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ABSTRACT

The major flaw with the ModSim/TWOS system as it
currently exists is that there is no compiler support for
mapping a ModSim application into an efficient C/TWOS
application. Moreover, the ModSim language as
currently defined does not provide explicit hooks into the
Time Warp Operating System and hence the developer is
unable to tailor a ModSim application in the same
fashion that a C application can be tailored. Without
sufficient compiler support, there is a mismatch between
ModSim’s object-oriented, process-based execution
model and the Time Warp execution model. In this paper
we present our assessment of ModSim/TWOS and also
discuss both components in isolation.

1 INTRODUCTION

There are two primary difficulties in developing
large-scale, discrete-event simulations for analysis and
production. First, there is the issue of software
manageability over the life-cycle of a simulation.
Simulations, by their very nature, are dynamic and
requirements typically evolve as a system is used.
Second, for large enough systems, execution speed (in
terms of user response time) becomes a concern.
Simulations with poor response time are not attractive
tools for doing analysis. In the specific area of large,
discrete-event combat simulations, both software
manageability and run speed are important. Two areas of
software systems research address these problems
directly, but independently: object-oriented software
engineering (OOSE), and parallel, discrete-event
simulation (PDES). OOSE is quickly gaining widespread
acceptance as the approach of choice for solving the
software development and management problem (see
Meyer 1988 and Booch 1991). At the same time, PDES
research is directly addressing the run speed issue
(Fujimoto 1990 presents an excellent survey of the
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current state of research in parallel, discrete-event
simulation). Ideally, a system should provide a high-level
simulation language that embodies well-known software
engineering principles combined with a high-
performance parallel execution environment. One recent
attempt at building such a system is the ModSim/TWOS
parallel simulation environment.

The Time Warp Operating System (Jefferson et al.
1987), TWOS, has been the focus of significant research
in parallel, discrete-event simulation. A new language,
ModSim, has been developed for use in conjunction with
TWOS. The coupling of ModSim and TWOS is an
attempt to address the problem of developing large-scale,
complex simulation models for parallel execution (what
we like to think of as PDES in-the-large). The inherent
difficulty with this approach is the mapping of the
simulation application to the parallel run-time
environment. To use TWOS, Time Warp applications are
currently developed in C and must be tailored according
to a set of constraints and conventions (we will refer to
these as C/TWOS applications). C/TWOS applications
are carefully crafted using explicit calls to Time Warp
primitives; thus, the mapping is done by the application
developer. The disadvantage to this approach is the
questionable scalability to larger software efforts; the
obvious advantage is the degree of control over managing
the efficient execution of the application. The ModSim/
TWOS system provides an automatic mapping from a
ModSim application to an equivalent C/TWOS
application. The major flaw with the ModSim/TWOS
system as it currently exists is that there is no compiler
support for mapping a ModSim application into an
efficient C/TWOS application. Moreover, the ModSim
language as currently defined does not provide explicit
hooks into the Time Warp Operating System and hence
the developer is unable to tailor a ModSim application
for execution on TWOS in the same fashion that a C
application can be tailored for execution on TWOS.
Without sufficient compiler support, there is a mismatch
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between ModSim’s  object-oriented,  process-based
execution model and the Time Warp execution model.

As part of the Parallel Eagle Project here at Los
Alamos National Laboratory (LANL), initiated in
January 1989, we have completed an initial assessment of
the coupling of ModSim and TWOS from an application-
intensive perspective. To date, the Parallel Eagle model
comprises over 15,000 lines of ModSim code.

In the following sections we will present our
assessment of ModSim/TWOS and also discuss both
components in isolation. The paper proceeds as follows.
In section 2, we provide an overview of the Parallel Eagle
model as motivation for the Parallel Eagle study. In
section 3 and 4, an overview and assessment of the
ModSim language (independent of TWOS) is presented.
Section 5 briefly discusses parallel, discrete-event
simulation in general and section 6 provides a look at the
Time Warp Operating System in particular. In Section 7,
we present our evaluation of the ModSim/TWOS system
and conclude with related work in section 8.

