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ABSTRACT

Simulation has been used predominantly in the
evaluation of systems during the design phase. It has not
been as successful as an operation tool. Scheduling, on
the other hand, is done traditionally via mathematical
model. The interaction between these two fields of
operations research has been complementary.
Traditionally, a schedule is created as an initial guess and
is evaluated with a simulation model. A schedule with
"acceptable" features can then be adopted for operations.

In recent years, as the speed of computer accelerated, real
time simulation for the purpose of operation and control
is proposed. Simulation based software for operation
and control of production system has also evolved into
commercial products. As with any new technology, there
are different point of views among the researchers,
software developers, and users. This panel session will
provide a forum for discussion of philosophical issues as
well as illuminating merits of each approach.
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This paper presents (in alphabetical order) brief position
statements by the panelist to serve as a lead into the
discussion.

WAYNE J. DAVIS

Before addressing the combined issues of simulation and
scheduling, it is necessary to generalize upon the current
association of the two terms. Scheduling is a class of
decision-making for the allocation of essential resources
toward the completion of a prespecified set of
requirements.  Historically, project scheduling is one
form of scheduling where the utility of simulation has
already been demonstrated. More recently, the coupling
of scheduling with simulation has explored the
scheduling of manufacturing systems. Yet, in general,
scheduling is only one type of decision making that
pertains to discrete-event systems, a class of systems
which characterizes both the project management and the
manufacturing system.

Recently, there has been an impetus toward the
formalization of decision making as it pertains to
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discrete-event systems. Ho [1989] and Cao and Ho
[1990] provide an excellent overview and a matrix for
classifying the decision-making tools employed in the
analysis of discrete-event systems. Methods such as
finite state machines, Petri nets, Min-Max algebra,
Markov chains, queueing networks, and simulation are
cited. It should be noted, however, that most of the
theoretical and experimental development of these
techniques has focused on the steady-state analysis of
discrete-event systems On the other hand, the recent
literature that applies simulation to the scheduling of
manufacturing systems (e.g. Davis and Jones [1988],
Davis et al. [1989], Erikson et al. [1987], Grant et al.
[1988], Harmonsky [1990], Sadowski [1985], Wu and
Wysk [1989], and Yamamoto and Nof [1985]) provides
two new fundamental trends. First is the trend toward
the real-time analysis of the projected system response.
In other words, the current state of the system is being
considered as the initiation point for the analysis of the
near-term system response, and decisions are made in
real time. The second trend is that the simulation model
is advocated as the controller to implement the schedule
which was selected in real time.

The influence of the current state of the system upon
decisions has received far too little attention in the
literature. Nearly all of the previous statistical analysis
methods pertaining to discrete-event simulation have
taken specific precautions to remove the effects of the
initial state from the projected steady state response of
the system. Even the terminating simulation which
typically considers the system trajectory between a
prespecified initial and final state, is primarily designed
to project the long-term expected response at a particular
point within the operating cycle. The influence of an
arbitrary initial state upon the projected response for the
scheduled system is startling. Recently, Flanders [1991]
attempted to optimize the schedule for a flexible
manufacturing system (FMS) which addresses a nearly
constant, daily parts demand. The original task was to
define the schedule that minimized the makespan needed
to produce this constant daily requirement in order to
generate additional slack capacity. This slack capacity
could then be reassigned toward the production of other
parts. Using a genetic algorithm approach to search for
the optimum schedule , several discoveries were made.
First, given the complexity of the FMS, the optimal
schedule was difficult to discover.  That is, the
convergence process was often erratic. Second, when an
improved schedule was generated, its performance on a
day-to-day basis was truly unpredictable. The required
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makespan to produce the constant daily production
requirement could exceed its minimum value by nearly
50%. The experienced level of uncertainty was totally
unexpected given the numerous deterministic
assumptions that had been made. The only considered
source of uncertainty was the remaining tool life for the
cutting tools positioned at each machine at the beginning
of the day.

