Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

LINKING SIMULATION MODEL SPECIFICATION AND PARALLEL EXECUTION
THROUGH UNITY

Marc Abrams
Ernest H. Page
Richard E. Nance

Systems Research Center
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

ABSTRACT

A simulation specification language is used to de-
scribe a simulation model to a diverse audience, in-
cluding programmers, managers, and clients. The ad-
vent of parallel programming imposes new demands
on simulation specification languages. This paper
presents early results of an attempt to bridge the gap
between the requirements and philosophy of parallel
programming (attention focused on crucial efficiency-
related implementation details) and the requirements
and philosophy of a simulation model specification
(attention focused on correctly, and simply, describ-
ing model behavior). Chandy and Misra’s UNITY is
found to offer (or be amenable to) many of the fea-
tures required to bride this gap.

1 INTRODUCTION

Many protocols for execution of simulation programs
on various parallel computer architectures have been
developed over the last ten years. Fujimoto (1990)
discusses conservative and optimistic parallel proto-
cols based on partitioning the simulation model.

The requirements for parallel execution place new
demands on a “general purpose” simulation specifica-
tion language. First, a specification language must be
powerful enough to express the mapping of a simula-
tion model to any protocol on any target parallel ar-
chitecture. Second, the specification language should
allow the mapping of a simulation model to a protocol
and parallel architecture to be postponed until later
stages of the development life cycle. Third, a sim-
ulation specification language should allow a single
simulation model specification to be mapped to sev-
eral, disparate protocols and algorithms. These re-
quirements are particularly important in automated
support of simulation model development.

This paper discusses a computational model and
proof system called UNITY (Chandy, Misra 1988)

223

useful for specification, and illustrates its use. For
the illustration, the paper solves a well-known prob-
lem, simulation of tandem G/G/1 queues, using two
disparate parallel simulation algorithms in the lit-
erature: a conservative algorithm, suited for asyn-
chronous parallel architectures (Section 5); and the
Greenberg, Lubachevsky, Mitrani (1990) method,
suited for synchronous parallel architectures (Sec-
tion 4). The exercise shows that UNITY allows speci-
fication of two different solution strategies, leading to
two different parallel algorithms, to the same prob-
lem; therefore UNITY has promise as a parallel sim-
ulation specification language.

A companion paper (Abrams, Page, and Nance
1991) examines UNITY purely from the standpoint
of its ability to express simulation models without re-
gard to parallel execution, and presents a simulation
model development methodology based on UNITY.

2 INTRODUCTION TO UNITY

The goal of UNITY is to provide a means to system-
atically develop programs for a wide variety of ap-
plications and computer architectures. Architectures
considered include sequential, synchronous and asyn-
chronous shared-memory multiprocessor, and mes-
sage-based distributed processor.

UNITY supports program development as a step-
wise refinement of specifications. The final specifica-
tion is implemented as a program, and the program
may be refined further. During early stages of re-
finement, correctness is a primary concern. Consid-
erations for efficient implementation on a particular
architecture are postponed until later stages of re-
finement. In this way, one may specify a program
that may ultimately be implemented on many differ-
ent architectures. This process can be envisioned as
generating a tree of specifications, in which the root is
a correct but entirely architecture independent speci-
fication, and each leaf corresponds to a correct speci-

224

fication of an efficient solution for a particular target
architecture.

Development of a correct UNITY program requires
at, each stage of refinement, proof that the refined
specification implies the previous specification. In
addition, one must prove that the program derived
from the most refined specification meets that speci-
fication.

The main contribution of UNITY is a computa-
tional model appropriate for a wide variety of com-
puter architectures, and a proof system that allows
proof of both safety and progress properties. A safety
property of a program holds in all computation states,
such as an invariant (defined later). A progress prop-
erty is a property that holds in a particular program
state. An example of a safety property is that if i is
a program variable and A is an array of N elements,
then at any point during execution of the program,
elements A[1], ..., A[i] are sorted. An example of a
progress property is that eventually all elements of ar-
ray A are sorted (e.g., every execution of the program
must reach a computation state in which i = N). His-
torically, progress properties have been much more
difficult to prove than safety properties; UNITY is
comprehensive in its ability to prove both types of
properties with one proof system.

