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ABSTRACT

Chandy and Misra’s UNITY is a computational
model and proof system suitable for development of
parallel (and distributed) programs through step-wise
refinement of specifications. UNITY supports the de-
velopment of correct programs and the efficient im-
plementation of those programs on parallel computer
architectures. This paper assesses the potential of
UNITY for simulation model specification and im-
plementation by developing a UNITY specification of
the machine interference problem with a patrolling re-
pairman service discipline. The conclusions reached
are that the UNITY proof system can assist for-
mal verification of simulation models and the UNITY
mappings of programs to various computer architec-
tures offer some potential for assisting the automatic
implementation of simulation models on parallel ar-
chitectures. The paper gives some insights into the
relationship of time flow mechanisms, parallel simu-
lation protocols, and target parallel computer archi-
tectures.

1 INTRODUCTION

The automated support of simulation model develop-
ment is entering the second decade as a topic of signif-
icant research interest. Approaches to computer as-
sistance have sought a conceptual basis in artificial in-
telligence (Klahr 1985, Snyder and Macbulack 1988),
general systems theory (Kim and Zeigler 1987, Mur-
ray and Sheppard 1987), software engineering (Hen-
riksen 1983), and modeling methodologies (Balmer
and Paul 1986, Nance 1981). In fact, the primary
efforts in simulation support environments draw to
varying degrees from all these conceptual sources.
Balzer, Cheatham, and Green (1983, p. 41) describe
the automation-based paradigm as separating imple-
mentation from specification so that maintenance is
performed entirely on the latter. Automatic transla-
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tion from a higher level specification to an efficient
implementation is envisioned. This perspective on
application development and support emphasizes the
role of specification languages (see Stoegerer (1984)
for an excellent survey) and the necessity for realizing
an efficient implementation.

Simulation modeling represents a challenge for
both model specification and implementation, and
this work represents an effort to assess the poten-
tial of UNITY (Chandy and Misra 1988) for accom-
plishing both. (See the companion paper, Abrams,
Page, and Nance (1991b), for a brief introduction to
UNITY.) In addition, UNITY is intended for devel-
opment of efficient parallel and distributed programs
through step-wise refinement of specifications. This
paper also assesses the potential of UNITY to derive
efficient parallel simulation implementations.

A simulation program development methodology
that uses UNITY is presented in Section 2 and ap-
plied to the Machine Repairman Problem in Sec-
tion 3. Conclusions follow in Section 4.

2 UNITY-BASED METHODOLOGY

We propose that a simulation model be represented
as a UNITY program by mapping simulation “at-
tributes” and “events,” as defined by Kiviat (Nance
1981), to UNITY “variables” and “assignment state-
ments,” respectively.

Assume that the “system and objectives definition”
and “conceptual model” in Balci and Nance’s simu-
lation life cycle are completed (Balci 1989). We pro-
pose using a state transition diagram representation
of the “communicative model” in the methodology to
simplify the presentation. Starting at this point we
propose the following methodology:

Step 1: This step specifies a simulation that cap-
tures the order of events that occur in the system,
but ignores the absolute time at which events occur.
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(For the machine repairman problem discussed in Sec-
tion 3, this means capturing the correct state space
and state transitions without regard to failure and
repair rates or the rate at which the operator walks.)

Step 1A: Select a set of state variables, enumerate
all values of each state variable, and for each state
variable enumerate all constraints on transitions that
the system can make between the values of the state
variable. Also specify which transitions are known to
occur in a finite period of time.

(This paper uses one state transition diagram to
represent each state variable, which permits a me-
chanical translation from the transition diagrams to
the UNITY representation. However other represen-
tations, such as a single transition diagram, a Petri
net, or English statements could be used.)

Verify that the states enumerated and the con-
straints on transitions match the conceptual model.
Also verify that the list of constraints is complete
(i.e., all invalid transitions are prohibited) and con-
sistent (i.e., satisfying one constraint never leads to a
violation of another constraint).

Step 1B: Express each output measure in terms of
the holding time for a set of states. Verify that all
output measures can be expressed in terms of the
states selected in Step 1A.

Step 1C: Formalize the state transition diagram of
Step 1A in UNITY. Verify that all transitions present
(prohibited) in the diagram match transitions present
(respectively, prohibited) in the UNITY specification.