An even more astounding fact is that the actual mode of
optimization for a given performance index can change
as a function of the initial state. It is widely recognized
that scheduling represents a multi-criteria optimization
which includes the consideration of performance indices
such as the total makespan, the combined process
utilization, the average job tardiness, among others. To
illustrate the manner in which the mode of optimization
can be modified, let us consider the process utilization
criterion which is typically maximized. For a given
initial condition, one scheduling alternative might
provide a similar production throughput with less
utilization of the processes than another scheduling
alternative. In this situation, process utilization should be
minimized rather than maximized. That is, the
optimization for the process utilization criterion has been
completely reversed from its traditional maximization.
Repeated experiments of real-time, discrete-event
simulations for manufacturing systems, have resulted in
similar situations. In short, changing the mode of
optimization for a given performance criterion is not an
exceptional situation.

In employing the simulation model as the foundation of
the controller for the manufacturing itself, there are
several additional concerns. The first set of concerns
arise from the current capabilities of the simulation
languages themselves. That is, most available simulation
languages are woefully inadequate in the modeling of the
controlling elements of automated manufacturing
systems. The focus of nearly all existing simulation
languages is toward the modeling of job flow and the
allocation of the primary manufacturing processes. The
restrictions in modeling the management of supporting
resources are obvious. The inclusion of material
handling is a major advancement, yet often many of the
inherent assumptions made by the simulation languages
render these features unusable. For example, some
languages assume that the distance from station A to
station B is the same as that for station B to station A.
For unidirectional cart paths, this is seldom the case. The
cart paths themselves are resources that must be managed
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when multiple transporters are to be modeled and a
contention for paths exists when the movement of one
transporter interferes with another. The inclusion of
supporting resources such as tooling and fixturing
represents another major concern which cannot be easily
addressed with most simulation languages.

Moreover, existing simulation languages do not readily
permit the incorporation of essential control logic for
existing controllers into the model. This control logic is
another supporting resource whose detailed modeling is
absolutely essential. As an example, Hedlund et al.
[1990] and more recently Dullum [1991] investigated the
expected production capabilities of a proposed FMS to
be operated by the U.S. Army Rock Island Arsenal. The
vendor for the proposed system provided a simulation
study demonstrating an expected average utilization in
excess of 70% for each of the seven included milling
machines. Their study, however, neglected the detailed
operation of the tool management system and the
associated controllers for both the cell and the four
material handling systems. When these details were
included in the simulation, it was demonstrated that the
70% utilization could not be achieved while all seven
machines were operating. The true average utilization
was about 45%. An average utilization of 70% could
only be achieved when four of the seven machines were
idled. It took over two man-years to develop the detailed
simulation model. The major portion of this effort was
devoted to the inclusion of the control elements to
manage the supporting resources and the material
handlers. Since the inclusion of the control elements was
not straightforward, the resulting simulation code is
nearly impossible to modify or document.

The consequences of each of initial condition and control
concerns is further confounded when they are integrated.
It is the control actions that influence the changes in the
state of the system. As shown above, the scheduling
problem is dependent upon this state. The current
scheduling problem in turn influences the selection of an
optimal control strategy whose implementation will again
modify the state of the system. What emerges is a
collection of functions that must be addressed
concurrently in real-time to define and implement a
production schedule. Recently, Davis, Jones and Saleh
[1991b] defined a generic controller for real-time
decision-making as it applies to the real-time control of
discrete-event systems. In their definition, they outlined
four fundamental functions to be addressed concurrently.
First is the assessment function, which is responsible for

the continuous updating of the decision to be addressed
by the controller--in this case, the real-time production
scheduling problem.  Second is the optimization
function, which is responsible for the selection of the
current optimal control law whose implementation
generates the optimal schedule. Third is the execution
function, which is responsible for the implementation of
the current optimal control law as well as maintaining a
feasible system response to react to disruptions between
planned and realized system response. The final
function, the monitoring function, is responsible for
coordinating the other functions within the controller.
Whenever infeasibilities are recognized with respect to
the system constraints for the scheduled subsystems, the
monitoring function attempts to reconcile these
infeasibilities by first reoptimizing the current control
law, and if this step fails, by redefining the current
decision so that a feasible solution can exist.