2.1 Computational Model

“A UNITY program consists of a declaration of vari-
ables, a specification of their initial values, and a set
of multiple assignment statements” (Chandy, Misra
1988, p. 9). The UNITY computational model at
first appears to be somewhat unconventional. The
state of a program after some step of the computa-
tion is the value of all program variables.

A program execution starts from any state
satisfying the initial condition and goes on
forever; in each step of execution some as-
signment statement is selected nondetermin-
istically and executed. Nondeterministic se-
lection is constrained by the following fair-
ness rule: Every statement is selected in-
finitely often. (Chandy, Misra 1988, p. 9)

“Infinitely often” means that at any point during
program execution, every statement in the program
must be executed at some point in the future. Note
that the computational model represents simultane-
ous execution of assignments in a parallel computer
by interleaved execution.

A UNITY program never terminates. However, a
program may reach fixed point (FP), which is a com-
putation state in which execution of any assignment

Abrams, Page and Nance

statement does not change the state. At FP, the left
and right hand side of each assignment statement are
equal, and an implementation can thereafter termi-
nate the program.

The computational model appears conventional if
viewed as a set of state transition machines, where
execution of an assignment statement corresponds to
a transition.

UNITY’s view of control flow is also unconven-
tional. Control flow constrains the order in which
assignment statements are executed. Examples of
control flow in imperative programming languages,
such as FORTRAN or C, include if statements, do
and while loops, and subroutine calls. UNITY is
founded on the belief that writing parallel programs
is hard because sequential programmers are used to
over-specifying control flow. In fact, efforts to auto-
matically transform sequential FORTRAN programs
to parallel programs require code analysis to identify
what control flow constraints can be relaxed.

The UNITY goal of postponing questions of effi-
ciency and architecture to late in the refinement pro-
cess is achieved by saying very little about the order
in which assignments are executed at early specifi-
cation stages, and by including control flow in the
form of a detailed execution schedule of assignments
statements such that execution is efficient for a target
architecture.

2.2 Programming Logic

UNITY contains a formal specification technique; its
notation and logical relations are described next.

Let p and ¢ denote arbitrary predicates, or Boolean
valued functions of the values of program variables.
Let s denote an assignment statement in a program.
The assertion p = ¢ is read “if p holds then ¢
holds.” The assertion {p}s{q} denotes that execu-
tion of statement s in any state that satisfies predi-
cate p results in a state that satisfies predicate g, if
execution of s terminates.

The notation (op var-list : boolean-ezpr :: asser-
tion) denotes an expression whose value is the re-
sult of applying operator op (e.g., quantifiers V (for
all) and 3 (there exists), +, max, logical operators
A (and) and V (or)) to the set of expressions ob-
tained by substituting all instances of variables in the
var-list that satisfy the boolean—ezpr in the assertion.
For example, if ¢ denotes an integer, (+i : 1 < i <
N ::1) is an expression whose value is Zﬁl .

UNITY defines three fundamental logical relations:
unless, ensures, and leads-to. The definitions below
are those of Chandy and Misra (1988, Ch. 3).

Specification and Execution through UNITY

Unless: For a given program F', “p unless ¢” means
that if p is true at some point in the computation
and ¢ is not, in the next step (i.e., after execution
of a statement) either p remains true or q¢ becomes
true. Therefore either ¢ never holds and p continues
to hold forever, or ¢ holds eventually (it may hold
initially when p holds) and p continues to hold at least
until ¢ holds. Formally, p unless ¢ = (Vs : sin F =

{pA—g}s{pV}).

Ensures: The assertion “p ensures ¢” means that if
p is true at some point in the computation, p remains
true as long as ¢ is false, and eventually ¢ becomes
true. This implies that the program contains a single
statement whose execution in a state satisfying pA—q
establishes ¢. Formally, p ensures ¢ = p unless ¢ A

(3s : sin F : {pA—q}s{q}).

Leads-to: Leads-to is denoted by the symbol —.
The assertion “p — ¢” means that if p becomes true
at some point in the computation, ¢ is or will be true.
The formal definition of leads-to is somewhat lengthy,
and is not given here.

Based on the three fundamental logical relations
unless, ensures, and leads-1o0, additional relations may
be defined. We discuss two additional relations: until
and invariant.