2 THE PARALLEL EAGLE MODEL

The Parallel Eagle model is a deterministic, division
level combat model developed using an object-oriented
approach and targeted for execution under the Time Warp
Operating System. It has been derived from the Eagle
model originally developed by the Army (TRADOC
Analysis Command, Ft. Leavenworth) and LANL. The
baseline version was the original Eagle prototype (circa
1988), with selected elements of the follow-on effort
(circa 1989-90) chosen for inclusion in the Parallel Eagle
model. The functionality developed for the model
includes elementary maneuver, command and control,
direct-fire attrition, a basic intelligence process, and
terrain representation (Powell 1989). The primary
purpose of the parallel model development effort is to
produce a realistic, large, object-oriented combat
simulation model for use in evaluating the utility of
TWOS paired with the ModSim programming language.
A secondary goal was to study the process of
transitioning  from a sequential, object-oriented
application written in Lisp and KEE (IntelliCorp’s
Knowledge Engineering Environment) to a parallelized
version developed in ModSim.

3 AN OVERVIEW OF MODSIM

ModSim was designed and implemented by CACI
Products Company under contract with the Army Model
Improvement Program (AMIP) Management Office. In
1985, CACI performed a feasibility study for the Army
(West 1985) which resulted, in 1987, in the design
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specification for ModSim, an object-oriented language
derived from Modula-2 (Mullarney et al. 1987). In early
summer of 1988, CACI completed and dclivered to the
Army the first ModSim compiler and run-time system for
a single processor architecture. Later, in the fall of 1988,
CACI delivered a modification of the compiler and run-
time system for use with the Time Warp Operating
System under development at the Jet Propulsion
Laboratory (JPL). After completing their contract with
the Army, CACI developed a commercial version, called
MODSIM II (Bryan and Belanger 1989). For the
remainder of this paper, references to “ModSim” refer to
the Army’s version of the language as developed under
contract by CACI (for information regarding MODSIM
II contact CACI Products, La Jolla, California).

ModSim is a strongly typed, modular, block
structured language which provides support for object-
oriented programming and discrete-event simulation. Its
design has been heavily influenced by Modula-2, Simula,
and SIMSCRIPT IL.5. The language is intended to be
used for building large-scale, discrete-event simulations
using modular, object-oriented development techniques.

In this section, an overview of the basic ModSim
language is presented. Language features particularly
designed to support simulation development are also
discussed. The following language discussions are based
on release 1.0 of ModSim (for more information refer to
the ModSim references at the end of this paper).

3.1 The Base Language

ModSim’s syntax and control mechanisms resemble
those of Modula-2, Pascal or Ada. The example in Figure
1, illustrates a simple procedure definition; keywords are
required to be in upper-case, statements are delimited by
semicolons, and comments are enclosed in curly braces
as { comment }, or as in Modula-2, (* comment *).

PROCEDURE UpCase (INOUT str:ARRAY OF CHAR);
VAR k : INTEGER;
BEGIN
REPEAT
IF (str([k] >= ‘a’)
AND (str[k] <= ‘z’)
DEC (str[k], ORD(‘a’) - ORD(‘A’));
END IF;
INC (k)
UNTIL (str[k] = 0C);
END PROCEDURE; { UpCase }

Figure 1: A ModSim Procedure
ModSim’s approach toward supporting modularity

was mainly influenced by Modula-2. For example, like
Modula-2, ModSim provides the capability to decompose
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an application into a main module and a set of library
modules. A library module consists of two parts: a
definition module and an implementation module. A
definition module provides the interface information
required for subsequent reference to the entities defined
therein. Constants, types, variables, procedures and
objects described in a definition module may be imported
and used by other modules. Procedures and objects, in
particular, are provided with procedural descriptions in
the implementation module. This separation of definition
and implementation supports functional decomposition
and information hiding. A complete ModSim program
may also be written as a single main module.

3.2 Object-Oriented Mechanisms

ModSim provides explicit support for object-oriented
programming (Meyer 1988). In particular, ModSim
supports single and multiple inheritance, dynamic
binding, data abstraction, encapsulation and information
hiding all within a strongly typed framework.

In ModSim, an object definition creates a new user-
defined data type identified by the supplied name (we
will use “object type” and “object” to mean the same
thing within the context of ModSim). A ModSim object
is composed of fields and methods. The fields describe an
object’s state while the methods define any actions the
object can perform. Figure 2 shows a definition of a
simple object type named Line in ModSim.

