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ABSTRACT

This paper describes a simulation model representing the
annealing operations in a rolling-mill facility. The
model was developed using the discrete event simulation
language SIMAN. The model integrates a friendly user
interface through which the user interacts with the
simulation model without programming or recompiling.
The simulation model also integrates external
subroutines to optimize the batching of jobs and their
sequencing so as to minimize flow-times and lateness
and maximize the annealing furnaces efficiency. The
optimization approach relies mainly on a data-driven
adaptive estimation of the lot-sizes based on a queueing
model formulation.

1 INTRODUCTION

In this paper, we present a discrete event simulation
model constructed to simulate a group of heterogeneous
annealing furnaces in a rolling-mill facility. The goal of
the simulation model is to represent the annealing
operations in detail so as to evaluate (i) an adaptive
approach for estimating lot-sizes and (ii) a job
sequencing heuristic. The adaptive lot-sizing approach
relies on a multi-objective function that seeks to
minimize flow-times and maximize the furnaces
efficiency subject to specific capacity constraints. The
job sequencing approach developed seeks to control day-
to-day operations on the job floor; it incorporates rules
to account for capacity constraints and due-dates.

The simulation model provides a friendly user interface
that incorporates much of a Lotus-based decision-support
system already developed by the user. The interface is
used to generate different configurations of the annealing
operation environment without programming or
recompiling. All the decision support functions that
relate to lot-sizing and job sequencing are integrated to
the simulation model using external C-coded
subroutines.
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The content of the paper stands as follows. Section 2
first describes the manufacturing environment. Section 3
then presents the adaptive approach we have developed to
optimize lot-sizes. Section 4 then provides a description
of the simulation model; the user interface and the
SIMAN model are particularly discussed. Section 5
finally presents concluding remarks.

2 THE MANUFACTURING ENVIRONMENT

The simulation model is based on the manufacturing
environment of the rolling-mill facilty of the Société
d'Aluminium Reynolds du Canada, at Cap-de- la-
Madeleine, Québec, Canada. This facility has been the
subject of other studies; for example, see Lefrangois et
al. (1991, 1989)). The rolling-mill transforms raw
aluminum ingots into industrial and domestic foil
products within a typical job-shop setting. As
represented in figure 1, during the transformation
process, the aluminum may visit several workstations:
hot or cold rolling-mills, annealing furnaces, slitters,
edge conditioners, etc. Sequencing problems are
numerous as the product mix may account for dozens of
products with different routings. Lefrangois et al. (1989)
described a SIMAN-based visual simulation model used
to optimize the sequencing of jobs arriving for
processing at cold rolling-mills. Sequencing in this case
raised the problem of minimizing the flow-times while
minimizing the number of sequence-dependent set-ups.
Sequencing the operations at the annealing furnaces
also presents numerous problems. The processed metal
is effectively characterized by physical properties
(rigidity, hardness) as well as by mechanical properties
(ductility, elongation, modulus, resistance to thermal
shocks, compression and fatigue). The rolling
operations considerably decrease the elasticity of the
aluminum and reduce its malleability. The annealing
operations acts upon the aluminum physical and
mechanical properties (i) to eliminate or reduce the
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undesirable effects from a previous rolling (termed:
intermediate annealing) and (ii), to give to the final
product the physical and mechanical caracteristics needed
for a specific application (termed: final annealing).
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optimizing the batching of jobs and their sequencing for
the annealing operations is an important requirement to
help the firm maintain and improve its competitive
advantage. Optimization must account for the highest
maintainable efficiency of the annealing furnaces while
minimizing both the time spent by a job in the plant and
the work-in-process inventories.

Temperature
350°C
250°C
Loading Unloading
l I T T T 1] Time
Oh 12h 24h 36h 48h

Figure 1: Typical sequence of operations in a rolling-
mill facility.

Customer requirements dictate a large variety of
product characteristics; thus the annealing operations
have a significant variability both in their duration and in
their technological requirements. A typical annealing
cycle is shown in Figure 2. Annealing cycle parameters
such as level temperature, time at level temperature, type
of alloy, oxydizing or non-oxydizing environment, etc.
vary considerably. It is difficult to process multiple jobs
within a single annealing operation, as only those jobs
with a similar annealing cycle can be batched. However,

Figure 2: A typical annealing operation within the
manufacturing process.