Until: The assertion “p until ¢” means that p holds
at least as long as ¢ does not and that eventually ¢
holds. The assertion p until q relaxes the requirement
that execution of exactly one statement in a state
satisfying p A —q establishes ¢q. Formally, p until ¢ =

(p unless ¢) A (p— q).

Invariant: An invariant property is always true:
All states of the program that arise during any ex-
ecution sequence of the program satisfy all invari-
ants. Formally, ¢ is invariant = (initial condition =
q) A q unless false.

2.3 Program Notation

UNITY generates two artifacts during the program
specification process: a list of assertions using the
logical relations introduced in Section 2.2 and an im-
plementation of the assertions in a UNITY program.
The program syntax is:

program <name>
declare <wvar-decl-list>
initially <initial-list>
assign <asg-list>

end { <name> }

225

program sort
assign
(i : 0<i< N : A[1], A[i + 1] :=
AlZ + 1], A[1] if A[]] > At + 1))
end {sort}

Figure 1: Sort Array A into Ascending Order.

A <wvar-decl-list> is a list of variable declarations
in Pascal. The <initial-list> and <asg-list> are
identical in syntax, except that “=” and “:=” are
used, respectively. An <asg-list> has the form
<stmt> 0 <stmt> 0O-.--0 stmi. The symbol “0O”
separates statements. A <stmit> has two forms: sim-
ple and quantified. Examples of simple statements
are:

z,y=yz Multiple assignment: swap y
and z.
z=ylly:=1 Same as z,y := y, x.

z:=yify>0 ~ Set z to absolute value of y.
—yify<o0

Set y to absolute value of y
(identity assignment if y > 0).

y=—yify<0

A quantified statement has the form (|| var-list :
boolean-ezpr :: assertion). As an example, the state-
ment (|| :0 <7< N :: A[{] := A[i + 1]) shifts A[l]
to A[0], A[2] to A[1], ..., A[N] to A[N —1].

UNITY is illustrated using the following problem
(Chandy and Misra 1988, p. 32): Sort integer array
A[0..N], N > 0, in ascending order. The sort program
specification states that any execution of the program
eventually reaches a computation state in which ar-
ray element A[i] does not exceed the value of element
Ali + 1], for i = 0,1,..., N. This progress property
is formalized in UNITY in the following assertion:
true — (A1 : 0< i< N :: A[i] < A[i+1]). Figure 1
contains a UNITY program meeting this specifica-
tion.

2.4 Program Development by Composition

UNITY facilitates program development by compos-
ing a large program from many smaller programs. A
large program may be composed using one of two
rules, union and superposition. Software engineers
have used some form of union and superposition rules
for years; UNITY’s contribution is a proof system by

226

which one can deduce the properties of a composite
program from its component modules.

The union of two programs results from appending
the code of both programs together. Syntactically,
if P and @ denote programs, POQ denotes a pro-
gram whose <asg-list> is the concatenation of the
<asg-list> of both P and . Union is used in Sec-
tion 5.5.

The superposition rule is used in the companion
paper (Abrams, Page, and Nance 1991). In superpo-
sition,

“the program is modified by adding new
variables and assignments, but not alter-
ing the assignments to the original variables.
Thus superposition preserves all properties
of the original program. Superposition is
useful in building programs in layers; vari-
ables of new layer are defined only in terms
of the variables of that layer and lower
ones.” (Chandy, Misra 1988)

A superposition is described by giving the initial
values of superposed variables and the transforma-
tions on the underlying program, by applying the fol-
lowing two rules:

Augmentation rule: A statement s in the underlying
program may be transformed into a statement s || r,
where r does not assign to the underlying variables.

Restricted Union rule: A statement r may be added
to the underlying program provided that r does not
assign values to the underlying variables.

Ideally we would like to be able to refine a simu-
lation model specification into a simulation program,
and then refine the simulation program so that it con-
tains an efficient time flow mechanism and can be
efficiently mapped to a target architecture. One ap-
proach is to layer the simulation model on the time
flow mechanism, which in turn is layered on the par-
allel simulation protocol. Superposition is used to
specify this layering.

2.5 Architecture Mappings

A mapping of a UNITY program to an architecture
specifies (1) a mapping of each assignment statement
to one or more processors, (2) a schedule for executing
assignments (e.g., control flow), and (3) a mapping of
program variables to processors.