Overall verification of Step 1: Verify that the com-
municative model and the UNITY specification a-
gree in the following manner: State a set of prop-
erties that the communicative model implies, and use
UNITY’s proof system to show that the specification
(i.e., the UNITY assertions of Step 1C and the addi-
tional properties of this step) implies these properties.

Step 2: Refine the simulation by mapping the order
of events to a time scale. (In the machine repair-
man problem of Section 3, this means adding failure
and repair rates and the rate at which the operator
walks.) Verify that the refined specification meets the
specification from Step 1.

Step 3: Derive a simulation program from the spec-
ification in Step 2. Formally verify using UNITY’s
proof system that the program meets the specifica-
tion.
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Step 4: Refine the simulation program by mapping
the program to a particular (1) time flow mechanism,
(2) sequential or parallel simulation protocol, and (3)
sequential or parallel hardware architecture. We con-
jecture that these three must all be considered to-
gether to achieve an efficient program.

3 MACHINE REPAIRMAN PROBLEM

This paper applies the methodology of Section 2 to
the classical machine interference problem (Cox and
Smith 1961). In the problem, a set of N semi-
automatic machines fail intermittently and are re-
paired by one or more technicians. Machine failure
rates are assumed to follow a Poisson distribution
with parameter A. Upon arriving at a failed machine,
a technician can repair the machine in a time period
that is exponentially distributed with parameter p. A
variety of service disciplines are possible that specify
how the technician selects a machine to repair.

The multiple repairman version of this problem
should serve as an interesting benchmark for paral-
lel simulation. The system being modeled contains
concurrent behavior because machines fail indepen-
dently, technicians after arriving at a machine repair
machines independently. However the choice of ser-
vice discipline introduces dependencies between the
times that technicians arrive at machines that should
frustrate efficient parallel execution of a simulation
model.

This paper considers the patrolling repairman ser-
vice discipline, in which a single technician services
all machines (Nance 1971, p. 60). The technician
traverses a path amongst the machines in a cyclic
fashion (1,2,...,N,1,..)). The technician walks at
a constant rate and only stops walking upon encoun-
tering a down machine. The technician takes con-
stant time T to walk from one machine to the next.
The model terminates when the number of machine
repairs exceeds the constant MazRepairs. This prob-
lem, hereafter referred to as the machine repairman
problem (MRP), is chosen so that both the UNITY
specification and program may be presented within
the space available for this paper.

3.1 TIlustration of Methodology Step 1

3.1.1 Step 1A: Select States and Specify Con-
straints on Transitions

Notation: Symbol N denotes the number of ma-
chines. Let m and n each denote an integer in the
interval [1, N] and represent machine numbers.
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Machines: Each machine m is in one of two states:
up or down. Associated with each m is a variable
m.state that takes on values up or down. For con-
venience we employ variables m.u and m.d, defined
as:

mau = (m.stale=up)

m.d = (m.state=down)

Therefore the value of m.state is up or down if m is
up or down, respectively.

Technician: The technician is in one of 2N states:
at machine 1, leaving machine 1, at machine 2, leav-
ing machine 2, ..., at machine N, and leaving ma-
chine N.

To represent these 2N states, we associate with the
technician a single state variable loc that takes on the
2N values 1,1.5,2,2.5,..., N, N+0.5, respectively.
For convenience we employ boolean variables m.a and
m.l, defined as:

m.a = (loc=m)
md = (loc=m+0.5)

Therefore the value of loc is 1 if the technician is at
machine 1, the value is 1.5 if the technician is travel-
ing from machine 1 to 2, the value is 2 if the technician
is at machine 2, and so on.

Number of repairs: Symbol NR denotes the num-
ber of repairs to down machines that the technician
has completed so far. Initially, NR = 0.

State Transition Diagrams: The state of the sys-
tem is represented by N + 3 state variables: Ym, m =
1,2,..., N, m.state, loc, and NR. Constraints on the
transitions between states that the system may make
are represented using one state transition diagram
for each state variable, as illustrated in Figures 1
through 3. Some transitions are labeled with Boolean
functions of state variables not shown in the diagram,
which means that the associated transition may only
be taken if the Boolean function has value true. For
example, in Figure 1 a machine can only go from a
down state to an up state if the technician is present
(e.g., the transition from state m.d to m.u occurs only
if m.a holds).