Line = OBJECT
{ Ax+By+C=0 }
A,B,C:REAL;

ASK METHOD InitLine(IN a,b,c:REAL);
ASK METHOD Rotate (IN angle:REAL);
END OBJECT; { Line Object Type }

Figure 2: An Object Type Definition In ModSim

An important characteristic of objects is that the fields
of an object can only be modified by methods defined for
(or belonging to) that object. This formal and explicit
association of data and code provides an inherent and full
encapsulation of the data abstraction. Moreover, fields
and methods may be defined to be PRIVATE and hence
not part of the object’s public interface; ModSim’s
PRIVATE mechanism is similar to “protected” members
in C++ (Ellis and Stroustrup 1990) and is useful for
implementing higher degrees of information hiding. An
instance of an object type is explicitly created through the
use of the procedure NEWOBJ to allocate the requisite
storage. Similarly, object instances must be explicitly de-
allocated via the procedure DISPOSEOBJ.

ModSim supports single and multiple inheritance in
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the definition of new object types. That is, a new object
type in ModSim may be defined in terms of one or more
existing object types. The new type is called a derived
object type. Underlying types are any types which an
object inherits; the most immediate types are called an
object’s base types. A derived object type inherits all
fields and methods of the underlying types. For example
a line segment object type, Segment, derived from the
type Line is presented in Figure 3.

Segment = OBJECT (Line)
{ asegment is simply a line with end points }
EndPointl:Point;
EndPoint2:Point;

ASK METHOD InitSegment (IN el,e2:Point);
OVERRIDE
ASK METHOD Rotate (IN angle:REAL);
END OBJECT; { Segment Object Type }

Figure 3: Inheritance In ModSim

In addition, a derived type may override any of the
methods and provide more specific (or extended)
implementations (e.g., the Rotate method for a Line
must be extended for a Segment since the end points
must be rotated). Since methods may be overridden, a
mechanism is necessary to decide at run-time what
method should be executed. This mechanism is
commonly known as dynamic binding. Dynamic binding
implies that the dynamic form of the object determines
which method is applied (Meyer 1988). It is this
polymorphism that adds to the power and flexibility of
the object-oriented approach.

Interactions between ModSim object instances are
handled by sending messages. ModSim provides two
language constructs, namely ASK and TELL style
methods, that support synchronous and asynchronous
communication between instances of objects. As
discussed previously, an object’s fields can only be
modified by methods belonging to the object. Thus, to
change the state of an object a message must be sent that
will invoke the desired method. For example, assume that
an instance of the object type Segment, aSegment,
may be rotated by use of the method Rot ate defined for
the type. This method is invoked using the ASK
mechanism, e.g., ASK aSegment TO Rotate
(45.0). Similarly, the ASK mechanism is used to
access the current value of an object’s fields, e.g., point
:= ASK aSegment EndPointl. Conceptually, both
examples result in a message being sent to the object
aSegment. In former, the result of the message is a
change in the object instance aSegment’s state and in
the latter the result of the message is the return of the
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appropriate field value.

3.3 Simulation In ModSim

ModSim provides explicit support for discrete-event
simulation using a process-oriented approach similar to
SIMSCRIPT II.5. The constructs which support the
concept of process-oriented simulation are the TELL
method and the WAIT statement. Using these constructs,
objects can interact asynchronously with other objects
and can advance simulation time. The passage of
simulation time is accomplished through the use of TELL
methods which implement certain behaviors of the
object. For example, TELL objectl TO do-
something(a,b) IN 5.0 will cause the message
do-something(a,b) to be placed on the message
queue of objectl with a time stamp of NOW+5.0
(Now is simply a notational convenience meaning the
current simulation time). The actual invocation of the
method, do-something (a,b), is deferred. In the
context of the sender, execution continues past the TELL
statement resulting in a non-blocking send. When
simulation time reaches NOW+5.0, the object,
objectl, will process the do-something(a,b)
message. Within a TELL method, simulation time can be
advanced by waiting for something to happen (e.g., the
completion of another TELL) or by waiting for some
duration of time (both accomplished via a WAIT
construct).

Figure 4 illustrates how the behavior of a combat unit
object with a low fuel supply might be realized.