For example, to map a UNITY program to an asyn-
chronous shared-memory architecture, item 1 above
consists of partitioning the assignment statements,

Abrams, Page and Nance

with each processor executing one partition. Item
2 specifies the sequence in which each processor exe-
cutes the statements assigned to it. Item 3 allocates
each variable to a memory module such that “all vari-
ables on the left side of each statement allocated to
a processor (except subscripts of arrays) are in mem-
ories that can be written by the processor, and all
variables on the right side (and all array subscripts)
are in memories that can be read by the processor”
(Chandy, Misra 1988).

Although this mapping appears to be simple, it has
a rather complex implication. A given architecture
guarantees certain hardware operations to be atomic,
and the programmer can only use these to build the
synchronization mechanisms (e.g., locks and barri-
ers). Meanwhile, UNITY’s computational model is
based on fair interleaving of atomically executed as-
signment statements. Therefore to obtain an efficient
implementation one may need to refine the program
to a more detailed level that takes into account the
atomic hardware operations available on a target ar-
chitecture. For example, a shared variable can be
refined to be implemented by a set of variables such
that the hardware atomicity corresponds to the atom-
icity of UNITY assignment statement execution. In
fact, UNITY can model refinement down to the level
of electronic circuits.

3 EXAMPLE: G/G/1 QUEUE

The remainder of the paper uses UNITY to specify a
simulation of G/G/1 queues, both individually and in
tandem. Before 1990, all parallel simulation protocols
in the literature based on simulation model partition-
ing (Fujimoto (1990)) made each server a schedulable
thread. Therefore a single G/G/1 queue could not be
executed in parallel, and N queues in tandem could
make use of a parallel architecture with at most N
processors. In 1990, Greenberg, Lubachevsky, and
Mitrani (GLM) (1990) eliminated these constraints,
and showed how an unbounded number of processors
could be used even with the single G/G/1 case. The
GLM solution starts with a recurrence relation ex-
pressing the arrival and departure schedules in terms
of the random variates for interarrival and service
time.

A general purpose simulation specification lan-
guage should permit one problem definition and then
allow either the conventional or GLM solution strate-
gies to be used. This paper shows that this is possible
with UNITY. The GLM solution is given in Section 4,
and the conventional solution is given in Section 5.

To formally state the problem, several definitions
are required. An arrival sequence array of N jobs

Specification and Execution through UNITY

is an N element array where A[¢] is the simulation
time at which the ith Job arrives, fori =1,...,N. A
service time array is an N element array where §[3]
denotes the simulation time required to service the
ith job that arrives.

Given arrays A and §, design a program that com-
putes array D, where D[i] (for 1 < ¢ < N) is the
departure time of the ith job that arrives, given that
a first-come, first-served queueing discipline is used.

Formally, we wish to devise a program that com-
putes N element array d and mean sojourn time S,
such that:

invariant FP = (1)
d=D A
S=% -(+i:1<i< N :: D[] — A[])

true — FP. 2)

Recall that FP denotes the fixed point of the program.

4 GLM SOLUTION

This section presents the solution devised by Green-
berg, Lubachevsky, and Mitrani (1990), hereafter re-
ferred to as the GLM solution. The UNITY develop-
ment given below is based on the all points shortest
path algorithm given in Chapter 5 of Chandy and
Misra (1988).

4.1 Solution Strategy

Let D[0] = 0. Greenberg, Lubachevsky, and Mitrani
observe that array D is a solution to the following
recurrence relation:

(Vi :: D[{] = max(D[i — 1], A[{])+ é[i]) (3)

Our initial solution approach is to initialize all ele-
ments of array d to zero. In our strategy, during sim-
ulation each element d[i] either retains its value or
increases in value until it reaches D[i]. Let d[0] = 0.
Therefore the simulation simply executes the assign-
ment d[i] := max(d[i—1], A[:])+6[:] forever. UNITY’s
fairness rule along with invariant (1) implies that
eventually d[i] reaches D[] for all 7.

The solution strategy does not impose any con-
straint on how the value of 7 is chosen, nor does it
specify what processor should execute the assignment.
Answering these questions tailors our solution strat-
egy to a different computer architectures in the re-
mainder of Section 4.

