Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

OBJECT ORIENTED SIMULATION WITH SMALLTALK-80:
A CASE STUDY

Jocelyn R. Drolet

Groupe de Recherche en Gestion
de la Logistique
Laboratoire de Productique

Université du Québec a Trois-Riviéres

Colin L. Moodie

Engineering Research Center
Purdue University
West Lafayette, Indiana 47907

Benoit Montreuil

Groupe de Recherche en Gestion
de la Logistique
Université Laval

ABSTRACT

Object Oriented Simulation (OOS) provides a more
natural way of modeling complex phenomenon and a
higher productivity during the incremental phases of
development but it is not a panacea. In this paper, the
authors relate their experience with OOS. More
specifically, the article begins with a few historical
developments that lead to object oriented programming.
Then, we present the objectives of the object oriented
simulation model, which we developed as a case study.
The third section introduces the virtual cellular
manufacturing system which has served as the referent
system for the experimentation. In the fourth section
and the following, we present the object oriented
modeling methodology which has been followed during
the incremental phases of development and the strategic
and tactical plan for sustaining the experimental
investigation. Finally, the results of the experimental
investigation that focus uniquely on the object oriented
experience are presented. Results that are specific to the
virtual cellular manufacturing system are not discussed
in this paper.

KEY WORDS: object, simulation, SmallTalk,
modeling, virtual, cell

1 INTRODUCTION

Computer simulation is one of many ways available
for modeling certain phenomenon. Problems that are
well understood can sometime be approximated by
analytical models. Other problems involve collections
of interacting entities whose low-level pair-wise
interactions with each other are known but whose high
level group interactions cannot be grasped. Simulation
enables one to encode these low-level interactions and

312

simulate them, dynamically approximating the overall
behavior of the system.

2 THE EVOLUTION OF SIMULATION
LANGUAGES

In this section, we present a few historical
developments that have led to object oriented simulation.
The first related milestone in the history of
programming language is the development of
FORTRAN in the 1950's. Although most simulation
model being developed today are written in languages
such as SLAM, GPSS and SIMULA, observers agree
that most simulation models in use are still written in
FORTRAN. With Fortran, programmers had for the
first time the ability to directly write complex
mathematical expressions in a familiar form. Also,
Fortran's primary contribution was the introduction of
subroutines which added modularity to large
applications.

Modularity was further enhanced with the appearance
of Simula [2] in the 1960's. Simula, as the name
suggests, was designed as a general purpose simulation
language. Its contribution was to introduce the concepts
of classes and class objects that supports multiple
concurrently operating processes.

Results obtained from computer language theory
developed during the 1960's led to many new
programming languages in the 1970's. One milestone
was the development of Pascal which further emphasized
program modularity. Among the most widespread
simulation languages developed in that period are GPSS,
GASP, and SLAM. In the late 1970's, many other
languages used some form of class construct borrowed
from Simula within a Pascal-like syntax. Another
major achievement was undoubtedly Ada. Ada supports

Object Oriented Simulation with SMALLTALK-80

structured generic data types. With Ada, the potential
was almost unlimited but the price to pay was high; the
goal with Ada was to satisfy the needs of so many
application areas that it resulted in a very complex
language.

In the mean time, Lisp and Prolog were proposed as
the solution for artificial intelligence programming.
Object-oriented simulation environments have tended to
be implemented in Lisp but suffered from Lisp's scaling
and integration problems. Efficiency and execution
speed of LISP becomes problematic when scaling from a
handful of objects to thousands.

Then, object oriented programming languages
appeared. Object-oriented simulation traces its roots to
SIMULA. Its modern form is represented by such
languages as C++, SMALLTALK-80, LOOPS and
EIFFEL.

Object oriented programming is a philosophy of
design It has three characteristics; data abstraction,
program abstraction and protection domains which define
access rights and operations available to the user. It
provides a new dimension in which to organize the
elements of an application software. The object oriented
concept allows the developer to create highly reusable,
generic code, in an environment that favors prototype
style of application development.

