Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

AN APPROACH TO OBJECT-ORIENTED DISCRETE-EVENT
SIMULATION OF MANUFACTURING SYSTEMS

John P. Shewchuk
Tien-Chien Chang

School of Industrial Engineering
Purdue University
West Lafayette, IN 47907, U.S.A.

ABSTRACT

Object-oriented programming is a promising approach
for obtaining both modelling flexibility and ease-of-use
in simulation software. In the object-oriented approach,
the simulation modeler starts with an object class library
containing the types of objects relevant to his/her
application. The modelling task consists of creating,
manipulating and destroying objects, using established
methods, so as to emulate the operation of the real
system. The objects themselves take care of the
mechanics of data manipulation and storage. This
approach provides a natural framework for developing
simulation models using pre-defined object classes, while
the concepts of inheritance and sub-classes can be used to
create new objects for specific applications. This paper is
concemed with object-oriented discrete-event simulation
of manufacturing systems. A hierarchical structure of
object classes is proposed, consisting of three class
libraries: base classes, Simulation Support (SS) object
classes, and Manufacturing Systems Simulation (MSS)
object classes. The definition of each class and how the
class objects interact with one another are discussed.
Finally, an example of a discrete-event simulation model
developed using the object classes is presented. The
example illustrates the basic nature, merits and
drawbacks of this approach.

1 INTRODUCTION

Three approaches have traditionally been available for
developing simulation software and performing discrete
simulation. General Purpose Simulation Languages
(SIMSCRIPT, SIMAN, SLAM event modelling
language) provide the basic mechanisms necessary for
implementing simulations. Simulation models are
developed using an event orientation: system behavior is
described in terms of state changes (events), using the

302

syntax of the particular simulation language (similar to
writing a FORTRAN program). Simulation Modelling
Facilities (GPSS, SLAM network language) emphasize
the modelling task. The network or process orientation
approach used consists of defining the time-dependent
behavior of the system in terms of entities flowing
through pre-defined function blocks (similar to creating a
flowchart). Data-Driven Simulators, used for specific
simulation applications, consist of pre-defined objects
capable of performing set operations. The modelling task
consists of selecting those objects which best represent
the real system elements, and providing the required data
for each object.

Two major goals for any simulation approach are
generality (modelling flexibility) and ease of use. These
goals have proven difficult to achieve simultaneously.
General-purpose simulation languages are very flexible
and can be used to simulate practically anything, but are
difficult and time-consuming to learn and require a good
degree of programming skill. Data-driven simulators are
at the other end of the spectrum: they are very easy to
use but are restricted to a narrow range of applications
and thus offer limited flexibility. The major challenge in
simulation language development has been to determine
what general programming facilities are required and what
pre-defined objects are needed. The problem with this
approach is that there is a seemingly endless variety of
objects which may be encountered in simulation
applications: if required objects are not defined, the
usefulness of the language to us is questionable. Roberts
and Heim (1988) summarize this idea: "As machines and
services increase in their ability to behave in a complex
fashion, simulation languages which restrict modelling
freedom will become increasingly obsolete".

An altemnative approach to discrete simulation, which
has the potential to address both goals simultaneously, is
the object-oriented approach. Object-oriented
programming is gaining rapid acceptance both in
academia and industry as a fundamental new approach to

Object-Oriented Simulation of Manufacturing Systems

modelling, designing, and implementing software
systems and applications. In this approach, problems are
envisaged in terms of objects - what objects are used,
what types of information they store, and what
operations they must be able to perform. This approach
is particularly well suited to the problem of discrete
simulation, as the operation of any system can basically
be viewed as the interaction of objects over time.

With data-oriented (traditional) general-purpose
simulation languages, the emphasis is on providing the
mechanisms for simulation execution and commonly-
used data structures and functions. The modelling task
consists of defining data structures (arrays, files) and
transforming the interaction of real-world objects to
operations on data within these structures. The goal of
the object-oriented approach is to eliminate this
transformation process, thereby freeing the user to
concentrate on the modelling process only. Once suitable
object class libraries have been developed, the modelling
task becomes straightforward: the objective is simply to
manipulate objects so as to emulate the manner in which
the real-world objects interact. The mechanics of data
manipulation and storage are taken care of by the objects
themselves: these tasks remain transparent to the user.
The result is that the simulation modelling task is easier
to perform.