The diagram in Figure 1 specifies that an up ma-
chine may go down independently of the location of
the technician or state of other machines, and a down
machine may only go up when a technician is present.
Figure 2 specifies that a technician that is at machine
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Figure 1: State Diagram Illustrating Variable m.state

Figure 2: State Diagram Illustrating Variable loc

m advances to machine m @ 1 only if machine m is
up.

The diagram in Figure 3 uses double lines for tran-
sitions. We choose the convention that a double
transition line can only occur simultaneously with
the predicate labeling the transition becoming false.
Therefore in Figure 3 the value of variable NR is in-
cremented only when predicate m.a A m.d becomes
false, corresponding to the technician leaving a ma-
chine and the machine going back up.

Modeling Simultaneity: Step 1A requires spec-
ifying states and legal and illegal transitions between
states without specifying information about the dura-
tion of simulation time that can elapse between state
transitions; the time may be zero or it may be posi-
tive. Constraints on times are added in Step 2.

Often a modeler knows that changes to multiple
state variables must occur simultaneously; that is,
zero simulation time must elapse between the setting
of one variable and the setting of any other variable.
This information may be incorporated into the speci-
fication either in Step 1A or in Step 2; either may be
used as is convenient to the modeler:

1. in Step 1A specify one transition that changes
the value of all state variables in the set, or

2. in Step 2 specify the holding time of instanta-
neous events to be zero.

@(3,-,,;;1:(",)) o =>E<3m::P(m))>@<am::P(%. y

Figure 3: State Diagram Illustrating Variable NR
(Predicate p(m) denotes m.a A m.d, and m is quanti-
fied over the set {0,1,..., N} of all machines.)
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Does it matter whether simultaneous state changes
are specified in Step 1A or in Step 2?7 It is nat-
ural to assert that certain states have zero holding
time in Step 2 and then implement a zero holding
time in a simulation programming language; on the
other hand specifying simultaneity in Step 1A permits
formal verification of properties about simultaneous
state changes using UNITY’s proof system. (For ex-
ample, one could verify that a machine never goes
down while a technician is at the machine.) A defini-
tive answer requires further investigation.

3.1.2 Step 1B: Express Output Measures Us-
ing Holding Times

Let us assume that the desired output measures are:

1. fraction of time which machine m is up,

2. fraction of time during which the technician is
repairing machine m, and

3. fraction of time during which the technician is
traveling.

In Step 1 we must show that the time intervals re-
ferred to in the output measures can be expressed
in terms of the states identified in Step 1B. Calcu-
lation of measure 1 above is straightforward because
state m.u is the only state in which machine m is up.
Calculation of measure 2 above is also straightfor-
ward because state m.a is exactly the state in which
the technician is repairing machine m. Calculation
of measure 3 above is a little more complex. Define
Boolean variable traveling as follows:

traveling = (Vm :: m.)

Output measure 3 is simply the duration of simula-
tion time for which predicate traveling has value true.

3.1.3 Step 1C: Formalize State Transition Di-
agrams in UNITY

Table 1 provides a set of rules that may be mechani-
cally followed to generate a UNITY specification from
each state transition diagram. The rules are applied
to the MRP in Table 2.

Rule I formalizes a transition from a state S to
a state S’ without a Boolean function labeling the
transition. In this case assertions (a)and optionally
(b) must be added to the specification. Assertion (a)
insures that when the state variable has value S, if
it ever changes value, its next value must be S’. Op-
tional assertion (b) is included if the following holds:
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If diagram Add to specification:

contains:

(a) S unless S’
(b) S — S’ (optional)

(c) SA—P unless SAP
(d) S unless S’
(e) SA P — S (optional)

Rule III:
(f) S A I(vm; -~P(m))
unless S A\
(3m :: P(m))
() (¥m :
S A P(m) unless S' A
~P(m))
(h) (Ym =
S A P(m)— S’ A—-P(m))
(optional)

Rule IV:
Initial state is S

Initial condition = S

Table 1: Rules to Mechanically Map a State Diagram
to a UNITY Specification (S and S’ denote states, P
and p(m) denote Boolean valued predicates, m € W,
and W denotes any set. Rule III applies when at
most one p(m), for all m € W, is true at any time.)

when the state variable has value S, it must eventu-
ally change to value S'.

In Rule II, assertion (c) insures that when the state
variable has value S and predicate P is false, then the
state variable value remains constant as long as P re-
mains false. Assertion (d) is similar to (a). Optional
assertion (e) is included if the following holds: when
the state variable has value S and P holds, then even-
tually the variable must change to value S'.