The object oriented paradigm provides several
features not included in procedural languages. The
variety of data structures; indexed collection, fixed size
collection, bitmap, byte array, symbol, ordered col-
lection, sorted collection, dictionary etc., are not found
in any procedural language. Flexibility, modularity,
inheritance, encapsulation and sophisticated pro-
gramming environment that usually permit pseudo
parallel processing are other advantages of this paradigm
over procedural language. Objects are the basic entities
within Object Oriented Programming (OOP). Booch [1]
defines an object as follow:

An object is an entity that
1. Has a state.

2. Ischaracterized by the action that it suffers and that
it requires of other objects.

Is an instance of some class.
Is denoted by name.
Has restricted visibility of and by other objects.

AN S

May be viewed by its specification or its
implementation.

Objects should also have the following three
characteristics:
1. Inherent processing ability

2. Message communication

313

3. Uniformity of appearance, status, and reference.

Generally speaking, objects are intended to represent
entities capable of exhibiting different behavior. All
objects in an application are organized in a class
hierarchy that lets them inherit properties from higher
level objects. The class structure definition depends on
what OOP language is supported.

For example, early versions of the SMALLTALK
language supported a class structure with a strict single
inheritance rule. Although more efficient, multiple
inheritance has some problems. In fact, when an object
has more than one superclass, it might inherit
conflicting variables or even conflicting methods, thus,
multiple-inheritance hierarchy is really for experienced
programmers.

3 SIMULATION OBJECTIVES

The main objective of the study is to demonstrate
the viability of a virtual cellular manufacturing system
[31,[4],[5],[6]) and to comprehend the high level
interactions of its many components. More
specifically, the following questions shall be answered,
although in some cases, partial results shall be sufficient
given the infancy of the concept.

1. Will the virtual cellular manufacturing concept
work?

2. Since these systems operate in Just-in-Time
mode, how long will the average queue length be?

3. How long will the maximum queue length be in
a typical run?

4. How long will the average time-in-system be?

5. How fast will the optimization based scheduling

algorithm react upon the occurrence of an
unexpected event such as a breakdown?

6. Typically, how many parts, jobs, or virtual cells
will be active in the system simultaneously?

<

Typically, how many interactions will be present
between virtual cells? In other words, how many
workstations will be shared between two or more
virtual cells?

8. What burden will be put on the material handling
system?

9. How efficient in terms of machine utilization,
time-in-system, and throughput is the virtual
cellular system?

The variety of questions, the complexity of virtual
cellular systems, and the importance of testing the
overall behavior of the system, while being in transient

314

state, forces us to reject a queuing theory based
methodology since these techniques are valuable only in
systems of simple to moderate complexity that will
reache a steady state. Simulation is the only
methodology currently capable to answer the questions
just listed.

The overall goal can thus be formulated as follows:

To develop an object oriented simulation model of a
Virtual Cellular Manufacturing System (VCMS) which
permits answering the questions just presented. In
addition, the model should consider various entities and

Drolet, Moodie and Montreuil

resources: machines, workstations, material handling,
jobs, parts, tools, and virtual cell controller. The model
should permit the generation of random breakdowns.
Also, one should be able to interface the model with a
variety of existing algorithms already written in the C
programming language; among them, a linear
programming algorithm, a generator of linear programs
and a parsing code. Finally, it should be noted that it is
not necessary to have a one-to-one correspondence
between every aspect of the referent system and every
aspect of the model.

(B=)

=)

Figure 1: An experimental VCMS

4 DESIGN OF AN HYPOTHETICAL VCMS

We do not know of any existing virtual cellular
based manufacturing system to date. Given this, it is
necessary to conjecture an hypothetical VCMS which
will be the referent system for our experimental
investigation. The referent of a simulation model must
be well defined, it must serve as reality from the
perspective of the model. This section focuses
essentially on the development of an hypothetical
VCMS.

Figure 1 illustrates the manufacturing system which
plays the role of referent. The manufacturing system

consists of 19 CNC machines of 4 types grouped in 10
workstations.

Each workstation contains from 1 to 3 identical
machines, a material handling device for local handling,
and at least one input/output station which can hold a
few pallets. Input/output stations are the interfaces
permitting the linkage between different material
handling systems.