3 THE LOT-SIZING APPROACH

In the recent years, numerous research papers have been
published on both lot-sizing and sequencing approaches.
Among those, there has been a substantial amount of
research work based on the application of queueing
network models to represent the behavior of the
manufacturing systems analyzed. Buzacott et al. (1986)
and Suri et al. (1989) present comprehensive reviews of
queueing models of manufacturing systems. There has
also been a substantial amount of this work dealing with
lead time estimation, work-in-process, lot-sizing and
tactical production planning issues. Examples of these
are the work of Lefrangois et al. (1990), Karmarkar
(1989, 1987, 1985a, 1985b), Zipkin (1986) and Bertrand
(1985).

The basic construct presented here for lot-sizing and
tactical sequencing is a multi-objective function derived
from a queueing network model formulation of the
annealing operations. The multi-objective function
accounts for the flow-time of the jobs, the efficiency of
the furnace loading and a relaxation of the furnace
capacity constraints. The model formulation is presented
below.

3.1. Queueing Network Model Formulation

To model the annealing operations, we consider an
annealing station processing jobs belonging to multiple
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Figure 3: Annealing operations as a queueing network

product classes which are defined according to the
annealing cycle needed (see Figure 3). The interarrivals
of jobs within each class i are assumed to be general
with rate Aj and squared coefficient of variation (scv) ca;,
i=1,..,n. The annealing is in batches of size (r;>1) for
jobs of class i, with a first come, first served (FCFS)
discipline. We assume that the annealing can start only
after the batches have been formed. The annealing times
are assumed to be batch-size independent with product
class and furnace dependent rates pjj and scv's cs;j,
i=1,..,n, j=1,...m. We also consider (0<ajj<1) the
proportion of batches of type i processed in furnaces of
type j, j=1,...,m. Our analysis of the annealing system
with batch processing is similar to the case presented in
Bitran and Tirupati (1989). To model the flow of jobs
within the queueing system, we assume a fictitious
station for each type of annealing cycle where the
forming of batches takes place. Once a batch of size r;
have been formed, it is transferred immediately to a queue
where it waits until a suitable furnace is available for
annealing.

Furnace operation is approximated using a GI/G/1
queue with multiple product classes and where each
customer from class i represents a batch of r; jobs.
Estimates developed in Lefrangois et al. (1990), Bitran
and Tirupati (1989) and Kraemer and Langenbach-Belz
(1976) are used to describe mean waiting time; the
Appendix describes the estimates in detail. In the
remainder of this paper, we denote by W;(r;) the mean
waiting time for annealing of jobs of cycle i with batch
sizes 1j.

3.2 Nature of Multi-Objective Lot-Size
Decision Function

The multi-objective lot-size decision function

incorporates both a minimal flow-time and a maximal
furnace utilization criterion and also incorporates a
relaxation of the furnace capacity constraints. The

following parameters and estimates are assumed known:
n

A;: amival rate of jobs of annealing cycle i, A =Z Aj
i=1

hj:  inventory holding costs for jobs of annealing cycle i
measured in $ per unit/time unit

0jj: proportion of jobs of annealing cycle i processed in
fumace j

ri:  lot size decision for jobs of annealing cycle i
measured in jobs/batch

Qj:  average size of a job of annealing cycle i measured in
units

¢j:  capacity of furnace j measured in units

Wy: weight for criterion k in multi-objective function

The problem is formulated as follows:
n
Minimize F = W1 { 3 (Ai/A)hiQiWqi(ri)) +
i=1
n m
Wol 2 3 (Ai/Mayjl1-Qirifel} +
i=1j=1
n m
W3 X 3 (AiMaylQiri-cil) ¢))
i=1 j=1
The first component of the multi-objective function
estimates the inventory holding costs for the overall
annealing operations. The second component estimates
the furnace-efficiencies; the overall efficiency of the
annealing furnaces is obtained by weighting the
efficiency of each furnace for each type of annealing
cycle. The last component is a weighted relaxation of
the furnace capacity constraints. Problem (1) is solved
according to the following approach.
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3.3 Optimal Searching Heuristic

The multi-objective function of problem (1) is a rather
complex function and is not easily differentiable on the
decision variables r;. The complexity of the function
implies many interactions among the decision variables
which makes it nearly impossible to identify the impact
of a given lot size on the expected waiting times of other
jobs or on the overall furnace efficiency.