It must also be recognized that the real-time decision
making associated with a large-scale, discrete-event
system is beyond the scope of a single generic controller.
That is, the overall decision must be decomposed among
several decision-making entities. The manner in which
this decomposition is defined, as well as the associated
interactions which must occur in real-time among the
various dccisiori—making entities, has yet to be explored.
It is clear that the principles of decomposition theory in
mathematical programming and decentralized control
theory must be integrated and embellished to address the
stochastic properties and the multi-criteria performance
considerations of the proposed optimization and control
of a discrete-event system. Additionally, one must not
forget that the decision and control problems being
addressed are continually being modified as the state of
the system changes.

Since the decision-making and control of the discrete-
event system is dependent upon the ability of the
controller to predict the future response of the system,
real-time, discrete-event simulation is an essential
technology which must be developed to implement the
proposed generic  controller. Furthermore, the
applicability of this technology is not limited to a single
function within the generic controller but is critical to the
implementation of all functions. Like the generic
controller, the technology of real-time simulation
requires  considerable additional theoretical and
conceptual development.  Davis, Wang and Hsich
[1991a] have provided an overview of the essential
requirements for implementing a real-time, discrete-event
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simulation, and have highlighted several fundamental
ijssues that remain to be resolved. Among these
requirements is the generation of sufficient simulation
trials to allow a prediction of future system responses.
The simulation trials must be initiated to the current state
of the controlled subsystem, and this state is constantly
evolving with time. How does one generate a sufficient
number of simulation trials under these circumstances?
What potential does the new computing platforms,
especially the concurrent computers, provide in
addressing this issue? Even if sufficient data can be
generated, how does one address the statistical analysis of
the projected response in real-time? These are some of
the questions yet to be addressed. Furthermore, given
that the statistical analysis can be performed, how does
one further assess the statistical tradeoffs that currently
exist when multiple performance criteria are to be
considered in the comparison of a preselected set of
decision (scheduling) alternatives? Simply stated, the
operative real-time, discrete event simulation will
produce data at a rate that will exceed the ability of any
decision maker's comprehension. The statistical analysis
and compromise analysis for the real-time, discrete-event
simulation must be automated. Yet there must be an
interface through which the decision maker can
participate in assessing key considerations. Further,
within each generic controller, several real-time
simulations will likely be operating concurrently while
for a real-world, discrete-event system there are likely to
be several generic controllers interacting to address the
overall decision making and control problem.

Is this complexity really essential? We can simplify, only
if we are willing to accept the inherent costs. These costs
arise in a loss of predictability and flexibility.
Simplifying assumptions limit the ability of the model to
accurately predict the true performance of the system.
That is, the projected responses from the simplified
model may not be realistic, or even feasible. If a
disruption occurs, we must be able to assess whether
immediate attention is required, or if the perturbation will
correct itself. To allocate the future usage of a given
resource, we desire to predict the probability that a given
resource will be available at any given point in time. We
also desire the capacity to assess true statistical tradeoffs
among the performance criteria given the current state of
the system. We might consider only a single
performance criterion, but then we can never be certain
that the considered criteria is the most fundamental given
the current state of the system. Furthermore, we may not
even be certain whether the given criterion should be
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maximized or minimized at the given moment. With
respect to flexibility, simplifying assumptions typically
limit the actions that we can take to control the system.
For example, we can state that all processing durations
will be constant to simplify the models. However, if we
actually implement these assumptions, we forego any
potential benefits that might accrue from accelerating
tasks that are known to be critical to the overall
production flow.

Ho [1989] has argued that the understanding and control
of physical systems has advanced considerably with
centuries of theoretical and experimental development.
The behavior of these systems can typically be captured
using differential equations. Man-made systems, on the
other hand, are discrete-event in nature and defy this
form of representation. Ho's assertion can be taken one
step further. Most constraints pertaining to discrete-
event systems simply defy a priori specification as a set
of functional equalities and/or inequalities. To date,
discrete-event simulation is perhaps the most powerful
tool which exists in the analysis of these systems.
Nevertheless, discrete-event simulation is neither a
mechanism for decision making nor control, but rather a
predictive device to assist in the implementation of these
processes.  Real-time decision-making and the on-line
control of discrete-event systems are in their infancy.
Yet, the need for these tools is growing at an alarming
rate. Certainly, the effective management of our factories
is crucial to the profitability of industry. There are also
other urgent problems requiring our attention. Real-time,
vehicular traffic control for metropolitan areas is
essential. Real-time management of air traffic is crucial
both at the airports and in the flight lanes. The effective
distribution of relief supplies to famine stricken areas of
the world is crucial. The response to natural tragedies
including earthquakes, volcanoes and hurricanes is a
constant concern. The need for further research is
obvious.
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RICKI G. INGALLS