For the purpose of this study, it was decided to use
robots and automated guided vehicles (agv) as principal
medium for material handling. Robots would handle the
parts within workstations having multiple machines.
Generally, they would carry the parts from an input

Object Oriented Simulation with SMALLTALK-80

station, which in most occurrence is one side of a bi-
directional conveyor, to the destination machine and
then, once the machining is done, from the machine
back to the output station i.e., the other side of the bi-
directional conveyor.

The system also includes a fleet of free ranging
automated guided vehicles responsible for handling the
flow of parts between workstations. The agvs can
circulate freely in the manufacturing system. These
intelligent AGV's are assumed to be of the latest
generation, either controlled by infra red beam or radio
frequency. The number of AGV's which will be required
depends of many factors; AGV's characteristics (speed,
acceleration, loading and unloading time, frequency of
breakdown and duration, loading capacity,
communication delay and throughput, quality of the
control algorithm (i.e. myopic or optimized based)),
production's characteristics (processing time, number of
stations to visit, number of products per fixture-mounted
pallet), and system's characteristics (distance between I/O
stations, density of each virtual cell, variety of
workstation, layout, replication of workstations,
processing speed). Given the intent of the article, the
specific parameters are not specified but will be included
in a forth coming paper which will focus on the virtual
cellular concept.

5 OBJECT ORIENTED MODELING

Industrial people think of manufacturing systems in
terms of machines, parts, jobs or, more generally,
"objects"; classical programmers think in terms of
programs and data files, more specifically they apply
functional decomposition techniques to encode the
problem specific information. There are major
differences between object oriented decomposition and
functional decomposition. Booch [1] studied these
differences and showed that in most cases object oriented
decomposition allows a more natural representation.

OOP is a philosophy of design, thus the approach
to model building turns out to be quite different from
that associated with procedural programming. Booch (1]
recommends the 6 following steps when OOP
philosophy is used as a tool for model building.

1. Create a data flow diagram.

2. Identify the objects and their attributes.

3. Identify operations sustained by and required of
each object.

4, Establish the visibility of each object.

5. Establish the interface of each object.

6. Implement each object.

The first step is carried out irrespective of the ap-
proach in model building. This step specifies the inputs

315

and outputs of the system to model. In the second step,
one tries to decompose the system into concrete entities
or objects that act in the problem space. The objects
that the system is decomposed into should be real actors
in the system. In the third step, specification and
behavior of each object are defined. In step four,
"visibility of each object" really means to establish what
objects need to communicate with which other objects.
Then, one needs to establish how each object is going to
communicate with the others. Finally, object
implementation is the code that must be written for each
object. In other words, for each object, one has to define
their methods, instance variables, access, and behavior.

The 6-step methodology proposed by Booch is used
as a guide. OOP is an environment that favors
incremental prototyping style of application
development, thus, these steps should not be executed
sequentially. We would rather be thinking of these steps
as an integrated approach to object oriented design
philosophy.

The nature of the simulation tools forces the analyst
to adopt a certain style, a certain structure during the
course of model development. The object oriented
simulation environment of Sim (Sim is a discrete event,
object oriented framework written in SmallTalk. Sim
contains a set of tools that may help the designer during
the modeling phase.), for instance, involves the sub-
classing of class Sim to define the simulation world in
which the simulated entities will interact. Also, each
object or entity which the analyst wishes to simulate in
that world must be a subclass of SimObject. As such,
these objects inherit some variables and the ability to
interact with other objects. While sub-classing reduces
code size and enhance its readability, the analyst must
structure the model in a way that not only fits this
framework but also takes advantage of it. During the
model building phase, it was found that although
inheritance by sub-classing reduces coding, it requires a
much higher level of planning. Normally, it is
unnecessary to subclass at more than two or three level
down the hierarchy. Our model uses only one level of
sub-classing, hence, every object is a child of class
SimObject.