In Rule III, assertion (f) is similar to (c), but it is
generalized to handle multiple predicates on the arc.
Assertion (g) generalizes (d) to capture the essence of
what makes the double arrow transition differ from
the single arrow: when the state variable has value
S and predicate P(m) holds for some m, after the
next state transition (in this or another state dia-
gram), either the condition continues to hold or else
the transition changes the state variable value to S'
and P(m) is now false. Optional assertion (h) is in-
cluded if, when the state variable has value S and
predicate P(m) holds for some m, the transition de-
scribed by (g) must eventually occur.

Rule IV simply adds the initial condition of each
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Specification includes:

Due to state dia- From

MRP3: m.d A -m.a unless m.d Am.a
MRP4: m.dAm.a — m.u

gram fragment: Figure:
MRP1: m.u until m.d m.u m.d 1
MRP2: m.d unless m.u m.d [~ m.u] 1

MRP5: m.a unless m.l
MRP6: m.a A m.d unless m.a Am.u
MRP7: m.a Am.u— m.l

[m.a =5 m.l 2

MRP8: m. until(m® 1).a

Lrﬂl'—r (m@ 1).0 2

MRP9: NR=kA(Vm :: ~(m.aAm.d)) unless NR=kA{Tm : :maAmd) (3mim.aAm.d
MRP10: NR=kAm.aAm.duntil NR=k+1A~(m.a A m.d)) 3

MRP11: Initial condition = NR=10

Table 2: Complete Unity Specification for MRP

state diagram, if any, to the specification.

The set of rules in Table 1 are insufficient to formal-
ize any state transition diagram. In particular, Rules
I and II must be modified to handle the case of two
or more output arcs from a value S. Rule III must
be modified to handle the case of two or more output
arcs to different values; in its present form Rule III
handles multiple arcs to the same value S’. These
generalizations are unnecessary for formalization of
the machine repairman problem and are omitted.

Applying the rule of Table 1 to the transition di-
agrams of Figures 1 to 3 yields the UNITY specifi-
cation of the MRP shown in Table 2. For example,
MRP1 states that a machine that is up must eventu-
ally go directly to a down state.

Note that the definition of logical relation wuntil
has been used in Rules I and III whenever the op-
tional assertion is included to reduce the number
of assertions that comprise the specification. In all
UNITY formulas in the paper, universal quantifica-
tion over the values of variable loc is assumed, unless
the quantification is explicit. Hence all formulas ex-
cept MRP11 in Table 2 hold for m =1,2,....

The only verification necessary for Step 1C is to
insure that the rules from Table 1 have been correctly
applied.

3.1.4 Overall verification of Step 1

The specification of Table 2 is verified by stating ad-
ditional properties and using UNITY’s proof system
to formally show that the specification implies these
properties. Inability to prove the properties implies
that the specification is incomplete or incorrect, or
that the properties themselves do not hold for the

P1: m.d — m.u
P2: m.a untd m.l
P3: true — NR > MazRepairs

Figure 4: Properties of MRP Used to Formally Verify
Specification Correctness

system. Carrying out such a proof does not guarantee
the correctness of the specification, but does increase
our confidence in the specification. In fact, in writing
this paper our original statement of the specification
omitted several properties shown in Table 2.

We give three properties (Figure 4) which are
proved in Abrams, Page, and Nance (1991a). First,
when a machine goes down, it is eventually repaired
and comes back up (P1). Second, when the technician
is at a particular machine, he remains at that machine
until, eventually, he leaves that machine (P2). Third,
the value of variable NR eventually exceeds any con-
stant MazRepairs (P3).

3.2 Illustration of Methodology Step 2

In Step 2, the specification of Step 1 is augmented
by two additional assertions on the holding time of
certain states, specified in units of simulation time.
Before stating the assertions, two additional variables
are necessary.

A sequence is a data type commonly employed in
UNITY specifications, and represents a list of items
with a first element and a last element. If s denotes a
sequence, then Head(s) is the first element of the se-
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quence, and Tail(s) is the sequence obtained by delet-
ing Head(s).

The specification represents “calls to a random
number generator” by referring to a sequence whose
elements are a list of random variates returned by the
random number generator. Let sequence m.A denote
a list of random variates representing the sequence of
times for which machine m remains up. Let sequence
m.p denote a list of random variates representing the
sequence of repair times of machine m.