In the last several years, the simulation community has
moved from its traditional role of evaluating the
performance of systems to using simulation in a variety
of other areas including production scheduling.
Although I applaud the effort of moving the application
of simulation modeling into other areas, I believe that the
move into production scheduling is often misguided and
will prove to be unfruitful.

At this point, I would like to differentiate between two
simulation application efforts that are at times
intermingled. One is the real-time prediction of system
performance using simulation and the other is production
scheduling.

The real-time evaluation of future performance of the

system has the following characteristics.

1. The objective of the simulation system is to warn the
people who own the production system that there are
dangerous situations looming ahead if corrective
action is not taken.

2. The time horizon for the analysis is relatively short,
normally less than one shift and very often less than
four hours.

3. The model is run often, if not continuously.

4. The answer is statistical in nature, meaning that the
warning is probabilistic.

5. The answer is used locally, meaning that the
production system is the only corporate system that
is directly effected by the simulation system.

This area fits well with the capabilities of discrete event
modeling.  If the simulation system runs several
replications and does proper analysis of the results, the
simulation system can predict the probabilistic behavior
of the production system. This application is very
valuable because it helps to prevent situations that can
adversely effect production.

Production scheduling, on the other hand, has a very

different set of characteristics.

1. The objective is to develop a schedule that satisfies
the constraints of demand, inventory, materials, and
resource availability.
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2. The time horizon under consideration can range
from days to months. The time horizon is often set
by the user so that he is comfortable that the time
horizon encompasses all of the significant
information needed to develop the schedule.

3. The schedule is regenerated only when it is
necessary to regenerate it. It is rare that a production
schedule is regenerated every shift. Most often it is
regenerated once a day or once a week.

4. The answer is deterministic in nature.

5. The answer is used an input to other systems in the
corporation, including the MRP system, accounting
and financial systems, and as demand for supplier
facilities.

This is where a discrete event model is not the right tool.

Perhaps a discrete event model could be manipulated to

work, but it's like trying to Kill a fly with a hand grenade.

The end result would be that the fly is dead, but there are

better tools available to get the same result.

The problems associated with using discrete event
modeling for scheduling production facilities are
numerous. Below are listed just a few of them.

1. Discrete event modeling does not implicitly take into
account non-resource constraints, especially demand
and inventory. This is due to the fact that discrete
event modeling has no mechanism to look at the
entire time horizon at once.

2. In production systems other than job shops,
dispatching rules are seldom used to move product
through a facility.

3. The primary strength of discrete event modeling, the
modeling of stochastic behavior, should not be used
when determining a schedule. If it is used, the
schedule is perhaps more bogus than if it were not
used.

4. Unless the discrete event model uses search
techniques, it has no concept of what it would take
to make an infeasible schedule a feasible one.

5. It is often desirable to vary a schedule as little as
possible from the previous schedule. Discrete event
modeling does not have a mechanism to directly
implement that preference.

KENNETH J. MUSSELMAN

Manufacturing's challenge is to continuously improve in
the face of change. A manufacturer's survival can depend
on it. This where computer-assisted modeling and
analysis techniques play an important role. They provide
timely decision support to help master change...again and
again.
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One of the most successful modeling and analysis
techniques in use today is simulation. Its power and
versatility have helped it gain widespread acceptance in
the manufacturing community. Simulation's initial thrust
was in the area of system design, where it was and is still
being actively used to determine the number and types of
resources required to meet a given production level.
Successes in this area have paved the way for its use in
other areas of manufacturing as well. These areas and the
decisions supported within these areas include:

Area Decision

Capacity Scheduling How much capacity(e.g.,
overtime) is needed?