Data flow diagram

The creation of a data flow diagram is suggested as a
design aid to help with conceptual design of complex
systems. The data flow diagram should indicates data
files and processes involved in the scheduling process.
In this case, the scheduling process is initiated in four
pre-determined situations; at the beginning of every
simulation run, upon the occurrence of a breakdown,
when the processing advance deviates more than a certain

316

threshold from what was planned, and when the detailed
planning horizon has elapsed. When any of these
situations occur, the classScheduler initiates the

Drolet, Moodie and Montreuil

scheduling process. The simulation continues with the

new schedule until the scheduling process is initiated
again.

| siMULATION

s

SIMULATION SIMULATION >
2 2S I~

File. Ipm

CPLEX

LP.exe K‘

File. Ipo ?
Parse.exe —DQle.s/mtl

PROCESS

A UNACCEPTABLE DEVIATION RESULTING FROM UNEXPECTED EVENTS

Figure 2: Data flow diagram

Figure 2 illustrates the data flow diagram that is
specific to this. This data flow diagram is only one of
many but it was chosen to show that the scheduling
process comprises several steps, one of which is the
resolution of an optimization based scheduling model.
The object oriented simulation model can be interfaced
with any code written in the C language. Also, if the
model requires one or many number crunching functions,
it is possible to write "object code” in the C language.

Object identification and attributes

The second step consists of decomposing the system
into concrete entities or objects that act in the system
space. Objects can be any entity that plays a specific
role, they should be real actors in the referent system.
Objects that shall be modeled are those that can perform
certain tasks or methods when requested by a message.
In general, it is possible to identify objects by their
properties and attributes. The likely candidates in a
manufacturing environment are: machines, parts,
employees, tools, etc. A specific object named

drillingMachine will be an instance of qlass
DrillingMachine. The object will have a set of private
variables or attributes named instance variables. The
object will also have a set of procedures or methods
which can access and modify those instance variables.
Messages are a form of procedure calls; and methods
correspond to procedures.

Objects may correspond to conceptual or physical
entities of interest in the referent system. A reduced list
of those class objects with their respective instance
variables is presented hereafter.

SimObject subclass: #DrillingMachine
instanceVariableNames: 'myWorkstationld'

SimObject subclass: #Agv _
instanceVariableNames: 'travelingTime currentTime
timeToGo willBeThereAt myDirection myStatus'

SimObject subclass: #Part
instanceVariableNames: 'jobld quantity processTime
tooling partRouting indexRouting

Object Oriented Simulation with SMALLTALK-80

317

CARRYING
C(IDLE J—-—[ON ITS WAY H LOADINGH A PART J—BNLOADING ;]--J

Figure 3: Operating cycle of an AGV

Object behavior

Since objects are supposed to be the real actors in
the system, they must have a certain behavior. This
section focuses on defining the behavior which
characterizes the most interesting objects listed in the
previous section. At this stage, we are not concerned
with messages or procedures, we are only concerned with
there behavior or operating cycle. According with
Booch's methodology, an operating cycle shall be defined
for each object. The operating cycle shall be precise
enough to identify all operations sustained by and
required of each object.

Because it is a representative example, we will now
explore the operating cycles of an Automated Guided
Vehicle (AGV). Agv's are responsible for the handling
of parts between workstations. The operating cycle of an
agv begins in the idle state. This is so simply because
they are in this state at creation time. The agv is
waiting until a customer requests transportation. When a
call is received, the state of the agv passes from
"idleAgv" to "agvOnItsWay" meaning that the agv is on
its way to pickup a part. Traveling time depends on the
distance to travel. Upon the arrival of the agv, the part
is loaded, carried to its destination, and unloaded. The agv
becomes available again and the cycle is repeated. Two
reasons motivated our decision not to model the
breakdown of agvs. First, agvs were assumed
completely interchangeable. Second, one or more spare
agvs could be kept nearby.Figure 3 illustrates the
sequences involved in the operating cycle of an AGV.

Object visibility

Establishing the visibility of each object is to
determine what objects need to communicate with which
other objects. Communication between Sim objects
takes the form of an object sending a message to another
object, and receiving a reply. Two or more simulated
objects may have to communicate directly with each
other. In those dialogs, blocks of code and messages go
back and forth between Sim objects causing the
suspension and resumption of processes.

The dialog between an instance of class Part and an
instance of class Agv, is a good example of that.

Loosely speaking, the part tells the agv its initial
location and its destination when requested by the AGV.
The agv does not have any other way to obtain this
information since these values are instance variables of
the part and thus, private information. More specifically,
upon the reception of a message, the part activates the
corresponding method accessing its private date and then
returning it to the agv that requested it. Figure 4
illustrates this point.