The optimization problem being nonlinear, an in-depth
analysis of the behavior of the multi-objective function
clearly is essential for the development of an effective
solution technique. An analysis of the function, and in
particular of its inventory costs estimation component
shows similarities with the M/G/1 queueing time based
lot-size decision function of Yang and Deane (1989).
Based on their results and those from Zipkin (1986)
which shows that queue length estimates for GI/G/1
queueing system with batch arrivals are convex in regards
to the batch size, it is reasonable to expect at least
general quasi-convexity of the function for selected sets
of weights Wy, W2 and W3.

The approach used to solve (1) is based on a
multidimensional search without derivatives. The search
method was adapted from the approach of Hooke and
Jeeves (1961). The method performs two types of search
on the lot sizes ri: (i) an exploratory search from a vector
of lot sizes (rj)x along the coordinate directions to find a
new vector (rj)x+1 and (ii), a pattern search along the
direction d=(rj)k+1 - (ri)x which leads to a new point y.
The exploratory search procedure used is based on a
modified integer-solution Fibonacci search. From point
y, another exploratory search gives the new vector
(rdx+2- The next pattern search is along the direction
d'=(r;)x+2 - (ri)k+1, yielding y' and so on. The process
is repeated until convergence. Typical optimal solutions
are obtained within three to five iterations.

4 THE SIMULATION MODEL

The preceding section has presented the solution
approach that addresses the problem of determining lot-
sizes for the annealing operations. The research project
also involved the development of a detailed simulation
model of the annealing operations to ascertain the
validity of the solution proposed and to evaluate the
benifits resulting from dynamically adapting the lot sizes
as the simulation goes on. The present section describes
this simulation model.

The simulation model was developed with flexibility
in mind. The model is thus structured so as to adapt
with minor changes to variations in the production
environment, product specifications, annealing cycles and
lot-sizing/sequencing rules. The discrete-event
simulation language SIMAN was used with some
modifications to the conventional model and experiment
frames to increase the flexibility of the simulation
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model. A customized configuration file was first
designed to serve as a user interface to the model. The
simulation model interfaces with C-coded subroutines
triggered by issuing event calls. Two such subroutines
are used, one for adaptively determining the lot sizes for
each type of annealing cycle and the second for the day-
to-day sequencing of the annealing operations. The
structure of the model is presented in Figure 4.

4.2. The User Interface

The standard approach for a SIMAN model requires that
the structure of the manufacturing environment simulated
be described in the model frame and that the specific
variable values which the user wants to control through
its experimentation be entered in the experimental frame.
These two frames are linked together and generate the
simulation model under study. Changing any of these
two frames necessitates recompilation and relinking
before running the revised model. This may represent a
considerable amount of work and time if the volume of
data to be entered is large.

An interface was thus designed to provide an easier
means of entering or changing the parameters of the
manufacturing environment and to avoid recompilation.
The interface relies on an ASCII file referred to as the
configuration file. The configuration file is generated
using a simple data acquisition program based on Lotus
123 macros. The set of Lotus macros is an extension of
a Lotus-based decision support system developed by the
industrial engineering department of the Société
d'Aluminium Reynolds du Canada to estimate the
duration of the annealing operations. Base-inputs are the
annealing cycle needed, the critical dimensions of the
aluminum coils to be annealed and the weight of the
aluminum. From these parameters, macros calculate the
duration for the annealing operation using estimates
derived from a multiple regression model. Other inputs
are the product mix, the initial values for the interarrival,
service times for each type of annealing cycle and initial
estimates of the lot sizes.

4.2. The SIMAN Model

All the data from the configuration file is integrated
within the simulation model thus customizing the
manufacturing environment modeled. Given the
distribution of the job arrivals, the SIMAN model
generates jobs and parameterizes them using basic
informations on the distribution of the weight of
aluminum within a job, the due dates, the number of
remaining operations and the annealing cycles needed.
The arriving jobs are then routed to a station macro used
for forming batches. The macro consists of a range of
individual batch forming stations, one for each type of
annealing cycle. All the jobs flow through these
stations and are queued at their appropriate station until
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Figure 4: Model Structure.

the required number of jobs in a batch have entered the
station. The number of jobs required to form a batch is
obtained from an external subroutine which periodically
updates the lot sizes when appropriate event calls are
issued.

When a batch has been formed, all the jobs are grouped
in a single entity; the new entity gets its attributes from
the jobs it contains. These attributes include the total
weight of the aluminum to be processed, the due dates of
the batched jobs and the time when the batch was
formed.. This information will be needed for the
sequencing at the annealing furnaces. The batched jobs
are then sent to a second macro station where they are
queued until their selection for processing at an annealing
furnace. The selection of the batch to anneal is based on
a sequencing rule described in the following subsection;
this rule was embedded within a second external
subroutine.