The goal of generality is addressed through the concept
of inheritance, a mechanism by which existing objects
can easily and systematically be modified to provide new
objects. The object class library then provides the general
facilities (object classes) required for simulation
modelling: through inheritance, existing classes can be
modified to create the "custom" objects required for
various applications.

In this paper, object class libraries are developed for
the purpose of performing discrete simulations of
manufacturing systems. Though object-oriented
programming techniques can be used for developing
event modelling, network modelling, or data-driven
simulation software, the focus here is on the event
orientation. This is because the event model is both the
easiest to implement in object-oriented fashion and
probably has the most to benefit from this approach. The
C++ language (Stroustrup, 1987) was chosen for the
implementation because it has fast execution times and
is highly portable: C++ code is preprocessed to give C
object code, which can then be linked and executed like
ordinary C programs.

2 OBJECT CLASS HIERARCHY

In any type of computer modelling, similar problems can
be grouped together so that they can re-use common

303

code. The scope of problems which can then be handled
by that common code can then be referred to as a
problem domain. The problem domain can be as large or
small as desired. If the problem domain is too small,
code reusability is limited. If the problem domain is too
large, the code may cover such a wide variety of specific
problems that it becomes unwieldy and difficult to use.

The object-oriented approach involves considering
problem domains in hierarchical fashion. Problems are
considered in the most general sense at the top of this
hierarchy and domains become more specific at lower
levels. Problems are described in terms of the objects
encountered and the ways in which the objects interact
with each other. The objects themselves are then defined
by developing object classes. An object class is a
representation of the form and function associated with a
particular type of object. A class is described in terms of
the types of data which are used to define objects of that
class (private data definitions) and the ways in which
objects of that class interact with the outside world (class
methods). Bach class can be thought of as a template for
creating new instances of objects of that class.

Classes found at any particular level in the hierarchy
will be suitable for use at that level or any lower level.
At lower levels, classes can either be used directly, used
as the basis for a new class (i.e. singular or multiple
inheritance), or used to help define a new class (class
instance forms private data element of new class).

This class hierarchy is illustrated in Figure 1. At the
top level of this hierarchy are general-purpose object
classes which can be used for solving a great variety of
problems. Such classes will be referred to here as base
classes. Below this level are application support object
classes. These are classes which can be re-used in a
variety of application-specific problem domains. The
lowest level consists of application-specific object
classes. These classes can be re-used to solve problems
within a specific application area.

Base level classes

Application support
object classes

Application-specific
opject cl

Figure 1: Object class hierarchy

The object classes used in this work are developed
based upon the class hierarchy of Figure 1. These object

304

classes, and their position within the class hierarchy, are
illustrated in Figure 2. The base classes are general
classes and, as such, are not unique to simulation
applications. At the application-support level are
Simulation Support (SS) object classes. These are
classes which may be used for any simulation program,
regardless of the actual nature of the simulation problem.
At the bottom level are the Manufacturing Systems
Simulation (MSS) object classes. Details of each class
are discussed in Section 4.

|dynarray] | array | Base classes

[tmer | | pList | |obStats| [rvGen |

[calendar] | pLList | [tpStats | | queue |
Simulation Support Classes

[partType]

| part | | opData | |resource data classes |

|resourceClass| | resource]

Manufacturing Systems
Simulation Classes

[productionSystem |

Figure 2: Simulation object class hierarchy

3 GOALS IN CLASS DEVELOPMENT

The main objective is that the simulation classes
developed be highly reusable. The emphasis is upon
providing a solid platform of classes which can be used
as is for simple simulation models, and expanded
through inheritance as model complexity increases.

The second objective is to incorporate all tasks
associated with each object in the corresponding class
definition. For example, statistics collection, an
important part of any simulation, is usually
implemented by maintaining set statistics collection
routines, and specifying what data to supply to these
routines, and at what times, during the simulation. The
mechanics of the statistics collection tasks are
independent of application, and as such it is attractive to
shift the responsibility of these tasks from the
simulation modeler to the objects themselves. To
accomplish this, statistics collection objects can be
defined, and instances of these classes can be declared to
be part of the private data of any other class. The same
procedure can be applied to the routines used to output

Shewchuk and Chang

statistical results. We then have the situation where each
object is responsible for maintaining its own statistics
during the simulation, and to obtain statistics on any
object, we simply ask that object directly. This is a very
natural manner in which to model and implement such
tasks. Other tasks which can be handled in similar
fashion include input routines and error trapping.