When ?
Where ?

Logistics Scheduling When are materials, tools, etc.
needed ?
When is the best time to
conduct preventative

maintenance ?

Production Scheduling What resources should be
assigned to what work orders ?
What sequence should we run ?
Schedule Adjustment ~ How should we run, given this
machine just failed ?

Here, the emphasis is on controlling actual production
subject to production, resource, and logic constraints.
Data used to support this function typically includes:

*  Current shop floor status

*  Routings

*  Machine and operator status per time period

*  Order release schedule

Simulation is well suited to take full advantage of this
data and effectively integrate it into its processing. The
result is a realistic baseline that identifies what work
orders to run and when. Moreover, the collective impact
of all operational decisions can be taken into account to
produce a better coordinated schedule.

Scheduling offers a new role for simulation in
manufacturing. In the more traditional design role,
simulation is used to predict how well a system will
perform under various conditions. Now, in scheduling, it
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is used to dictate how the system should be run, thus
establishing the future more than predicting it.

A manufacturer's ability to meet demand has been proven
to be effectively supported and improved through the use
of simulation. Simulation takes full advantage of
available system data to drive to an accurate and
comprehensive scheduling solution. The result is more
efficient and productive operations, better evaluated
risks, and reduced costs.

C. DENNIS PEGDEN

The traditional application of simulation in
manufacturing is the design and analysis of the
manufacturing facility. For these applications,
simulations are used to determine the number and type of
machines, compare alternate material handling systems,
determine buffer sizes, and so forth. In these
applications, the model is used during the design and
analysis and then basically is put on the shelf once the
design is implemented and the manufacturing system is
fully operating.

A new and evolving manufacturing application area for
simulation is the operational control of the manufacturing
facility. Simulation can be used on an operational basis
to support decisions regarding job scheduling, capacity
planning, preventive maintenance, etc. In addition,
simulation can be used to evaluate alternate responses to
unplanned events on the shop floor such as machine
breakdowns, material shortages, and so forth. Thus the
model continues its usefulness throughout the operating
lifetime of the facility.

The basic advantage that simulation has over other
techniques in manufacturing control applications is that it
can provide an accurate representation of the capacity of
the facility. Unlike other approaches such as MRP or
MRP II, simulation can model the details of the
manufacturing facility, including the material handling
component, and provide an accurate representation of the
time required to process a job through the system.

One of the primary functions of simulation in control
applications is the generation of a short-term finite
schedule for the facility. This finite schedule is generated
by initializing the simulation model to the current state of
the facility and then simulating the flow of actual jobs
through the system based on the planned release schedule
of jobs to the floor. By changing the job selection rules
at each workstation (first-in, first-out; critical ratio;

shortest processing time; etc.), and other control policies
(job splitting, overlapping, etc.) different alternate short-
term schedules can be generated for the facility. These
alternate schedules can then be compared based on job
tardiness and other factors and the best schedule can then
be selected for implementation.

The simulation model can also be used to evaluate the
impact of planned maintenance schedules or capacity
changes (c.g. adding a second shift at certain bottleneck
stations) on job release dates. The simulation model
provides the decision maker with a general-purpose
"what-if" tool for day-to-day manufacturing decisions.

Future systems could also incorporate intelligence to
generate automatically candidate solutions to a problem,
simulate each candidate solution, and implement the best
solution. Such a system could be used to automatically
control a facility without human input.

Although  the basic manufacturing  modeling
requirements are the same in both design and control
applications, there are some basic differences in the
requirements on the simulation tools needed in these
applications. For example, in design applications, job
arrivals and processing times are typically generated as
samples from random variables, whereas in control
applications, this information is typically read in from
data files. Likewise, for design applications, we typically
are only interested in summary performance measures for
comparing systems. In contrast, in control applications
we are not only interested in summary reports, but also
reports detailing the behavior of individual jobs.