After the annealing cycle, statistical data is recorded
and the batch is then released from the system. The
statistical data includes the service rate, the service time
scv's and the routing probability matrix (giving the
04j's) which is used to update the lot sizes.

4.3 C Subroutines

The simulation model interfaces with two C-coded
subroutines. The first of these is the annealing
operations sequencing module and the second is the lot-

size decision module.

The sequencing module controls the day-to-day
annealing operations; it is accessed through SIMAN
gpick calls. The sequencing rule it contains is triggered
whenever an annealing furnace is unloaded at the end of
an annealing cycle. The module was needed because the
information emanating from the lot-size decision module
is not sufficient for a detailed control of the annealing
operations.

Figure 5 presents a summary description of its
structure. Batches that have been formed join a wait-for-
annealing queue that depends on the annealing cycle to be
performed. Whenever an annealing furnace is made
available, the sequencing rule selects the first batch from
each queue. From that group, all those batches that
exceed the capacity of the furnace are rejected. The
remaining batches are then sorted according to three
criteria. The first criterion is the earliest arrival date for
annealing; the arrival date of a batch is defined as the date
when the batching operation ends. The second criterion
is the lowest slack on the number of remaining
operations. For a given job, the slack is obtained as the
due-date minus the current time which is then divided by
the number of remaining operations. For a batch of
jobs, the lowest slack on the number of remaining
operations of the jobs that form the batch is used. The
last criterion used to sort the candidate batches is the
furnace loading efficiency. The selected batch is obtained
through a scoring model based on the ranking of a batch
according to the three criteria.
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Figure 5: Structure of sequencing module.

The lot-size decision module then implements the
queueing network model we presented in section 3.1
along with the optimal searching procedure described in
section 3.3. Figure 6 presents the structure of the lot-
size decision module.

Figure 7 illustrates when the sequencing and lot-size
decision modules are used. As can be observed, the
sequencing module is used each time a furnace has been
unloaded. The lot-size decision module runs on a much
less frequent basis thereby making the lot-size less
reactive to transient behaviors of the manufacturing
system. In its current configuration, the lot-size decision
module is used after fixed periods of simulation time;
other configurations will eventually be investigated.
This investigation will include the particular case of
rerunning the lot-size decision module whenever the state
of the manufacturing system deviates significantly from
what was observed in the past.

DOS versions of the lot-size decision module, the
sequencing module, the user interface and the SIMAN-

based simulation model have been installed on an IBM
PS/2-70 and on a SUN 386i Roadrunner® workstation at
the Laboratoire d'Opérations et de Gestion Assistées par
Ordinateur (LOGAO) at Université Laval. The model is
currently used to validate the optimal lot-size searching
heuristic and the tactical sequencing rule that controls the
day-to-day annealing operations. The integrated model
should eventually be implemented on IBM PS-2's by the
industrial engineering department of the Cap-de-la-
Madeleine plant of the Société d'Aluminium Reynolds du
Canada. The latter implementation should lead to a
broadening of the application of the model, particularly
for capacity planning, bottleneck prevention and furnace-
starvation avoidance.

6 CONCLUDING REMARKS
The detailed simulation of the annealing operations

presented in this paper incorporates a custom-designed
user interface along with optimization and rule-based
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Figure 6: Structure of lot-size decision module.

external modules.

The incorporation of external modules within a
SIMAN-based simulation model is well documented and
has proved in the past to be extremely useful. Hood et
al. (1989) is one known example of such an integration.
In that case, the goals of the simulation design was to
represent with great detail and flexibility a complex
manufacturing system. External FORTRAN-coded
subroutines were used to depict detailed aspects of the
system such as the resource capacity changes, the
expediting policies or the job selection rules. The case
for integrating external subroutines within our
simulation model is similar, even though the level of
detail that could be attained with the SIMAN model was
sufficient. The most important reason we found for
integrating these external subroutines was the ability this
setting offered for testing the optimal dynamic lot-size
searching heuristic presented in section 3.