4 DESCRIPTION OF CLASSES
4.1 Base Classes

The base classes are used both by other object classes and
by the simulation modeler (i.e. in application programs).
The base classes are:

* class array: used for performing standard manipulation
tasks on lists of values (arrays). Examples of these
tasks include: sorting a list of values from largest to
smallest or vice-versa, filtering out a particular value
from a list of values, and ordering a list of values
based upon another list.

* class dynarray: dynamically-sized array; an array
implemented as a linked list. These objects are used
extensively for tasks where an array is required, but
the size of the array can change after the array is
initially declared.

4.2 Simulation Support (SS) Classes

The simulation support (SS) object classes are used by
other SS object classes, by MSS object classes, and in
the application program. The simulation support object
classes are:

* class timer: used for creating a system clock object
for executing the simulation.

* class calendar: used for creating an event calendar
object. The event calendar maintains event time,
event code, and an object pointer (address) for each
event posted to the calendar.

* classes tpStats and obStats: used for creating objects
for collecting time-persistent and observation-based
statistics respectively. Instances of these classes are
used by pList objects (described below), MSS support
objects (so all MSS objects generate their own
statistics), and in the application program (e.g. for
statistics over multiple runs).

* class pList: a linked list used for keeping track of
objects. Object pointers (addresses) are added to the
list when created and removed from the list when
destroyed. To access an object, we tell the pList
object what object number we are interested in and the
list returns the object address. In conjunction with
object handling, each pList object has a tpStats and

Object-Oriented Simulation of Manufacturing Systems

an obStats object as private data for maintaining
quantity-on-list and time-on-list statistics
respectively. Class methods are included for printing
statistics to a specified output file pointer, and for
printing a standard header. Objects of class pList are
used as private data elements in objects of the class
pLList (described below).

« class pLList: used for creating an object-handling
object. The object handler is used to keep track of all
objects in the system. It maintains a series of pList
objects, one for each separate object category used in
the simulation (part, tool, machine, part queue, etc.).
The object handler is then used to track and maintain
statistics on each object category. Figure 3 shows an
example of a pLList object having two pList objects
- one for part objects and one for machine objects.

pList object containing part addresses

Lo I[Pt eg>{ e]p3] e—>{eTpr] 1]

pList object containing machine addresses

Lo |m1] e>{oTmo]]
[$]eT—{e]

ﬂ pLList object

Figure 3: Data structure for objects of class pLList

Class methods are included for printing statistics to
a specified output file pointer, and for printing a
standard header. This print method simply sends the
statistics print method to the corresponding pList
object.

* class rvGen: used for creating a random variate
generator object. One object of this class can be used
for all random variate generation required in an
application program. The user specifies the number of
separate random number streams required. Each stream
is initialized separately can be re-initialized whenever
desired. Each time the stream is sampled, the type of
distribution (normal, triangular, etc.), distribution
parameters, and seed reset option selection are passed
as arguments, and the rvGenerator object returns a
random variate of the corresponding distribution. If
the user wanted to use a particular random value, the
seed would be updated. If the user wanted to simply
check what the next random variate would be, the seed
would not be updated.

305

* class queue: used for maintaining an array of integer
values. Items can be added to and removed from the
queue according to a specified queueing discipline
(e.g. FIFO), or the location in the queue can be
specified. The latter approach is useful when using
queue object to model objects such as tool magazines,
where tools are loaded into pre-defined positions
within a magazine. Queues are considered to be
simulation-support object classes as each queue has
tpStats and obStats objects as private data elements
for maintaining queue length and time-in-queue
statistics respectively. Class methods are including
for printing statistics to a specified output file
pointer, and for printing a standard header.

In a simulation program, a single object instance is
required from classes timer, calendar, pLList, and rvGen.
These objects are called Clock, EventCal, objectList,
and rvGenerator respectively. Each of these objects is
created in the mainline program and declared to be global
so that any other class which requires use of the object
(to implement one or methods) will have access to it.
Such classes must then have the object declared as an
external variable in the class definition. For example, the
calendar object requires the use of the system clock, so
Clock must be declared an external variable in the class
definition for class Calendar. Note that the names of
these simulation support object classes cannot be
changed in the mainline program.