{ wait until refuel process completes or is interrupted }
WAIT FOR SELF TO Refuel ()
{ refuel process successfully completed }
CurrentObjective:=
ASK Hg NewOrders (MyStatus) ;
TELL SELF TO
ProceedTo (CurrentObjective);
ON INTERRUPT
{ refuel process interrupted, potential problem }
TELL Hgq Problem(MyStatus);
RETURN; { exitcurrent method }
END WAIT;

Figure 4: Discrete-Event Simulation In ModSim

Refueling requires some amount of simulated time, so
the unit must “wait” until this process is complete.
Operationally, the current method is suspended until the
Refuel method completes or is interrupted and then the
method resumes accordingly. In the case that refueling is
successful, the combat unit ASKs an Hq (Headquarters)
object for a new objective given its current status and
then proceeds to the objective by scheduling its
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ProceedTo method (via a TELL message). In the event
that refueling is interrupted (this is accomplished via
ModSim’s INTERRUPT mechanism), the unit sends a
message to the Hg object indicating a problem.

Both TELLs send messages with time stamps of NOW
(the current simulation time). The ASK call is
synchronous and no simulation time may elapse within
the ASK method. The WAIT FOR suspends the current
activity and resumes when the activity completes or is
interrupted; the Refuel method may elapse simulation
time.

4 AN ASSESSMENT OF MODSIM

To date, we have written and tested over 15,000 lines
of ModSim in support of the Parallel Eagle Project (our
early experience is documented in Rich and Michelsen
1989). Some code, such as the terrain subsystem, have
undergone several design/implementation iterations over
the course of the last two years. Suffice it to say that, in
the process, we have gained an appreciation of both the
strengths and weaknesses of the ModSim language and
its implementation.

Up until this point, we have concentrated on
presenting the ModSim approach to object-oriented
simulation. In practice, however, a concept is only as
good as its realization. On the whole, we find the
ModSim language and development environment to be
generally usable. There are, however, deficiencies in both
the language design/implementation and development
environment that we consider important. These
deficiencies amount to inconsistencies and oversights in
the design and implementation of the language and
development environment including the treatment of
memory management, exception handling, the type
system, inheritance, and separate compilation across
“projects.” In the following sub-sections, we will
highlight our concerns regarding the current
implementation of ModSim.

4.1 Memory Management

Automatic memory management is considered an
important characteristic of any modern object-oriented
language system (Meyer 1988). Without automatic
garbage collection, the user must dispose of objects
explicitly. In ModSim, there is no built-in support for
managing dynamic object memory other than the
allocation and de-allocation procedures, NEWOBJ and
DISPOSEOBJ. Explicit de-allocation without any
support for managing “reference” information may
introduce dangling reference bugs; in practice, we have
found explicit memory management to be the major
source of run-time errors.
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4.2 Exception Handling

The programmer is responsible for instrumenting
code using conditional tests. There is no built-in support
for encapsulating run-time exception handlers within
objects or within the program itself. Thus, failures that
are not caught by the conditional tests result in an
ungraceful termination of the program execution (e.g.,
undefined reference or pointer, or a divide-by-zero). The
importance of software robustness cannot be overstated
and exception handling support is a critical component in
providing such behavior.

4.3 Type System

ModSim is a strongly typed language. That is, type
correctness is checked at compile time. Compile time
type checking, however, cannot assure type safety since
ModSim supports both a REFERENCE and an ADDRESS
type. An assignment of an object instance to a variable of
type REFERENCE, or a record instance to a variable of
type ADDRESS results in the loss of type information for
the respective entities. Thus, a variable of type
REFERENCE (for example) containing a reference to an
object instance can be legally assigned (i.e., “cast”) to
any object type variable. Such operations are not type-
safe since they can lead to failures during program
execution if an object instance referenced by a variable of
type REFERENCE is incompatible with the object type of
another variable to which it is later assigned (see Figure
5).

{ ...mplementations of X & Y not shown... }

TYPE
X = OBJECT
ASK METHOD A();
END OBJECT;
Y = OBJECT
ASK METHOD B();
END OBJECT;
VAR
X : X,y ¢ Y, r : REFERENCE;
r := x; { legal assignment }

r; { stillok }

%3
I

ASK y TO B(); { run-time error -- segmentation fault }
Figure 5: Type Correct Versus Type Safe In ModSim

In the absence of parameterized types, however, such
a “type casting” mechanism is necessary to support type
coercion; type casting mechanisms such as those found in
C++ can be imitated in ModSim by assigning first to a
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REFERENCE variable and then to the variable of the
desired object type (Booch 1991 provides examples
where type coercion is useful). As shown in Figure 5, it is
up to the programmer to manage type safety. Clearly, a
parameterized type mechanism is a more complete and
desirable solution.