227

The informal strategy is now formalized. Because
the value of d[7] increases monotonically during simu-
lation until it reaches the desired departure time D[],
the following invariant holds:

(1:1<i< N ::d[i) < D[i)) (4)

The fixed point of this strategy holds when all the
d[i] remain unchanged, i.e.,

FP=(i: (5)
d[i] = max(d[i — 1], A[5]) + 6[¢7] A
S=4 (+i:1<i< N :dfi]— Al).

Next we need to add to the specification an asser-
tion that guarantees a fixed point is always reached.
We show that if the simulation has not reached a
fixed point, then at least one of the d[¢] increases.
A common strategy in UNITY to prove such an as-
sertion is to define a metric, a function of the state
variables comprising the simulation model, and show
that the metric must decrease in value if a fixed
point has not been reached, and further that the
metric has a minimum value. The metric we em-
ploy is the difference between the sum of all elements
of array D and the sum of all elements of array d:
sum = (+i : D[i]) — (+¢ :: d[i]). The metric is
bounded below by zero because the value of each d[i]
cannot exceed D[i] according to the invariant (asser-
tion (4)). The progress condition is that the metric
decreases if the state is not a fixed point. Formally,
for all integers m,

-~FP A sum =m+— sum < m. (6)

4.2 Outline of Correctness Proof

Equations (4) to (6) represent the highest level spec-
ification of a program implementing a G/G/1 simu-
lation using our solution strategy. We must formally
verify that this specification correctly solves the prob-
lem. This requires showing that the invariant (as-
sertion (1)) and progress condition (assertion (2)) of
Section 3 are met by any program that satisfies con-
ditions (4), (5), and (6).

4.3 A Simple Program

Program GLM1 in Figure 2 embodies our solution
strategy. Normally one must prove that program
GLM1 meets the specification of Section 4.1; the
proof follows the outline given above. Program GLM1
contains N + 1 assignment statements. It does not
specify the order in which each of these assignments

228

is executed. Due to the invariant (assertion (4)) and
UNITY’s unending selection of a statement to exe-
cute according to the fairness rule, all possible orders
of assignment execution guarantee a correct solution,
and the program eventually reachs FP.

program GLM1
init.ially (|| ¢ :: d[5] = 0)
assign
(Ot :: d[i] := max(d[i — 1], A[z]) + 6[3])
0S:= & (+i:1<i < N dfi] - Afd])
end { GLM1}

Figure 2: Basic GLM Program

4.4 Sequential Architecture

A refinement of GLM1I suitable for execution on a
sequential computer architecture is to explicitly in-
crement ¢ by one from an initial value of one to N;
the result is program GLM2. To obtain program
GLM?2, add “|| z = 1” to the initially section and
“lz:=2z+1if £ < N” to the assign section of pro-
gram GLMI. Program GLM2 requires O(N) time to
execute on a sequential processor.

4.5 Synchronous Parallel Architecture

Chandy and Misra (1988, p. 10) define a synchronous
parallel architecture as “a fixed number of identical
processors share a common memory that can be read
and written by any processor. There is a common
clock; at each clock tick, every processor carries out
precisely one step of computation.” The explicit in-
crementing of ¢ from one to N in program GLM?2
yields an efficient algorithm for a sequential proces-
sor, but not for a synchronous parallel architecture.

A UNITY program can be mapped to a syn-
chronous, parallel architecture by refining the pro-
gram so that it contains a multiple assignment state-
ment. Each processor can compute one of the
right hand side expressions; all processors then syn-
chronously make the assignment to the corresponding
left hand side variable.

In program GLM1, we could change the “07” to
“|| > without affecting program correctness to em-
ploy a multiple assignment statement that could be
executed in constant time by O(N) processors.

A more efficient solution is that of Greenberg,
Lubachevsky, and Mitrani (1990). In the next refine-
ment, the maz function in program GLM1 is rewrit-
ten. The result is program GLM3, shown in Figure 3.

Abrams, Page and Nance

The program uses the GLM solution based on matrix
multiplication where a binary maximum operator is
the addition operation and addition is the multipli-
cation operator.