The additional assertions are:

1. State m.u has holding time Head(m.)).
2. State m.d A m.a has holding time Head(m.u).

3. State m.u A m.a has holding time zero.

UNITY has no notion of “time”; therefore these as-
sertions cannot be formalized in UNITY.

Verification: The specification of Step 1 is sub-
sumed by the specification of Step 2.

3.3 Illustration of Methodology Step 3

The specification of Table 2 is implemented by pro-
gram MRP, shown in Figure 5.

Verification: Formal proof that the code meets the
specification in Table 2 can be carried out, but is
not presented in this paper. Proof that the output
measures are correctly computed requires formulating
and proving a suitably strong invariant.

It is impossible to prove the time-in-state asser-
tions from Section 3.3 using the current proof system
of UNITY. UNITY’s computational model of fairly
interleaved, atomic execution of statements permits
no notion of simultaneity, which means that funda-
mental changes to UNITY are required to carry out
these proofs.

3.4 Illustration of Methodology Step 4

In this section we explore how different time flow al-
gorithms may be added to a UNITY simulation spec-
ification of the form given in Step 3. In particular,
we consider two classical time flow mechanisms: fixed
time increment and Time-of-Next-Event.

UNITY advocates program development by step-
wise refinement of specifications, with the transfor-
mation from the most refined specification to a pro-
gram written in a programming language being the
“most mechanical and least creative part of the pro-
cess” (Chandy and Misra 1988, p. ix). To apply this
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philosophy to the simulation program development
cycle, we must have a way to refine the specification
of Step 3 into the specification of Step 4 by adding a
time flow mechanism. Step 4 is necessary only as we
move toward implementation and is not necessary for
specification of model behavior in its most basic sense
(i.e. what the model does rather than how the model
accomplishes what it does). Therefore the addition
of a time flow mechanism in Step 4 should be accom-
plished with minimal (ideally no) perturbations of the
Step 3 specification. We demonstrate below that this
can be accomplished using the UNITY concept of su-
perposition.

3.4.1 Superposing Fixed Time Increment

First we consider the specification of the fixed time
increment time flow mechanism.

Symbol A denotes an integer value of simulation
time, representing a time increment; the value of A
is fixed during simulation. Recall from Figure 5 that
SysTime is a program variable containing the current
simulation time. The fixed time increment algorithm
consists of two phases:

1. Execute any statements (events) whose alarms
have gone off at the current value of SysTime.

2. Set SysTime to SysTime + A.

In order to add the above two phase algorithm to
the Step 3 specification (Figure 5) we must devise
a means to insure that all statements whose alarms
have gone off at the current value of SysTime are
executed before SysTime is incremented. (Because
UNITY does not specify sequencing of statements,
we must add something to enforce the two phase se-
quencing.)

Let the UNITY program of Step 3 contain S state-
ments in the assign section (S = 5 in Figure 5).
To enforce the two phase algorithm, we first num-
ber the statements in the program of Step 3 by the
integers 1,2,...,5. Next we add array A[1..S]. Ini-
tially, all elements of array A are zero. Each state-
ment s; numbered ¢ (for 1 < i < S) is transformed to
si || A[] :== 1. When all elements of array A are one,
SysTime can be incremented. When system time is
incremented (in the superposed program) all elements
of array A are set to zero. (Note that an assignment
statement of the form z := e if  in Figure 5 is a
shorthand for z := e if b||z := x if —b. Therefore the
statement is executed even though b is false.)

The superposed program is formalized in Figure 6.
Note that Figure 6 works with any simulation speci-
fication that results from Step 3.
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program MRP {simulate the MRP}

declare
constants N=...; MaxRepairs=...; T=...;
types alarm = integer;
variables
m : integer {machine number; integer in [1,N]}
State[N] : (up, down) {enumerated type}
Loc : (1,1.5,...,N,N+0.5) {enumerated type}
NR : integer {number of completed repairs}
SysTime : integer {current simulation time; read only }
Failure[N] : alarm {Failure[m] = time machine m next fails if Failure[m]>SysTime}
Arrival[N] : alarm {Arrival[m] = time technician next arrives at machine m, if me0.5
= Loc, otherwise time when technician arrived at machine m}
Finish[N] : alarm {Finish[m] = time machine m goes back up if State[m]=down and
Loc=m, otherwise time of last repair completion}
A[N] : sequence of integer { sequence of random variates representing time between failures}
u1[N] : sequence of integer {sequence of random variates representing repair times}
always