4.4 Inheritance

In general, the design and implementation of
ModSim’s inheritance mechanism results in unnecessary
constraints and inconsistencies. For example, identical
field names in two or more base objects do not conflict
when multiply-inherited. These field names are not
directly accessible within the derived object and can only
be accessed once the object instance has been assigned to
a reference variable of the appropriate object type. For
example, in Figure 6, Z’s method D cannot access either
Ain X or A in Y, but method D can access both fields B
and C. To get at one or the other A fields in Z, an object
instance of type 2 must be demoted (using type coercion)
to either type X or Y.

{ ...implementations for X, Y & Z not shown... }
TYPE
X = OBJECT
A:REAL; B:BOOLEAN;
END OBJECT;

Y = OBJECT
A:INTEGER; C:CHAR;
END OBJECT;

Z = OBJECT (X, Y) { ZinheritstypesXand Y }
ASK METHOD D()
END OBJECT;

VAR
Xx : X,y 2 Y, 2z 2 Z;
¢ : CHAR; b : BOOLEAN;
r : REAL; i : INTEGER;

c :=ASK z C; { ok }

b := ASK z B; { ok }

{ “ASK z A” is ambiguous, so... }

X 1= z;

r := ASK x A; { AinX—aREAL }

y = z;

i := ASK y A; { AinY —anINTEGER }

Figure 6: Inheritance Of Fields In ModSim

In contrast, identical method names in two or more
base objects are flagged by the compiler when multiply-
inherited — even if the parameter list and/or return types
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are different (i.e., they have different “signatures™). The
user must explicitly deal with this situation either by
overriding the method definition and providing an
implementation to disambiguate or, in the case of
methods with the same name but different signatures,
changing the method names in the base objects.
Furthermore, since ModSim does not manage repeated
inheritance (Meyer 1988) the treatment of conflicting
method names becomes an especially tedious concern of
the programmer.

4.5 Compile-Time And Run-Time Support

The development environment is an important
component for any object-oriented language
implementation. Amenities such as an interactive source-
level debugger, automatic re-compilation of separate, but
dependent modules (for compiled languages), class
hierarchy browsers, etc., all help define the “usability” of
a system. The Eiffel system, Saber C++ and IntelliCorp’s
ProKappa are all examples of development environments
for object-oriented languages. The ultimate environment
takes you from analysis to design to implementation
seamlessly; this, of course, is the goal of CASE
(Computer Aided Software Engineering), and object-
oriented CASE in particular.

The ModSim development environment is comprised
of a compiler, a compilation manager, a genealogy (or
object type) browser and a run-time library with a built-in
traceback utility.

The compiler translates ModSim source to C code on
a line-by-line basis without benefit of any optimization.
As in Eiffel, this translation process could benefit from
optimizations such as call simplification for non-
overridden methods and the removal of unneeded code
(see Meyer 1988 for a discussion of the Eiffel optimizer).

The compilation manager is a simplified UNIX make
utility. As such, it manages separate compilation of
ModSim programs consisting of multiple modules by
determining which modules have been edited since the
last compilation and re-compiling only those modules
and any other modules which depend on them. The
compilation manager, however, does not support “smart”
compilation across projects. Thus, changes in the source
of one project are not detected in the importing project. A
project in ModSim is a collection of modules that
implement a single object-oriented concept such as a
graphics library, or a string manipulation library; i.e., a
set of objects and procedures for manipulating the
objects. Changes in the implementation of one project
(e.g., only implementation modules are edited) simply
requires a re-link on the part of the importing project.
Such modifications go unnoticed in the current version of
the compilation manager. The only project treated by the
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compilation manager is the built-in run-time library. Any
changes to the run-time library will cause all ModSim
projects to be completely re-compiled (this, in itself, is
not done very smart since only a re-link may be required
in some cases).