There are many objects methods which require access
to the simulation support objects described above. For
example, the method getFreeResources(int
resource_class) in class part is used to determine
which resources of a given class are available and have
sufficient life remaining (finite-life resources such as
tools) for the part's next operation. In order for the part
object to be able to determine this, it must check all the
resources of this class. This can be done by giving part
objects access to the linked list where resource object
addresses are maintained, i.e. the address of the
objectList object. The method checkProcessTime
(int resource_class) in class part is used to check the
processing time required, at the part's next operation,
using a resource of the given class. To calculate this
value, the part must be able to access the rvGenerator
object (as well as determine the processing time
distribution type and parameters).

4.3 Manufacturing Systems Simulation
(MSS) Classes

The library of classes which have been developed for
simulating manufacturing systems are referred to as the
Manufacturing Systems Simulation (MSS) library of
object classes. Object classes have been developed for

306

modelling each of the two major types of entities found -
parts and resources (queues are modelled at the simulation
support level). A special object class was also developed
for handling the production aspects of the system. MSS
classes are used by the application program and by other
MSS object classes. The MSS classes are defined as
follows:

1. Part Object Classes are used for modelling parts in
the system. Part objects must know their process routing
(what resources they require for processing and in what
sequence), how to determine the processing time with
each resource required, and how to seize and free such
resources. The object classes used for modelling parts are
as follows:

« class partType: objects of this class contain the data
which is common to all parts of a given type: part
type name (description), part type number, number of
operations required for processing, and the objectList
list numbers where partType and part objects are
stored. Because part process routing data requirements
can vary greatly from one application to another,
routing data is not included in partType objects
themselves. Instead, separate routing data objects are
used, and partType objects contain pointers to these
objects. Through this linkage, partType objects know
their routing data, while the physical class separation
of routing data from part type data facilitates the
development of different forms of routing data classes
for various applications.

 class opData: the default routing data class (in
conjunction with partType objects) used to specify
part process routing data. One opData object is used
to describe each operation of a given part type. Each
operation is defined in terms of the quantity of
resource classes required for processing, what these
classes are (e.g. tools, machines, fixtures), the
quantity of resource types within each class which can
be used and what these resource types are (e.g.
alternate machine routings), and the processing time
distribution type, parameters, and random number
stream to use in generating process time values. The
use of a separate opData object for each operation of
each part type allows for great flexibility in
describing part process routings.

« class part: objects of this class are used to represent
the actual parts in the system. Each part object
contains as private data its part type, what operation
number it is currently on, which resources it currently
has seized (if any), what queue number it is currently
in (if any), and a data link (pointer) to the partType
object defining this part.

Figure 4 depicts the objects required and data links for
a system having two part types and three parts.

Shewchuk and Chang

|opData #1 [opData #2 |opData #3
Lo . LiJ
partType | b partType| ¢ |
o #2
[] [
| part #1 I part #2 | part #3

Figure 4: Data links for objects used in modelling parts

2. Resource Object Classes are used for modelling
resources used in manufacturing systems, such as
machines, tools, etc. Three object classes are used:

» class resourceClass: objects of this class contain the
data which is common to all resources of a given
class: resource class name (description), how many
resources of this class are allowed in the system, and
the objectList list numbers where resourceClass and
related resource objects are stored. Because the data
requirements for one resource class may be quite
different from those of another (e.g. data for an AGV
may contain AGV speed, battery recharge time, etc., -
this data does not similarly apply to a resource class
such as tool), resource class data is not included in
resourceClass objects themselves. Instead, separate
resource type data objects are used, and resourceClass
objects maintain pointers to these objects. This
physical class separation of resourceClass and
resource type objects facilitates the development of
different types of resource classes in an application.

Objects of class resourceClass keep a list of
utilization statistics for resources of that class which
were used and then destroyed (e.g. tool which was
removed after cutting edge became dull). Average
utilization statistics can be obtained for all resources
of that class, or for all resources of a certain type
within that class.

* resource type classes: objects of these classes contain
the data which defines a particular type of a given
resource. A different resource type class is defined for
each resource class, e.g. class machineType for
machines, class toolType for tools, etc. The resource
type class definition will contain private data
describing the distribution type and parameters used
for determining resource life (finite-life resources such
as tools) and time-between-failures (machines).