Perhaps the most significant difference between these
areas of application is the type of user running the
simulation. In the case of design models, the user is
typically a manufacturing engineer and is often the
person who developed the model. The person is trained
in the use of the simulation tool. On the other hand, for
control applications, the user of the model is typically the
shop scheduler and is normally not the person who has
developed the simulation model of the facility.
Therefore, a much simpler and more specialized interface
is required to allow the user to interact with and interpret
the results from the model.

The current applications of simulation in manufacturing
control are done either with a general-purpose simulation
language, or a special-purpose shop floor modeling
package. The advantage of the first approach is that the
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same tool can be used in both design and control
applications. A model built for evaluation of the facility
design can then be carried over and used to help control
the facility. The disadvantage of this approach is that the
general-purpose languages do not currently provide as
standard features the wide range of input options and
standardized reports that are useful for control
applications.

Because both the design and control applications share
the same basic manufacturing modeling requirements, the
concept of a separate special-purpose package for shop-
floor applications is unattractive. It is inefficient to build
a model of a facility during the design phase with one
simulation tool, and then discard that model and rebuild a
new model of the same system using a different
simulation tool for use in the control of the facility. The
challenge for developers of simulation tools is to
incorporate shop-floor control features such as improved
data input, specialized reports (Gantt charts, tardiness
reports, etc.), and customizable interfaces into existing
simulation tools.

One important issue that is often over looked in the
discussion of simulation-based shop floor scheduling is
the proper handling of random events such as machine
breakdowns. A typical suggestion is to ignore these
random events when generating a schedule, and then
reschedule the jobs whenever a significant event occurs
that corrupts the current schedule. The problem is that
any performance values (average tardiness, number of
late jobs, etc.) generated by the simulation run using this
approach are optimistic because they are based on an
unrealistic facility capacity corresponding to no
breakdowns. This approach to scheduling creates a
situation where the actual performance is consistently
worse than the performance predicted by the simulation.
Therefore it is important to include these random events
within the model for the purpose of predicting
performance or comparing alternate  scheduling
strategies. Once a specific scheduling strategy has been
selected and the predicted performance established, the
short term schedule can then be generated with the
random events eliminated from the model.

W.J. TRYBULA

The present approach of firms involved in marketing
scheduling packages is focused on the largest
corporations in the United States. The existing products
requirc a considerable knowledge of computers,
mathematics, and/or simulation. This approach leaves
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the majority of companies "out in the cold". We need a
new focus which will bring these capabilities to the
smaller manufacturers.

The existing method of scheduling in the average U. S.
manufacturing has very little science and a large amount
of experience. Typically, the schedules are generated by
some one who has been in the job for years and relies on
previous situations which had similar mixes of product.
Consequently, the scheduling of the facility is a function
that requires on-the-job training. Application of any type
computer tool will be resisted because there is a
reluctance to work with "computers".

In addition, the manufacturing firm is not very large.
Consequently, the availability of personnel who
understand the requirements for a mathematical
scheduling package are a very scarce resource. This
raises the question of what type of scheduling should be
done.

In order to answer that question, it must be determined
just what the scheduling process is trying to do. For this
discussion, consider that the schedule has one or more
feasible solutions. The goal of the scheduling process is
to develop an acceptable solution -- one that works. It
does not have to be the optimum schedule or have any
other characteristics than it meets the criteria -- it works.
Therefore, the process can stop once an acceptable
answer is obtained. The inputs are the resources
available, both people and equipment, along with the
required production output. The amount of each
resource required for any products must be available to
the system. Having this information and either an
unlimited number of computers or unlimited time, the
solution can be obtained. The problem is how to solve
these schedule challenges without involving sophisticated
computer programs.

One final point in developing a method to schedule is
that the entire problem does not have to be completely
reevaluated. Work done in the area of scheduling has
shown that if the "seed" or starting point for the
calculations, the results can be made to converge rapidly.
Most manufacturing schedules do not have major
changes but only minor ones. Once an initial solution is
obtained, any changes should be able to be solved
quickly.

Small firms are very adaptable. PC programs, like
TIMELINE, are being used to schedule facilities. There
is a very large market which needs tools for running their
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businesses. The availability of sophisticated, expensive
programs leaves them cold. We can either address their
needs or they will go elsewhere.
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