The solution requires N matrices with 2 x 2 el-
ements, denoted My, Ms,...,Mn, and N + 1 vec-
tors with 2 elements, denoted Vo,Vi,...,Vn. If

V= [V], then vlo) =y and i1 = =

program GLMS3

initially

0
Vo = 0

. 6[7) A[)+ 6[:
ol i = [A4)
assign

(DiI:V;:M; -Mi_,---M; Vo)

0(: :: d[i] = V;[0])

S:=F (+i:1<i <N dfi] — Af1])
end { GLM3}

Figure 3: Refinement Eliminating Max Function

Program GLM3 requires O(N?) time on a single
processor, or O(N) time on O(N) processors, which
is no better than GLM2 on a single processor. There-
fore GLM3 requires further refinement to reduce the
running time on a synchronous parallel architecture
below the running time of GLM2 on a sequential ar-
chitecture. The refinement, which is GLM/, uses the
parallel prefix algorithm of Kruskal, Rudolph, and
Snir (1985) to reduce the running time to O(log N)
using O(N) processors. This algorithm uses a com-
bining tree to evaluate the to evaluate the assign-
ment to V; for all ¢ in a single parallel operation.
GLM} differs from GLMS$ by adding j := 0 to the
initially section and changing the assign section to:

((llé: My = M;_y; - M;)
lj:=j+1ifj<[logN]—-1)

O(i =: dfi] = M;Vi[0])

S:=% (+i:1<i< N ::d[i] - Af)).

To summarize this section, we presented a high
level solution to the G/G/1 simulation in asser-
tions (4) to (6). This strategy is refined to program
GLM?2, which requires O(N) time on a sequential
computer architecture, and to GLM4, which requires
O(log N) time on O(N) processors. UNITY is well
suited to expression of the GLM solution strategy.

Specification and Execution through UNITY

5 CONVENTIONAL SOLUTION

This section develops a solution suitable for execu-
tion by a conservative or optimistic parallel simula-
tion protocol.

5.1 Specification Omitting Time

The solution strategy follows the four step program
development methodology given in the companion
paper (Abrams, Page, Nance 1991). This section
describes a specification that captures the order of
events that occurs in a single G/G/1 queue, ignoring
the time at which events occur. Section 5.3 describes
the addition of event timings to calculate departure
sequence array d. Sections 5.4 and 5.5 present ways
to map the program to a sequential and parallel ar-
chitecture, respectively.

The specification consists of several objects: the
queue, the server, and the jobs which pass through
the system. These objects can be represented by their
attributes. These attributes, or state variables, de-
scribe the state of the system by the values which
they assume. The state of the server is either busy
or idle. The queue has some nonnegative length. For
convenience we employ variables s.i, s.b and ¢.n, de-
fined as:

s.i = (server.state=idle)
s.b = (server.state=busy)
¢.n = (queue.length=n).

The following sever assertions specification the
G/G/1 simulation:

Ql: siAqg=0 unlesss.ing>0
Q2: s.i unless s.b

Q3: siAg>0+—s.b

Q4: s.buntilsa

Q5 gqnuntilgn+1Vgn-—1

Q6: gn+1Asbunlessgn+1As.i
Q7: gn+1Asi—gqn

The companion paper (Abrams, Page, Nance 1991)
explains how to obtain these assertions mechanically
from a state transition diagram. Figure 4 presents a
program derived from the seven assertions.

5.2 Outline of Correctness Proof

To formally show that the program of Figure 4 meets
the specification, proofs of each assertion in the spec-
ification must be carried out with respect to the pro-
gram code. As an example, proof of assertion Q5
requires establishing ¢.n unless g.n+1Vq.n—1; from

229

program CS1

declare
¢ : integer {Number in queue }
s : (busy, idle) {Status of the server}

NS : integer {Number served}
initially

NS:=0|qg:=0|| s:=idle
assign

(0:=q¢+1)

O(s,q:= busy ,q—1 if g>0As=1idle)
D(s,NS:=idle NS+1 ifs=busy)
end { MM1}

Figure 4: Conventional Solution, Ignoring Timings

the definition of wuntil, this requires showing that
{g-n}s{(g-n)V(g.n+1Vg.n—1)} holds for all state-
ments s in the program. Finally, ¢.n — ¢.n+1Vg.n—1
must be established.

5.3 A Complete Solution

To meet the G/G/1 simulation problem specifica-
tion (assertions (1) and (2)), program Convl must be
modified to compute the departure sequence array, d.
The result is program CS2. Program CS2 is obtained
by following the methodology of the companion pa-
per (Abrams, Page, Nance 1991). First we construct
state transition diagram for each state variable (3, j, ¢,
and d[7]). The diagrams are mapped to the set of as-
sertions given in the Appendix using rules from the
companion paper. Program CS2 follows directly from
the assertions.

