused on automatic techniques for choosing these
parameters. Optimal values for these parameters are
application-dependent and are difficult to predict apriori.
Currently, we are exploring a dynamic windowing
mechanism for adaptively adjusting the window size
during the simulation.

One limitation of our research is that only a single
simulation model has been explored. Work is ongoing
to develop a synthetic simulator with which to seek
general and universal results. The simulator will enable
scaling of objects, event interactions, and message

MTW: An Empirical Performance Study

passing thus yielding an unlimited number of
applications against which to test the MTW protocol.
From these experiments, MTW hypotheses can be more
firmly established.

7 REFERENCES

G. Fox, M. Johnson, et. al, Solving Problems on
Concurrent Processors, Vol I, General Techniques
and Regular Problems, Prentice Hall, New Jersey,
1988.

D. Jefferson, "Virtual Time", ACM Transactions on
Programming Languages and Systems, Vol. 7, No.
3, July 1985.

D. McArthur, P. Klahr, S. Narain, The ROSS Language
Manual, The RAND Corporation, N-1854-1-AF,
September 1985.

J. Misra, "Distributed-Discrete Event Simulation" ACM
Computing Surveys 18, 1 (March 1986), 39-65.

P. Reiher, R. Fujimoto, S. Bellenot, and D. Jefferson,
"Cancellation Strategies in Optimistic Execution
System", Proceeding of Society for Computer
Simulation Multiconference on Distributed
Simulation, 112 - 121, 1990.

L. Sokol, D. Briscoe, A. Wieland, "MTW: A strategy
for Scheduling Discrete Simulation Events for
Concurrent Execution", Proceedings Distributed
Simulation Conference; Society for Computer
Simulation, February, 1988.

Author Biographies

LISA SOKOL received her Ph.D. from University of
Massachusetts in 1978. Her primary research interests
are parallel simulation and parallel computing systems.

JON WEISSMAN received his BS from CMU in
1984 and his MS from the University of Virginia in
1989, both in Computer Science. His interests are
parallel computing systems and high-performance
computer architecture. He is currently an employee of
MITRE Corporation working on parallel and distributed
systems.

PAULA MUTCHLER is a Member of the Technical
Staff at The MITRE Corporation. She has held a
number of positions in the Artificial Intelligence
Technical Center and more recently in the Modeling and
Simulation Technical Center within the corporation.
She received a B.S. in mathematics from Georgetown
College in 1976, a M.S. in mathematics from Purdue
University in 1979 and is currently pursuing a Ph.D. in
Information Technology at George Mason University.

563