The development of real-time based tools for
manufacturing planning and control is part of the new
research orientations which should capture the focus of
operation researchers and industrial engineers through the
90's (Nof et al. 1989). Static planning and control tools
through which plans are made and then executed on a
long term basis prove to be simply too slow, inflexible
and unresponsive in today's dynamic environments. This
raises the need for the dynamic lot-size searching
heuristic of the type presented in this paper. The

complex dynamic resulting from adaptively optimizing
the lot sizes using real-time data from the manufacturing
environment, makes the development, the tuning and an
in-depth testing of such heuristics very difficult, if not
impossible. For the particular case under study, two
factors clearly affect the performance of the proposed
approach: (i) the optimizing heuristic used and (ii), the
rules used to trigger an update of the lot sizes. Using a
simulation model of the annealing operations with an
external lot size optimization subroutine proves to be
very helpful. It simplifies the development and the
tuning of the optimization approach as this configuration
ensures that changes in the heuristic can be integrated
into the simulation model with minimal rework.

This integration also has major impact on the ability
to refine the concepts behind the queueing network model
and the optimal searching heuristic that was developed.
Such an implementation using external modules helps
separate within the simulation model those rules that
trigger an updating of the lot sizes and those rules used
to optimize their level. The latter reflects recent research
trends in the modeling of reasoning within intelligent
manufacturing systems where low level decision rules are
used to trigger high level reasoning activities taking
place within external knowledge sources (see for example
Lefrangois and Montreunil 1990, Burns and Morgeson
1988 and O'Grady and Lee 1988).
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Figure 7: Reruns of lot-size decision and sequencing modules.

Part of an extensive research program on the
developement and the validation of adaptive production
planning and control tools in collaboration with
industries, the SIMAN-based simulation model presented
in this paper illustrates how simulation can benefit from
the integration of operations research techniques as
agregate and tactical decision tools. Such models are
likely to offer a more adequate representation of the
forthcoming generation of intelligent manufacturing
systems.
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APPENDIX

Derivation of the mean waiting time in the system is
based on the following notation and estimations:

n: number of annealing cycles; cycles are indexed by i
m: number of annealing furnaces; fumnaces are indexed by

J

)‘i :  arrival rate of jobs of cycle i at batching stations

caj: scv of interarrival times of jobs of cycle i at batching

stations
ri:  batch size

A.:  arrival rate of batches of cycle i: Z.? =X /i

n
A% arrival rate of batches: A = Y, k?

i=1
ca;:  scv of interarrival times of batches of cycle i :
a . -
ca; =caj/rj

ca: asymptotic estimate of scv of interarrival times of

n
a a a
batches: ca = 3, ( ki/l% ca;
i=1
Mij: annealing rate for batches of cycle i on furnace j

0jj“: variance of annealing times for batches of cycle i on
furnace j
csjj: scv of annealing times for batches of cycle i on

furnace j: csjj =°'ij2/llij2
ojj: proportion of batches of cycle i annealed on furnace j
Bji: proportion of batches annealed on fumnace j of cycle i:

n
Bji= (A 0ijA") DAV SLH

i=1
n
Kj:  annealing rate of furnace j: Hy= Y BjiP—ij
i=1
n
T annealing rate: L = E Hj
i=1
62:  variance of annealing times on furnace j:
n
o= ¥ Bjioij?
i=1

csj:  scv of annealing times on furnace j: csj= szlujz

cs:  asymptotic estimate of scv of annealing times:
m

cs= D (Hjlnes;
j=1

p:  annealing furnaces utilization: A u

The batching process taking the form of a fictitious
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station with a zero-duration service time, we obtain in a
straightforward manner the following results for the
mean waiting time of a job of cycle i at the batching
station:

b
Woiri)= @i-1)/2, i=1,.n (A.1)

We model the annealing station as an ordinary GI/G/1
queue where each customer of cycle i represents a batch
of r; jobs. The estimate for the mean waiting time is
derived from the Kraemer-Lagenbach-Belz (1976)
approximations and from the Little(1961) formula
(Lefrangois et al. 1991). It stands as follows:

wfl = p2(ca’+es)y(ca cs, p)/ [2A°(1-p)] (A2)

where:
\u(caa, cs, p) = exp{ -2(1-p)(1-ca%z/[3p(caa+cs)] }

if ca’< 1
\.y(caa, cs, p) = exp{ -(l-p)(caa—l)/(caa+4cs)}

if ca®> 1

Combining equations (A.1) and (A.2), the mean
waiting time in the system for a job of cycle i is
obtained as:

Wei(ri) = (- 1/24 + w:‘ i=1,..n (A3)

The latter estimate is a somewhat crude approximation
which should lead to exact results only for the cases that
correspond to independent Poisson arrivals of the jobs
and exponential service times. Similar approximations
have however been used extensively in the
decomposition approaches and have been shown to be
fairly robust (see for example Suri(1983)).
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