PRIVATE
DATA

Figure 4: Encapsulation

Object interaction

Object interaction really means to establish how
each object is going to communicate with each other and
with the simulated world as well.

It may happen that many objects evolve in the same
simulated world without directly interacting with each
other. This is the case of more than half of the objects
present in our simulation. In these cases, every object
has a set of methods which permits it to read and/or
modify some information held by the central control
point which is the simulated world. It would be much
too tedious to detail all these methods, moreover, those
methods are very much language dependent.

Sometimes, objects need to communicate directly
with each other. The dialog between an instance of class
Part and an instance of class Agv is now the subject of a
meticulous description.

Communication between Sim objects

Communication between Sim objects takes the
form of an object sending a message to another object,
and receiving a reply.

318

Figure 5 shows the SmallTalk code that makes
communication possible between two Sim objects, in
the occurrence, an instance of class Agv and an instance
of class Part. The code is executed sequentially from top
to bottom, thus the control alternates from one object to
the other. The example has been chosen for its
simplicity and because every other object uses a similar
code for communicating between them. One shall
mention that the code is a slightly modified version of
the original one, in fact, tracing and statistic gathering
instruction have been removed for clarity. In Figure 5,
instances of SimObject Agv are playing the role of

Drolet, Moodie and Montreuil

servers while instances of SimObject Part are playing
the role of customers. In the upcoming discussion
instances of Agv and instances of Part will be
respectively termed agv and part except when stated
otherwise. The first line shows the name of both
methods; 'actions’ and 'transport’. The second line list
all local variables. The scope of local variables is
limited to the method in which they are declared. Both
processes take turns executing and being suspended,
while the customerServer protocol passes blocks of code
between them.

Instance of SimObject: Agv

Server

1 actions

2 | aPart travelTime from to |

3 aPart <-- (simControl getQ:'agv’)
findCustomers: 1
for Server: self

4 aPart resumeProcessWhileIWait.
5

6

7 from <-- aPart getBlock value.

8 aPart resumeProcessWhileITWait.
9

10

11 to <-- aPart getBlock value.

14 simControl terminateObject: self.
15 simControl animate: self.

18 simControl TerminateObject: self.
19 simControl animate:self.

22 simControl terminateObject: self.

23 simControl animate: self.

24 simControl queueArrivalOf: self afterWait: 0.0
25 aPart resumeProcess.

instance variable:
travelingTime, myRotation

12 travelTime <-- 3 * ((simControl workstationPosition:from)
dist:(simControl workstationPosition:to)) + 1.
13 icon <-- simControl agvOnlItsWay rotateBy:myRotation.

16 simControl waitFor: travelingTime waitingObject: self.
17 icon <-- simControl agvBusy rotateBy:myRotation.

20 simControl waitFor: travelTime waitingObject: self.
21 icon <-- simControl agvldle rotateBy:myRotation.

Instance of SimObject: Part

Customer

transport
lagvl |
agvl <-- (simControl getQ:'agv')
findServers: 1
forCusomer: self.

agvl reply: [self location].

agv1 resumeAllProcessesWhileIWait.

agvl reply: [self destination].
agv1 resumeAllProcessesWhileIWait.

indexRouting <-- indexRouting + 1.
transportDone <-- #true

instance variable:
indexRouting, transportDone

Figure 5: Two objects communication code

Object Oriented Simulation with SMALLTALK-80

In the agv's method, line 3 shows:

3 aPart <-- (SimControl getQ: ‘agv’)
findCustomers: 1 forServers: self.

The agv needs a customer. This line tells the agv to
go to the customerServer queue named 'agv' and get a
pointer to a control block that represents a part waiting
to be carried. This control block is assigned the pointer
aPart, which is how the agv knows who his customer is
during the upcoming conversation. The method
findCustomer:forServer: returns a control block. The
control block is an instance of the class
SimWaitForCustomerServer. Meanwhile, the part asks
for an agv, representing its server.

3 agvl <-- (SimControl getQ: 'agv’)
findServers: 1 forCustomer: self.