Object-Oriented Simulation of Manufacturing Systems

o class resource: objects of this class are used to
represent the actual resources in the system. Each
resource object contains as private data its resource
class, resource type, useable life remaining, a flag
indicating whether busy or idle, a pointer indicating
where it is located in the system (with respect to
other objects), and pointers to the resourceClass and
resource type objects which define this resource. In
addition, each resource object contains ¢pStats and
obStats objects, as private data, so they can maintain
their own utilization statistics.

For each resource class, there will be as many resource
type objects defined as there are types of that resource.
(e.g. five tool types - five toolType objects are required).
Figure 5 illustrates the objects required and data links for
a system containing one resource class (for tools), two
resource types within this class, and three resources.

toolType #2
®

toolType #1

resourceClass #1 I

Figure 5: Data links for objects used in modelling
resources

3. class productionSystem: an object of this class is used
to store and manipulate production-related data which
does not fit naturally within the domain of any other
object class. This data includes the shop calendar,
production shift length, and data related to the method by
which parts are introduced into the system. Parts may be
introduced either in batches or continuously. For batch
production, the productionSystem object keeps track of
the batch mix, expected completion time per batch, and
which batches are completed on time and which are late.
For continuous production, the data consists of the rate
at which parts are introduced into the system (interarrival
time distribution). Batch or continuous production is
specified for each part type in the system. One
productionSystem object is used for each simulation
model. All resource and parts objects are both created and
destroyed by productionSystem class methods: the
productionSystem object maintains a pointer to the

307

objectList object for this task. The productionSystem
object maintains ¢pStats and obStats objects for
maintaining statistics on production-related variables
such as batch completion time, number of late parts per
batch, and the quantity of resources and quantity of
duplicate resources of any class used during a production
period.

5 OBJECT-ORIENTED DISCRETE-EVENT
SIMULATION

Once the base, SS, and MSS class libraries have been
developed, we can use them to write object-oriented
discrete-event simulation programs. The first step in
program development is to create the objects required for
the simulation. This will include such application-
support objects as the system clock and event calendar,
as well as application-specific objects such as machines
and part queues. The framework then used for executing
an object-oriented discrete-event simulation is the same
as that used in a data-oriented (traditional) simulation.
The simulation is driven by pulling events off the
calendar, advancing system time, and executing the
events. Events are again used to define system
interactions, but the emphasis is now on defining object
interactions rather than performing data manipulation, as
discussed previously.

The shift in emphasis from data manipulation to
object interactions produces a more natural framework for
discrete-event simulation. For example, consider the task
of posting events to the event calendar. The usual
approach is to post the attribute (i.e. dynamic) data
representing the state of the system to the event calendar
along with the event time and event code, a practice
which encourages us to think in terms of data
manipulation. In the object-oriented approach, only the
identification (address) of the object upon which the
event is based (e.g. machine for end-of-machine-service
event) needs to be posted along with the event time and
event code. All data defining the state of the system is
maintained with the objects themselves.

6 IMPLEMENTATION EXAMPLE

An artificially-small example shall be used to illustrate
the concepts of object-oriented discrete-event simulation,
using the classes described in Section 4. The example
consists of a flow line having M unique machines. An
input queue precedes the first machine; buffer queues
separate the remaining machines in the line. A total of N
part types are produced; parts arrive continuously over
time according to user-specified interarrival time

308

distributions. FIFO (first-in, first-out) queueing
discipline is used for part queues, which have infinite
capacity. The system is described in terms of the
following input variables:

maxops; number of operations for part type i, 1 < i <
N.

pparml;; Process time distribution parameter #1 for op.
j of part type i, 1 Si <N, 1<j<maxopsi
(similarly define pparm2;; and pparm3,;).

aparml; Arrival time distribution parameter #1 for part
type i (similarly define aparm2; and aparm3;).

pdist Distribution type to use for process time (1-
normal, 2-triangular, etc.).

pstrm Random number stream to use for process
time.

adist Distribution type to use for interarrival time.

astrm Random number stream to use for interarrival
time.

For simplicity, machine setups, breakdowns and
material handling are ignored. The system can be
described in terms of two events:

1. start_next_operation: a part has just arrived at a
machine for an operation. If the machine is free,
processing of the part begins; otherwise the part
enters the machine's part queue. If the part is new, a
request for the next part of that type is generated.

2. end_of machine_service: a machine has just finished
an operation on a part. That part is moved to the
next operation on its routing. If there are more parts
waiting in the machine's part queue, processing on
one of these parts begins. Otherwise, the machine is
set idle.