The genealogy browser is implemented in a textual
format utilizing a screen-at-a-time view of information.
Each screen provides information and a list of selections
that are entered from the keyboard; the browser is not a
GUI (Graphical User Interface). Moreover, the browser
uses a data file generated by the compiler; thus, in order
to browse updated source it must first be re-compiled.

Finally, run-time debugging can be accomplished
using dbx (or another C source-level debugger) on the C
source code. To accomplish this, the programmer must
configure the compilation manager so that it will not
delete corresponding C source files. The traceback dump
is of minimal utility and is only reported when a run-time
bug is caught by the run-time system (an application
must be compiled with the traceback option enabled, and
the application must be properly instrumented).

4.6 Graphics Support

Graphics support can come in different forms: a user
interface toolkit, a user interface builder, a structured
graphics toolkit, data visualization software, etc.
Simulation developers, like most software developers,
want a combination of all these capabilities.

The ModSim system as initially delivered to the
Army provided no graphics or data visualization support.
Since that time, two libraries were developed (one by the
Army and the other developed here at the Laboratory) to
address the graphics issue. Both packages provide
minimal support for structured graphics (e.g., points,
lines, circles, text) and fall far short of the needs of
simulation developers. However, since ModSim
interfaces to C in a fairly straightforward manner,
existing packages — that are in C or that easily interface
to C — might be utilized. The problem then becomes just
how tightly can the graphics objects be coupled to
simulation objects; in other words, an application might
want to recognize a mouse click on a graphics object and
map it into a reference to the corresponding simulation
object (for browsing the object’s state perhaps).

5 PARALLEL, DISCRETE-EVENT
SIMULATION

The need for significant computer performance
improvements has long been recognized in many
application domains. This ever increasing demand for
computational power has created wide-spread interest in
exploiting parallelism in both hardware and software.
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Within the modeling and simulation community, this has
spurred research in the area of parallel (or, in the
traditional nomenclature, distributed) simulation.

Object-oriented discrete-event simulation
development naturally results in a simulation model that
is comprised of a set of actors (or agents) which interact
via the scheduling of events. This corresponds closely to
the formulation of parallelism in discrete-event
simulations as presented by Chandy and Misra 1981 (see
also Fujimoto 1990). In this model of parallel simulation,
the traditional global simulation clock and global event
queue are eliminated in favor of analogous entities
associated with each simulation actor. Thus, an actor
may, as dictated by its own behavior, be at a different
local, logical simulation time than any other actor in the
simulation. Clearly, the association of logical simulation
clocks with individual actors defines a set of partial
orderings of events with respect to the set of simulation
actors (Lamport 1978). This treatment of time provides
additional opportunity for parallel execution amongst the
simulation actors. The outstanding requirement is
therefore the establishment of a total ordering over the
entire set of events such that the behavior of the system
as a whole is correct (i.e., preserves the correct event
causality).

Much of the research in parallel simulation has
concentrated on effectively establishing this ordering in
the face of actor-level parallelism. Viewed in a slightly
different context, the basic issue is the synchronization of
actor behaviors, given that actors interact via messages
and that each actor may, at an arbitrary point in the
execution of the simulation, be operating at a different
point along the continuum representing simulated time.
This synchronization has been traditionally approached
using two different strategies, generally classified as
either conservative or optimistic.

The conservative approach is best characterized by
the work of Chandy and Misra 1981. A basic tenet of the
conservative approach is that no actor process a message
until it can be guaranteed that no message with an earlier
time stamp will be received. This approach toward
synchronization ensures that a simulation actor never
inadvertently processes events in incorrect order (i.e., out
of time sequence), but does pose a number of technical
difficulties that have been examined in depth by others
(e.g., Wagner, Lazowska and Bershad 1988).

Optimistic schemes incorporate the notion of virtual
time and are exemplified by systems such as Time Warp
(Jefferson 1985) and Moving Time Window (Sokal,
Briscoe and Wieland 1989). The basic notion employed
in these approaches is that all actors progress as dictated
by the events queued for them at any point in the
simulation execution. Only when an message with a time
stamp earlier than the current logical simulation time is
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processed by an actor is any synchronization required.
This synchronization causes the actor to rollback its
simulated time to receive the message. This rollback
initiates a restoration of local state equivalent to the
actor’s state at the time stamp of the message. Further,
this causes the retraction of all events generated by the
actor subsequent to the time stamp of the message
initiating the rollback. Since the recall of these events
may also force other actors to rollback, rollbacks
potentially cascade through the actors comprising a
system as the simulation is re-synchronized. Military
combat models differ from many traditional simulation
application areas (e.g., circuit simulation) in that any of
the entities may potentially interact and that these
interactions are very difficult to predict. The highly
dynamic nature of these problems thus precludes the
static mapping or determination of simulation actor
interaction. Thus, in the general case, the conservative
approach can not be effectively utilized in this class of
problem.