5.4 Sequential Architecture

Mapping CS2 to a sequential computer architecture
simply requires specifying an execution schedule of
the assignment statements in CS2. Any schedule
meeting UNITY s fairness rule results in a correct im-
plementation. Because both i and j assume all values
from 1 to N, the program requires O(N) time to exe-
cute on a sequential processor, which means that the
running time only differs by a constant factor from
that of program GLM2.

5.5 Asynchronous Parallel Architecture

Conservative and optimistic simulation protocols can
only use one processor to execute progam CS2.
Therefore we consider P number of G/G/1 queues
in tandem. Let CS2(y, z) denote program CS2 with
arrays y and z replacing arrays A and d, respectively.

230

program CS2
declare

1,] : integer {Next arrival, departure index}

q : integer {Number in queue, service}
A[N] : integer {Arrival times}
d[N + 1]: real {Departure times}
8[N + 1]: real {Residual service times}
a[N + 1} real {Residual IATs}
initially
i:= j:= 10q := 00d[1] := 00a[1] = A[1]
O§[N+1]:=a[N+1] ;=00
O@G:1<i<N:afi]:=Af] - Al -1))
always Q 1= ofi] < 6[j]0Q |= afi] > §[j]
assign
4,d[j],qg:=i+1,d[j]+ afi],¢g+1ifg=0
04,d[5), ¢, 6] := i+ 1,d[j] + [1), ¢ + 1, 6[j] — e[d]
ifg>0AQT
0j4,d[j),dj + 1],¢,afi] :=
j +1,d[5]+ 6[5], d[5] + é[5], ¢ — 1, afi] — 6]
ifg>0AQ |
O(S:= % (+i:1<i < N = dfi] — Afd])
end { CS2}

Figure 5: Conventional Solution, Including Timings

Then P tandem queues is denoted using the UNITY
union operation from Section 2.4 as:

CS?(A, Zl)D CSQ(Z]_, 22)[:' s DCS?(ZP-] y ZP).

Mapping the composite program to an asynchro-
nous parallel architecture requires a mapping of as-
signment statements to processors a refinement to
eliminate the use of shared memory to store arrays
z; for 1 < ¢ < P. One mapping is to employ P pro-
cessors, and map each instance of program CS2 to a
unique processor such that if array z; is written by one
instance of CS2 and read by a second instance, then
there is a memory which can be written to and read
by the processor executing the writing and reading in-
stances of CS2, respectively. The tandem simulation
requires O(N) time under this mapping.

6 EVALUATION OF UNITY

Model specification is the transformation of one sys-
tem representation to another. Typically, a complex
model specification requires a series of transforma-
tions, beginning with a conceptual view of a sys-
tem and progressing through successive communica-
tive forms; i.e., a communicative form is reproducible
without error (see (Balci 1986) for a depiction of the

Abrams, Page and Nance

model development life cycle). Although a specifica-
tion in its own right, a program is the most concrete
(free of abstraction) form, and is a representation of
how model behavior is produced in addition to what
is desired. This view thus characterizes the modeling
(design) process as comprised of specification trans-
formations that progressively resolve abstraction un-
til the concrete model representation (program) is
achieved.

Table 1, adapted from Barger and Nance (1986),
present a checklist for dual assessment of (1) the prop-
erties of “good” specifications and (2) the capabilities
of “good” specification languages. The identification
of both language capabilities and specification prop-
erties suggests that an evaluation should utilize both
the “tool” (language) and the product from using the
tool.

UNITY is evaluated on a scale of zero to four,
where zero means “Fails to provide this capability,”
two means “adequately provides this capability,” and
four means “provides this capability better than any
known alternative.”

UNITY has two major weaknesses when used as a
simulation specification language. First, UNITY is
based on a model of fair interleaving of statement ex-
ecution, which provides no notion of time. Hence one
cannot directly state and reason about properties of
simulation time, which would be very useful in simu-
lation modeling. (Sections 4 and 5 indirectly specify
time through arrays «, 6§, A, D, and d.) However
the ability to reason about time is an area of active
research, which may be embodied in future specifica-
tion languages.