To model this system using the classes previously
developed, the simulation modeler needs to know what
tasks objects of each class can perform, and how to get
the objects to perform these tasks. This information is
maintained in class definition files. These files define the
private data and messages which can be sent to objects of
each class, and describe the action which results (i.e.
operation of method invoked) when each message is sent.
The methods themselves are maintained separately (class
implementation file), the idea being that the modeler
only requires access to the message definitions.

Though the definitions for the classes developed in
Section 4 are not presented here, the program can still be
understood, as the messages used in this example are by
and large self-explanatory (this is of course highly
desirable in object-oriented programming as it makes
classes easy to use).

The main program for this example is shown in
Figure 6. The include file "mdecls.h" contains i)
#include statements for all SS and MSS class definition

Shewchuk and Chang

files, ii) object class list assignments (#define PTYPE
1, #define PART 2, etc.), iii) declaration of the required
SS objects (timer* Clock, calendar* EventCal, etc.),
and iv) declaration of pointers used for object
manipulation in the program (part* Part, resource*
Machine, etc.).

Following creation of local data input variables and
data input, the first task in the main program is to create
the SS objects. These are the simulation support objects
(Clock, objectList, EventCal and rvGenerator).
Following this, the static manufacturing objects
(partType, resouceClass, etc.) are created. Note that each
time an MSS object is created, its address must be added
to the objectList object. The initial part arrival events
are posted to the event calendar by the method
ProdSystem->setArrivalRate(...). Whenever this
event is pulled off of the event calendar, the method
ProdSystem->newPartArrival() creates a part of the
required type, adds its address to the objectList object,
schedules the arrival of the next part of that type, and
returns the parts address. A while loop is used to drive
the simulation, which continues until either the event
calendar is empty or the simulation run length has been
reached. Following simulation, output statistics on part
throughput, machine utilization, and queue statistics are
printed.

The event functions start_next_operation and
end_of machine_service are shown in Figures 7 and 8
respectively.

7 DISCUSSION OF EXAMPLE

Several general observations can be made regarding the
example:

1. The code is generally easy to read. Object
manipulation using well-designed methods and
messages results in a pseudo-English appearance to
the code. Event logic is very easy to follow: few
supporting comments are required for the reader to
figure out what is happening.

2. Statistics collection and other file manipulation
tasks are not performed explicitly. As previously
described, the objects are manipulated to emulate the
actual system operation and the statistics are taken
care of by the objects.

3. Output of performance parameters is very
straightforward. Statistics are obtained by sending
the desired messages to the appropriate objects, €.g.
part queues report their average queue length.
Quantity and time-in-system statistics for any object
class are maintained by the objectList: these are
used to obtain average quantity of parts in the
system and the average time each part was in the

Object-Oriented Simulation of Manufacturing Systems

309

#include "mdecls.h"

main()

< Declare input variables and initialize >
/****STATIC OBJECT CREATION"***/

// 1. Create simulation support objects:

Clock = new timer();

objectList = new pLList(6);
EventCal = new calendar();
rvGenerator = new rvGen(4);

//2. parfType and associated routing data objects:
for(int i=0;i<N;i++) {
PartType = new partType(i+1,maxopsli]);
PartType->setLists(PART_TYPE,PART,QUEUE);
for(int j=0;j<maxopsli];j++) {
RData = new opData(1);
RData->setClassData(MACH,0);
RData->setCandidateResourceQuantity(MACH,1);
RData->setResourceType(MACH,1,machsi](j]);
RData->setProcess(MACH,1,pparm1{i][j],

pparm2[i](jl,pparm3(i](j],pdist,pstrm);
PartType->setOpData(j+1,RoutingData);
}
objectList->add(PTYPE,PartType);

/13. resource class, type and resource objects:
MachineClass = new resourceClass(MTYPE,MACH);
objectList->add(RCLASS,MachineClass);

for(i=0;i<M;i++)
objectList->add(MTYPE,NULL); //no machine type data

for(i=0;i<M;i++) {
Machine = new resource(RCLASS,MACH,i+1);
objectlist->add(MACH,Machine);

//4. Part queue objects:

for(im0;i<M;i++) {
PartQueue = new queue("PartQueue”,pqcap,PQ);
PartQueue->setQDiscipline(FIFO);
objectList->add(PQ,PartQueus);