6 THE TIME WARP OPERATING SYSTEM

The Time Warp Operating System version 2.4.1
developed by JPL (Hontalas et al. 1990) is a complete
implementation of the Time Warp mechanism. As
discussed earlier, Time Warp is a distributed protocol for
virtual-time synchronization based on process rollback
and message annihilation. TWOS is a special-purpose
operating system designed to support parallel, discrete-
event simulation and other computations that can be
expressed as a system of logical processes that interact
through time stamped messages. In recent literature,
several studies have reported performance improvements
for applications utilizing the Time Warp mechanism in
general (see Fujimoto 1990) and the TWOS system in
particular (Ebling et al. 1989, Hontalas et al. 1989,
Presley et al. 1989, and Wieland et al. 1989). JPL’s Time
Warp system runs a single simulation at a time
concurrently on all allocated processors in a distributed
computer system. According to Hontalas 1990, computer
systems currently supported include Sun-3 and Sun-4
workstations, the BBN Butterfly GP-1000, the CalTech/
JPL Mark III Hypercube, and the Transputer-based
Definicon DSI-T4. In a combined effort with JPL, we
also ported TWOS (version 2.4.1) to our BBN Butterfly
TC-2000. A detailed discussion of TWOS primitives
(e.g., message send and receive) is beyond the scope of
this paper. In the remainder of this section we will discuss
Time Warp application development and performance
issues; in particular, there is an obvious though not well
understood trade-off between software “manageability”
and performance.

In Time Warp, an application must be decomposed
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into a system of logical processes that interact through
time stamped messages (for a complete discussion of
Time Warp theory see Jefferson 1985). To use TWOS, in
particular, an application must be written using the C
programming language. In constructing a C/TWOS
application, general parallel programming guidelines
must be followed such as selecting the appropriate
granularity and maximizing parallelism. In addition, the
programmer must be intimately familiar with the
synchronization mechanism in order to maximize
performance. As one might expect, code designed to run
well on TWOS is often fragile and difficult to modify and
maintain (Fujimoto 1990). This last point must be taken
in the proper context. For instance, it may not be
important for an application to be easily modified and
maintained; once the application is fine tuned for
performance it may not be necessary to touch it again. In
practice, however, software systems (especially
simulations) tend to be dynamic and evolve over time
(perhaps to satisfy new or updated requirements, for
example). In this case, the modifiability and
maintainability of the software system becomes
important. What is not well understood is just how to
balance performance and software quality in a Time
Warp application.

Time Warp (and related) research is ongoing. In
particular, TWOS research continues at JPL with
memory and performance related issues dominating.
Open issues in Time Warp and related research include
hardware approaches to the memory intensive problem of
state-saving and rollback, virtual memory support for
very large applications, exception and interrupt handling,
and support for real-time applications as well as the
application development and performance issues we
mentioned earlier.

7 MODSIM/TWOS

At the beginning of this paper we discussed a couple
of basic requirements for an “ideal” simulation
environment that would support large-scale simulation
development for analysis and production use, namely the
ability to manage the simulation software and provide
acceptable response time during analysis. A solution to
this problem is an environment that combines a high-
level simulation language that embodies well-known
software engineering principles with a high-performance
parallel run-time system. The inherent difficulty with
providing such an environment is the problem of
mapping a simulation application to the parallel run-time
system. To use a system like TWOS effectively this
mapping must be carefully completed by hand; to
reiterate, this is accomplished in JPL’s Time Warp system
by writing the application in C and utilizing TWOS

Rich and Michelsen

primitives. For large applications that must be flexible to
changes in requirements, this approach is neither
desirable nor practically feasible. The coupling of
ModSim and TWOS is an attempt to address these very
issues. The ModSim/TWOS system does indeed provide
an automatic mapping from a ModSim application to an
equivalent Time Warp application in C. However, the
major flaw with the ModSim/TWOS system as it
currently exists is that there is no compiler support for
mapping a ModSim application into an efficient C/TWOS
application.