The part goes to the same customerServer queue
'agv' and gets a pointer to a control block representing
the agv. This control block is assigned the pointer
'agvl', which is how the part knows its server while the
conversation goes oOn. The method
findServers:forCustomer: returns an instance of the class
SimWaitForCustomerServer. Both instances of
SimWaitForCustomerServer are complementary; each
has a pointer to the other. The result is that both know
their counterparts. The Q named 'agv' is a kind of
rendez-vous point for the part and the agv. They can
now pass blocks of code between them.

As soon as a customerServer has taken each of the
two processes out of its queue and matched them in this
way, the server process proceeds. In this case, this
means that the agv executes the next piece of code in its
method. Line 4 shows this code:

4 aPart resumeProcessWhileIWait.

This code has the effect of the agv telling the part to
go ahead and resume its process. The agv process
suspends itself. The next piece of code i.e. line 5 and 6
in the part's method are therefore executed.

5agvl reply: [self location].
6 agv1 resumeAllProcessWhileIWait.

Agvl is the pointer by which the part knows the
agv, i.e. its server at this Q. It replies with a block of
code. This code asks the part to get the workstation
number at its location. However, the code in the block
is not yet evaluated. The block is merely passed as a
whole to the agv. It represents the part's reply to its

319

server agv. In effect, the part is telling the agv how to
find out about its location.

Having passed its reply, the part then tells the agv
to resume its process and suspend its own process. The
agv's process resumes. The part's instance of
SimWaitForCustomerServer passes the block to the
agv's instance of SimWaitForCustomerServer. Now,
the agv can access the part's reply. The next piece of
code, line 7 and 8 will now be executed in the agv's
method.

7 from <- aPart getBlock value.
8 aPart resumeProcessWhileIWait.

Sending the message 'getBlock' to the part to be
carried returns the reply block sent by the part. The
message 'value' causes the block to be evaluated. The
result of evaluating line 7 assigns the workstation
number of the part to the local variable 'from'. Now, the
agv tells the part to resume its process and suspend its
own (agv) process. The part's process resumes.

The next piece of code in the part's method is now
executed.

9 agvl reply: [self destination].
10 agvl1 resumeAllProcessWhileIWait.

This code has the same effect as lines 5 and 6,
except that the block of code which is passed to the agv
is different. This time, the code asks the part to get the
workstation number for its destination instead of its
location. As previously explained, the code in the block
is not yet evaluated. The block is passed as a whole to
the agv. Having passed its reply, the part tells the agv
to resume its process, then it suspend its own process.
The agv process resumes.

Line 11-24 are now executed in the agv's method.

11 to <-- aPart getBlock value.
12 travelTime <-- 3 * ((simControl
workstationPosition:from)

dist:(simControl workstationPosition:to)) + 1.
13 icon <-- simControl agvOnltsWay
rotateBy:myRotation.
14 simControl terminateObject: self.
15 simControl animate: self.
16 simControl waitFor: travelingTime waitingObject:
self.
17 icon <-- simControl agvBusy rotateBy:myRotation.
18 simControl TerminateObject: self.
19 simControl animate:self.
20 simControl waitFor: travelTime waitingObject: self.
21 icon <-- simControl agvIdle rotateBy:myRotation.
22 simControl terminateObject: self.

320

23 simControl animate: self.
24 simControl queueArrivalOf: self afterWait:0.0.
25 aPart resumeProcess.

The result of evaluating line 11 assigns the
workstation number in which the part goes to the local
variable 'to'. Line 12 obtains the position of both
workstations 'from' and 'to’' and heuristically computes
the traveling time which is then assigned to the local
variable 'travelTime'. The heuristic results in traveling
times that are more or less equivalent to an agv
operating at 15 feet/min with 20 seconds of loading time
and 20 seconds of unloading time. Possibilities of
congestion were not considered in this study.