//5. production control object:

ProdSystem = new productionSystem(N,1);

ProdSystem->setPartLists(PART_TYPE,PART);

for(im1ji<mN;i++) {
ProdSystem->defineProductionType(i, CONT,1);
ProdSystem->setArrivalRate(i,aparm1[i],aparm2[i],

aparm3[i},adist,astrm);
}

/****SIMULATION®****/

float etime; int ecode; void* eobj; event* evntPtr;
intrunOK = 1;

while(runOK)

if(EventCal->numberOfEvents()==0)
runOK = 0; /fsimulation is complete.

else {
//Pull top event off of calendar:
evntPtr = EventCal->get();
etime = evntPtr->event_time;
ecode = evntPir->event_code;
eobj = evntPtr->obj_id;

/levent time
//event code
//object id

if(etime>runlength)
runOK = 0; /Isimulation is complete.
else {
Clock->setTime(etime); //advance system clock

//[Execute the event:
switch(ecode) {
case 1: if(eobj == NULL)
Part = ProdSystem->newPartArrival();
else
Part = (part*)eobj;
start_next_operation(Part);
break;
case 2: Machine = (resource*)eobj;
end_of_machine_service(Machine);
break; }

}
}

/****OUTPUT RESULTS"***/

char name[20];

//part throughput:
objectList->printStatsHeader(stdout);
objectList->printStats(stdout, PART,"Parts");
objectList->endPrintStats(stdout);

/Imachine utilization:
MachineClass->printUtilizationHeader(stdout);
for(i=1;i<=3;i++) {
sprintf(name,"Machine %d",i);
MachineClass->printStats(stdout,&name(0],i);

MachineClass->endPrintStats(stdout);

//queue statistics:

for(im1;i<m3;i++) {
PartQueue = (queue*)objectList->get(PQ,i);
sprintf(name,"part queue %d",i);
PartQueue->printStats(stdout,&name[0]);

}
PartQueue->endPrintStats(stdout);

/* end main */

}

Figure 6: Example program

310

void start_next_operation(part* Part) {
Int resourcesfree = Part->moveToNextOp();
int mno = Part->getResourceType(MACH);
PartType = Part->getPartType();

if(resourcesfree) {

//processing of Part can continue.

Machine = (resource*)objectList->get{(MACH,mno);
float svctime = Part->getProcessTime(MACH);
Part->seizeResource(MACH,Machine);
Part->setBusy(svctime,2,Machine); //posts event 2

else
Part->gointoQueue(mno); //queus Part.

/* end start_next_operation */

}

Figure 7: start_next_operation event

void end_of_machine_service(resource* Machine) {
Part = (part*)Machine->seizedBy();
PartType = Part->getPartType();

int mno = Machine->getNumber();

PartQueue = (queue*)objectList->get(PQ,mno);

Pant->endOfOperation(); /frees machine.

//Determine disposition of part :
if(Part->getCurrentOp()<PartType->maxOps())
EventCal->add(0.0,1,Part); //move part to next op.
else
ProdSystem->removeFinishedPart(Part);

//Determine disposition of machine:
if(PartQueue->numberOfitems()>0) {
int pno = PartQueue->remove();
Part = (part*)objectList->get(PART,pno);
float svctime = Part->getProcessTime(MACH);
Part->seizeResource(MACH,Machine);
Part->setBusy(svctime,2,Machine);

}

/* end end_of_machine_service */

}

Figure 8: end_of_machine_service event

system. These statistics can also be obtained for
resources which flow in and out of the system over
time (e.g. tools).

The above observations all constitute advantages of the
object-oriented approach. The advantages become much
more pronounced when complex object interactions and
decision logic must be modelled. For example, consider a

Shewchuk and Chang

system where part routings are defined in terms of both
tools and machines, and where tools have finite life and
alternate machine routings exist. As the same objects and
methods can be used, this system is no more difficult to
model using the object-oriented approach, only more
time-consuming.

Of course, successful object-oriented programming
applications are contingent upon one very big factor:
how easy it is to become familiar with and use the object
classes required for the application. This becomes a
question of how "good" the object classes are in terms of
faithfully representing the actual objects and object
interactions. If the representation is authentic, the classes
are likely to be easy to use, as objects can then be
manipulated in what seems to be the most "natural" or
"obvious" manner. The modelling task can then be
approached more from an application specialist's point-
of-view (here, manufacturing systems engineer) and less
from a computer programmer's perspective.
Consequently, classes become more likely to be reused
in both applications and in the development of new
classes.