term = NR > MaxRepairs

initially
SysTime = 0.0 || NR = 0 || Loc=1.5 {technician initially leaving machine 1}
| ( || m:1<m< N :: State[m] = up ) {initially all machines are up }
] (||]m:1<m <N :: Failure[m] = SysTime + Head(A[m]) || A[m] = Tail(A[m]) )
[( ||m:1<m<N:: Arrivallm] = SysTime + T if m = Loc @ 0.5 ~ -ooif m # Loc @ 0.5)

assign
{Arrival: Update location; schedule finish if machine is down, else schedule arrival at next machine. }
O(||m: 1< m<N :: Loc := m if SysTime = Arrival[m] A —term
O Finish[m], u[m] := SysTime+Head(x[m]), tail(x[m]) if Loc=m A State[m]=down A —term
0 Loc, Arrival[(m @ 1)] := m & 0.5, SysTime+T if Loc=m A State[m]=up A —term

)

{Finish: Increment NR, set machine state to up, schedule next failure, update technician’s location

and schedule arrival at next machine}
O(||m: 1< m< N :: NR, Arrive[m ®1], Failure[m], State[m], Loc, A[m] :=
NR+1, SysTime+T, SysTime+Head(A[m]), up, m &0.5, Tail(A[m]) if SysTime=Finish[m] A —term

)

{Failure: Set machine’s state to down. }
O(||m:1<m< N : State[m] := down if SysTime=Failure[m] A —~term )

end { MRP }

Figure 5: UNITY Code for MRP



240

Program FTI.TFM

declare A[S] : integer

initially (i : 1 <1 < Af] = 0)

transform
each statement s in the underlying program
to s || A[1] := 1 where 7 is the lexical state-
ment number of s.

add to always section
update = (Ai:1< i< S A =1)
add to assign section

if update )
if update

(liz1<i<S=A[l]:=0
|| SysTime := SysTime + A

end { FTL.TFM}

Figure 6: Specification of Fixed Time Increment
Time Flow Mechanism

This superposition can be accomplished with no
changes to the underlying specification (other than
the ones addressed by the superposition program of
course). So, for the fixed time increment time flow
mechanism we seem to have achieved our ideal.

3.4.2 Superposing Time-of-Next-Event

Next we sketch a method to add the next event time
flow mechanism to a Step 3 program. As in the fixed
time increment method, we assign each statement in
the assign section an integer identification number.
These numbers serve as event numbers. We add an
EventList and a variable called CurrentEvent. Re-
call that m is an integer in [1,..., N] denoting a ma-
chine number. EventList is a list of triples (time,
event number, m). The statements which set alarms
in Figure 5 now append triples to EventList. The
time flow mechanism superimposed on the program
sets SysTime to the time component of a triple of
EventList that is less than or equal to the time com-
ponent of all other triples. This triple’s event number
is stored in CurrentEvent. Finally, We add to each
statement s; in the assign section the condition “if
CurrentEvent=s;.”

This superposition fails to achieve our goal of not
modifying the specification in Step 3 in order to add
a time flow mechanism. Therefore the Step 3 specifi-
cation is biased towards Fixed Time Increment. One
way to rectify this is to modify the definition of su-
perposition in UNITY, which would require the proof
system to be extended. A second way to rectify this
would be to choose a representation in Step 3 not
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based on alarms that maps as easily to Fixed Time
Increment and to Time-of-Next-Event.

3.4.3 Mapping Specification to a Protocol
and Architecture

Mapping a simulation specification to a simulation
protocol is an open problem. Mapping of UNITY
specifications to architectures is discussed by Chandy
and Misra (1988, Chapter 4), and applies to simula-
tion specifications.

We propose that jointly mapping a simulation spec-
ification to a time flow mechanism, sequential or par-
allel simulation protocol, and sequential or parallel
hardware architecture may be necessary to achieve
an efficient program. In terms of UNITY, the result
of all three mappings is a set of constraints on when
assignment statements (corresponding to simulation
events) can be executed.

The simplest joint mapping maps a simulation
specification to a fixed time increment time flow
mechanism, a synchronous parallel simulation pro-
tocol, and a synchronous shared-memory computer
architecture. All three mappings produce the same
constraint: that all events (assignment statements)
are executed each time the clock is incremented.