Every instance of SimObject inherits certain
variables. Examples of inherited instance variables are
‘icon' and ‘position’. In line 13, the message
agvOnltsWay is sent to the simulation which returns a
form. The unary message rotateBy:myRotation is then
sent to the form which is further assigned to the instance
variable 'icon'. Lines 14 tells the simulation to stop
displaying the icon which was representing the agv, and
then Line 15 tells the simulation to animate or display
the newly defined icon. Then line 16 tells the
simulation to place the agv in the time queue until the
amount of time specified by its traveling time has
passed. Thereafter, the instance variable 'icon’ is once
again assigned a new form, this time the form represents
a busy agv which explains the message's name
‘agvBusy'. Line 18 tells the simulation to stop
displaying the previous icon and line 19 tells it to start
displaying or animate the newly defined 'icon’. The
travel time computed previously is then used for
delaying the agv, this is achieved in line 20.

After carrying the part, the agv becomes idle for an
undetermined period of time. Again, the instance
variable 'icon’ is assigned a new form which represents
an agv idle. Line 22 tells the simulation to stop
displaying the previous 'icon’ and line 23 tells it to start
displaying the newly defined 'icon’.

The role of the agv is now finished, all that remains
is to send a message to the simulation in order to
schedule the arrival of that agv without delay, in the
time Queue, which is done at line 24. The agv then
tells the part aPart to resume its process. The agv has
nothing else to execute in the simulation, so it returns
from its actions method. However, one must remember
that the same agv has been scheduled for arrival without
delay which means that it will enter into action
instantly.

The next piece of code i.e., line 26 and 27 in the
part's method are therefore executed.

26 indexRouting <-- indexRouting + 1.

Drolet, Moodie and Montreui]

27 transportDone <-- #true

Line 26 increments the instance variable
indexRouting by one unit. The instance variable
transportDone is assigned the value #true since the part
just arrived at destination. The part has nothing else to
execute in its method thus the simulation returns to the
actions method in which the transport message was sent.

There are four other cases where a direct
communication between objects is necessary. Every
instance of any of the classes DrillingMachine,
VerticalMillingMachine, HorizontalMillingMachine,
Lathe, communicate directly with their customers parts
to obtain information such as routings, processing time
and so forth, i.e. the kind of information that is privately
owned by the instance of class Part.

6 STRATEGIC AND TACTICAL PLAN
FOR THE EXPERIMENTATION AND
VALIDATION

Model coding should be carried out in an
incremental fashion. Before anything else, the analyst
should break the referent in modules or subsystems.
Then, he/she should concentrate his/her effort on
modeling the core of the system while abstracting most
subsystems surrounding it. After validation of the basic
model, the analyst should model other subsystems and
add them incrementally until the model attains the level
of detail needed by the experimentation. This is
especially true when dealing with complex systems.

In the spirit of incremental development, we started
with a few SimObjects. Instances of class Part were
processed sequentially in two different machines, one
instance of class DrillingMachine and one instance of
class HorizontalMillingMachine. In this early plan of
development, material handling components were not
considered. Then, we added more drillingMachines and
more HorizontalMillingMachines grouped in two
workstations. Instances of class Part were queueing at
one or both workstations depending on their load. The
next incremental step permits the addition of class Agv
which permits estimating the burden on material
handling and at the same time considers the effect of
material handling on the efficiency of the system. Then,
we added the SimObject "Breakdown" which permit the
generation of randomly distributed breakdowns. More
classes were added permitting the interfacing of the
simulation model with some programs written in the
"C" language.

Finally, two more machine types and many more
workstations were added to the model. An enhanced pop-
up menu and several statistic gathering functions were
also added.

Object Oriented Simulation with SMALLTALK-80

Verification & Validation

Verification permits one to determine if the
computer program is performing properly. If the input
parameter translates in a correct output then this step has
been completed. Validation enables the analyst to
determine that the model is an accurate representation of
the referent. Usually, the analyst makes sure that each
component of the simulation model behaves properly.
Since most models are developed in an incremental
fashion, it is easy to systematically validate the
components after every incremental step. Generally, the
analyst isolates the component under study from every
other except one or two with which it interacts, and he
analyzes its behavior. Sometimes, it is best to
incorporate these two steps i.e., verification and
validation together. This was done in this study.