8 CONCLUSIONS

In this paper, we have shown how the object-oriented
approach can be applied to discrete-event simulation, and,
in particular, discrete-event simulation of manufacturing
systems. Various object classes were developed, in
hierarchical fashion, for these tasks. The classes are
relatively simple and straightforward to use, as
demonstrated by the implementation example. They
provide for a great deal of modelling flexibility, but not
in the usual sense of the word. There exists a fixed
domain of manufacturing systems simulation problems
which can be modelled using these classes alone. This is
not by consequence, however, but by design: the
emphasis in class development was to keep the classes
simple and "generic" in nature. Flexibility then results
from exploiting this characteristic to create, through
inheritance, whatever appiication-specific object classes
we require. For example, class toolMagazine from class
queue, or class transporter from class resource and then
class AGV from class transporter.

Much class development work can still be done,
however. As creation of sub-classes through inheritance
is expected to be a common process, a classCreation
object class would prove very handy. At the simulation-
support level, an eventDriver object could be employed
to drive the simulation, i.e. pull events off the calendar,
execute the events, and determine when to end the
simulation. An object for performing and controlling
multiple replications of a given system, and maintaining

Object-Oriented Simulation of Manufacturing Systems

statistics over such replications, would also be very
useful.

The task of designing object classes which can be used
successfully (both directly in applications and as the base
for new classes) can prove to be very difficult. During
development of the classes presented here, many object
classes were re-defined, some classes became unnecessary
or inappropriate and were abandoned, and some tasks
gave rise to new classes. It is felt that class design and
development will always be a very difficult and time-
consuming task. It seems that explaining what happens
during an event is one thing: determining which tasks are
the responsibility of which objects can be quite another.
Nonetheless, it is believed that the object-oriented
approach is here to stay. Simulation will continue to be
an attractive field for this approach to problem solving,
software development, and program maintenance.

ACKNOWLEDGEMENTS

This research is part of an M.S. thesis developed under
the guidance of Dr. T. C. Chang, and was partially
supported by a National Science Foundation Presidential
Young Investigator Award no. DDM-8552699 to Dr.
Chang. Special thanks are also due to Prof. J. Wilson,
Associate Professor of Industrial Engineering, Purdue
University, West Lafayette, IN 47907.

REFERENCES

Cox, B.J. 1987. Object-Oriented Programming: An
Evolutionary Approach. Addison-Wesley.

Duff, C.B. 1986. Designing an Efficient Language.
BYTE, Vol. 11, No. 8, 211-214.

Eckel, Bruce. 1989. Using C++. Berkeley: McGraw
Hill.

Pritsker, A.A.B. 1984. Introduction to Simulation and
SLAM. Third edition. New York: Halsted Press.

Roberts, Stephen J. and Heim, Joe. 1988. A Perspective
on Object-Oriented Simulation. In Proceedings of the
1988 Winter Simulation Conference, eds. M.
Abrahms, P. Haigh, and J. Comfort, 277-281.
Institute of Electrical and Electronics Engineers, San
Francisco, California.

Shewchuk, John P. 1990. Multiple-Resource-Based Part
Scheduling and Tool Allocation Heuristics for
Automated Manufacturing Systems. Master's Thesis,
School of Industrial Engineering, Purdue University,
West Lafayette, Indiana.

Stroustrup, Bjarne. 1987. The C++ Programming
Language. Addison-Wesley.

311

Wiener, Richard S. and Pinson, Lewis J. 1988. An
Introduction to QObject Oriented Programming and
C++. Addison-Wesley.

AUTHOR BIOGRAPHIES

JOHN P. SHEWCHUK is a Ph.D. student in
Industrial Engineering at Purdue University. He received
is B.S. in Mechanical Engineering from the University
of Manitoba in 1984, and his M.S.LE. degree from
Purdue University in 1990. His research and consulting
interests include manufacturing systems simulation,
production control, cellular manufacturing and FMS, and
quality control.

TIEN-CHIEN CHANG is a professor of Industrial
Engineering at Purdue University. His research interest is
in computer-aided manufacturing. He has authored and
co-authored four books and many articles in the CAD and
CAM areas.