The current approach taken in ModSim/TWOS is to
map all ModSim objects to TWOS logical processes
(also called TWOS objects). At first blush, this might
seem like a reasonable solution. The problem, however,
is that a well designed object-oriented application in
ModSim is not necessarily a well designed TWOS
application. An object-oriented design typically results in
relatively fine-grained object definitions from which the
application is composed. A TWOS-oriented design
typically results in large-grained object definitions. There
are some elements of object-orientedness apparent in
TWOS applications, but to a large extent, these
applications must be designed with a different set of
decomposition and encapsulation rules than a typical
object-oriented program (Booch 1991). For example, in
designing the terrain component of the Parallel Eagle
model we initially used a straight-forward object-oriented
decomposition. At the time of the design and
implementation of terrain the ModSim system supported
a granularity control mechanism. This mechanism
allowed objects to be identified as either process or
simple objects; process objects would be mapped to
TWOS objects and simple objects would not. The actual
implementation of such a mechanism is difficult and this
approach was abandoned by CACI in favor of the current
one-to-one mapping approach. Early on in the terrain
design (Rich and Michelsen 1989), it was our intention
that only a few object types would be identified as
process objects and hence TWOS object instances would
number in the hundreds. Without the granularity control
mechanism initially in ModSim, a small terrain data set
results in instances of TWOS objects numbering in the
tens of thousands; quite a task for any Time Warp system.
The simple fact is that we were never able to successfully
run any part of the Parallel Eagle model in ModSim/
TWOS.

A report prepared by Katherine Morse while at CACI
demonstrated that speedup could be achieved by using
ModSim/TWOS (Morse 1989b). The application
benchmarked was under one thousand lines of ModSim
source code and its design was TWOS-oriented; that is,
the object definitions were large-grained and instances
manipulated  record  structures internally and
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communicated with other objects infrequently.
Furthermore, the number of TWOS object instances was
in the hundreds.

8 DISCUSSION

8.1 Summary

Both ModSim and TWOS have their strengths and
weaknesses when viewed independently. The ModSim
language system is a generally usable object-oriented
simulation environment that benefits from the integration
of an object-oriented approach within a modular, process-
based simulation framework. The major weakness of the
ModSim language system is that it suffers from
inconsistencies and oversights in its current realization.
The Time Warp Operating System has been demonstrated
to be a viable vehicle for doing parallel, discrete-event
simulation; performance studies are encouraging. Many
issues, however, are still open in the area of Time Warp
research and TWOS, in particular, is still experimental.
The combination of ModSim and TWOS is notionally a
good idea. Yet the failure to generate a workable,
comprehensive mapping of the ModSim execution model
to the Time Warp execution model is a debilitating
deficiency. Without sufficient compiler support there is a
mismatch between these two execution models. The
current ModSim/TWOS system does not provide this
kind of compiler support.

8.2 Continuing And Related Work

There is an ongoing research effort to redesign the
ModSim/TWOS system. This effort is sponsored by the
Amy and is currently underway at Jade Simulations in
Calgary, Canada. The initial phase of Jade’s effort has
been completed (Baezner 1991) and the redesign phase is
underway. ModSim language issues are being addressed
concurrently with the ModSim/TWOS redesign.

Jade Simulations also developed and marketed
Sim++ (Jade 1990), a process-oriented, discrete-event
simulation embedded in the object-oriented programming
language C++. Sim++ is specially designed so that
programs are able to execute sequentially in a single
processor environment or in parallel in a multiple
processor environment using Jade’s proprietary
implementation of the Time Warp mechanism. Like
ModSim/TWOS, Sim++ does not provide an automatic
mapping from a simulation application to an efficient
Time Warp application; Sim++ programs must be
carefully designed for maximum performance (not unlike
C/TWOS applications).

Finally, CACI is continuing its development of
MODSIM II. Proposed enhancements to the MODSIM 11
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system include an implementation of parameterized types
and support for visual programming (Duncan 1990). We
are unaware of any development work on a parallel
processing version of MODSIM I1.
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