However, mappings to other time flow mechanisms,
parallel simulation protocols, and architectures are
more complex and constitute an open problem.

4 CONCLUSIONS

Step 1 of the proposed methodology dictates that the
order of events in a conceptual model be correctly
specified without regard for the particular times at
which events occur. The justification is that one often
wishes to “get the simulation logic correct.” Based on
the example in Section 3.1, UNITY works well for this
job.

Step 2 (mapping the order of events to a time scale)
requires a modification of UNITY to add notation
for the holding time of certain states. We introduced
such a notation in Section 3.2. However, in order
to prove any properties about timings, the UNITY
proof system must be extended, which is likely to be
a difficult task.

Step 3 (deriving a simulation program from a spec-
ification) in Section 3.3 is straightforward. Again, we
cannot formally verify the correctness of the timing
properties without an extension of the proof system
to handle time.

Step 4 (mapping the program to a particular time
flow mechanism, sequential or parallel simulation pro-
tocol, and sequential or parallel target architecture)
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requires additional research to accomplish. Based on
the example in Section 3.4 of mapping the MRP to
fixed time increment as well as the Time-of-Next-
Event mechanisms, we believe UNITY 1s sufficient to
handle Step 4.

Based on the specification example in this paper,
UNITY could help simulation modelers in three areas:

Model verification: UNITY provides a compre-
hensive proof system of both safety and progress
properties, which can be applied to verifying proper-
ties of simulation models. Our experience in proving
the properties of Figure 4 is that UNITY proofs are
fairly mechanical, but can be time consuming. Fol-
lowing are some specific examples of where the proofs
are time consuming.

(a) Applying induction: A key to the proof that
down machines are eventually repaired (P1) is estab-
lishing by an induction proof that after a machine
goes down, the technician keeps getting “closer” to
the failed machine, until eventually he is at the failed
machine. Induction is required whenever we want to
draw a conclusion about a sequence of state transi-
tions, given a specification describing only single step
transitions, as Table 2 does. Figuring out how to fit
the induction theorem to this intuition did require
some time on the part of the authors.

(b) Constructing chain of deductions: In general
the authors spent much of their time playing with
the more than thirty theorems in the UNITY book
(Chandy and Misra, Chapter 3) to construct the for-
mal chain of deductions required for each proof. This
process is somewhat analogous to what an undergrad-
uate student does in a calculus class, as he browses
through a table of integrals and a list of trigonometric
identities in trying to symbolically integrate a func-
tion. However a theorem proving system might alle-
viate this problem.

(c) Devising invariants: This paper does not present
a proof that the simulation code (Figure 5) meets
the specification. However, proofs of code generally
require invariants to be formulated, which takes some
creativity. This is analogous to integrating a function
by guessing the antiderivative.

As our experience with UNITY grows, we expect
the time required for items (a) and (b) listed above
to decrease.

Automation-based paradigm: The fact that we
could give, in Table 1, a set of rules to map cer-
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tain state transition diagrams to a UNITY specifi-
cation in a mechanical manner is encouraging. We
believe that additional rules can be developed to
represent any state transition diagram, as well as
other forms of model representation (e.g., Petri nets).
If UNITY grows in popularity, a rich set of meth-
ods to map UNITY programs to target architectures
may be developed. By identifying the correspon-
dence between simulation modeling and UNITY pro-
grams, a model development environment using the
automation-based paradigm could apply the UNITY
architecture mappings for simulation models to assist
in construction of parallel simulation programs.

Mapping specification to time-flow mecha-
nism, parallel protocol, and target machine
architecture: An important lesson from the ex-
ercise in this paper is that mapping a simulation
specification to a time-flow mechanism, a parallel
simulation protocol (e.g., conservative-synchronous,
conservative-asynchronous, optimistic), and a target
machine architecture are intimately connected. All
three correspond to specifying constraints on when to
execute statements in a UNITY program. Perhaps
all three must be done jointly during the program de-
velopment cycle to obtain a sufficiently efficient pro-
gram.

Efficient parallel execution of a simulation model
implies consideration of the constraints imposed by
each combination of computer architecture, time flow
mechanism, and parallel simulation protocol, which
leads to an enormous design space. An additional
complication is that many of these constraints are in-
put data dependent; thus a correct temporal ordering
of events cannot be predicted before execution. This
exposes one reason why parallel discrete-event simu-
lation programmingis a fundamentally hard problem.
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