More specifically, let us explain how we started the
validation process in our experiment. First, we ran the
simulation model with one job, no breakdown, no
critical tool, and only one agv. This permitted testing
the process flows and processing times. In addition, it
was possible to test the interface between the database
and SmallTalk because every job's related information
was loaded from the database into SmallTalk. The
openness of SmallTalk permits tracking down every part
in the system and following their behavior, making it
very simple to debug any problem. Also, by running
the simulation with one agv, one can easily trace it and
record the time elapsed between two consecutive state
changes. Thus, one can verify its idle time, busy time,
and "onltsWay" time. We ran this configuration of the
model repeatedly with different jobs.

Then we added the code which generates random
breakdowns. Finally, we added the critical tools and
processed many more jobs simultaneously. Several runs
were executed with the unique objective of validating the
model in its final version. When using a language
which has the openness of SmallTalk, the debugging
phase is usually not problematic.

7 CONCLUSION

The stages of simulation development outlined
above have been presented in a sequential fashion; this
does not mean however that one should perform them in
a strict sequential manner. As far as we are concerned,
the simulation development can be best described as an
iterative process while progressing throughout the steps.

SmallTalk provides an excellent set of features,
capable of supporting object oriented discrete event
simulation. A simulator can model complex systems in
an incremental fashion. The interactive user interface

321

allows the designer to quickly zero in on the variables of
interest while debugging capabilities undoubtedly lead to
higher productivity during the incremental phases of
development.

Speed of execution appears to be the only draw
back. Efficiency is a major issue in the simulation
world; advance in parallel processing appears to be the
only way out for the development of large scale object-
oriented simulation model.

ACKNOWLEDGEMENTS

This research is supported in part by: FCAR(91-
NC-0637,91-ER-0685), CRSNG(OGP-
0042280,0GPIN-020) and NSF(). Special thanks are
addressed to Mrs. Verna Knapp from Tektronix
Laboratories who gratefully accepted to send us a beta
version of SimTalk, an object oriented discrete event
simulation environment built on SmallTalk, which was
used during the preliminary phases of development.

REFERENCES

[1]1 Booch, Grady, "Object-Oriented Development”. IEEE
Transactions on Software Engineering, Volume SE-
12, Number 2, February 1986, p. 211.

[2] Dahl, O.J. and Nygaard, K., "Simula: A Language
For Programming And Description Of Discrete Event
Systems”. Fifth Edition, Norwegian Computing
Center, Oslo, 1967.

[3] Drolet, Jocelyn R., Moodie, Colin L., Montreuil,
Benoit, "Decision Architecture For Scheduling Virtual
Cellular Manufacturing Systems", International
Federation of Automatic Control (IFAC), Proceedings
of the international workshop on decisional structures
in automated manufacturing, Genova, Italy September
18-21, 1989,pp.103-112.

[4] Drolet, J.R., "Scheduling Virtual Cellular
Manufacturing Systems", Ph.D. Dissertation, Purdue
University, June, 1989.

(5] Drolet, Jocelyn R., Montreuil, Benoit, and Moodie,
Colin L.,Virtual Cellular Manufacturing Layout
Planning, 1990 International Industrial Engineering
Conference Proceedings, Institute of Industrial
Engineers (IIE), San-Francisco, California, May 20-
23,1990, pp.236-241.

[6) McLean, C.R., Bloom, H.M., and Hopp, T.H,
"The Virtual Manufacturing Cell". Proceedings of
Fourth IFAC/IFIP Conference on Information Control
Problems in Manufacturing Technology,
Gaithersburg, MD, October 1982.

322

AUTHOR BIOGRAPHIES

Jocelyn R. Drolet, Ph.D., Ing. is a Professor in
Industrial Engineering at the University of Québec. He
is member of the Groupe de Recherche en Gestion de la
Logistique (GRGL) of Laval University and member of
the Laboratoire Départemental de Recherche en
Productique of the University of Québec.

Colin L. Moodie, Ph.D., Eng. is a professor in the
School of Industrial Engineering at Purdue University.
He is member of the Engineering Research Center at
Purdue Univesity.

Benoit Montreuil, Ph.D., Ing. is a professor in
Opérations et Systemes de Décision (OSD) at Laval
University. He is co-director of the Groupe de Recherche
en Gestion de la Logistique at Laval University.

Drolet, Moodie and Montreuil