The second weakness arises because UNITY is a
purely formal description tool, which limits the por-
tion of the model development life cycle that it can
be used with. UNITY is a narrow-spectrum language
(Neighbors 1984), operating very near the implemen-
tation level of abstraction; i.e., the representation
permits little abstraction beyond that realized with
the programming language. In particular one would
like an informal description to augment the formal
description for managers and customers. In addition
documentation of design decisions as a byproduct of
the specification process is necessary. All of these
could be added to UNITY, however.

These weaknesses aside, UNITY shows strong ca-
pability in the support of modular construction and
the analysis of model completeness. The language
1s unambiguous and relatively easy to learn for indi-
viduals accustomed to formal notations; however, the
proof procedure is not so readily mastered.

Specification and Execution through UNITY

231

SPECIFICATION LANGUAGE

DESIRABLE SPECIFICATION

Independent of Simulation
Programming Language

and description details

CAPABILITIES PROPERTIES SCORE JUSTIFICATION
Model Organization:
Encourages modularity - Understandable 4.0 Building block approach strongly
- Information is localized supported by superposition and
- Easily modifiable union.
Encourages hierarchical - Suitable for many audiences 2.0 Narrow spectrum language allow-
description - Presentable in varying lev- ing hierarchy of low level descrip-
els of detail tions that is inappropriate for
some audiences.
Model Credibility:
Use of application - Understandable 2.0 Can use application terminology
terminology allowed - Suitable for many audiences by supplying attributes. Appli-
cation level references to time not
permitted.
Documentation produced as - Understandable 0.0 No documentation produced oth-
a byproduct - Presentable in varying lev- er than the low level UNITY as-
els of detail sertions and program.
Assess specification - Analyzable 4.0 Real strength of UNITY is proof
completeness system.
Facilitates validation and - Separates implementation 3.0 Focuses close to implementation
verification and description details level. Inability to formally char-
- Analyzable acterize “time” is a hindrance.
Spectfication Approach
Permit both formal and - Understandable 1.0 Formal constructs only. Superpo-
informal constructs - Suitable for many audiences sition, union allow enhancement
- Has environment descrip- and addition of objects without
tion repeating proofs. Object redefi-
nition may require new proofs.
Encourages use of - Separates implementation 2.0 Focus is at implementation level.
developmental method and description details Limited basis for system environ-
- Has environment descrip- ment description (e.g., I/O be-
tion havior, interactive execution).
Accepts nonprocedural - Suitable for many audiences 1.5 Accepts nonprocedural descrip-
description - Accommodates various sys- tion at low level through asser-
tem views tions; readability is a problem.
Language Usability
Easy to learn and use 0.5 Requires skill with formalisms.
Simple, precise, unambiguous Analyzable 3.5 Permits proof. Must develop in-
syntax and semantics tuition for logic relations and ex-
perience to use key theorems.
Full range of system behavior 2.0 No way to formally reason about
- static and dynamic time. Otherwise adequate.
Separates implementation 4.0 Algebraic, not operational speci-

fication; imposes no world view or
programming language paradigm

Table 1: Assessment of UNITY as a Simulation Specification Language.

232

7 CONCLUSIONS

UNITY can handle both a state-transition based sim-
ulation specification (Section 5), which is the con-
ventional parallel simulation program, as well as a
data-flow based specification (Section 4), to its credit.
For the G/G/1 problem, the data-flow view leads
to a more efficient solution. This raises the ques-
tion, do automation-based specification environments
naturally bias their users to a state-transition view?
Such a bias could complicate generation of efficient
parallel simulation programs.

The state transition-based solution to the G/G/1
queue requires fourteen assertions, which looks ex-
cessive for a simple problem. The large number of
assertions arises because our solution strategy explic-
itly specifies the order in which state transitions oc-
cur. (For example, our solution requires the state
variables i, 7, and q to always increase or decrease by
one whenever their value changes.) Explicit specifi-
cation of order leads to a large number of assertions.
The UNITY philosophy of program development is
to postpone decisions on order until later stages of
program development. This implies that a state-
transition based solution strategy is not well suited
for eventual execution on a parallel architecture, or
else UNITY is awkward to use for solutions with ex-
plicit sequencing. In contrast, the UNITY specifica-
tion and program were quite natural for the data flow
solution based on recurrence relations.

APPENDIX

Following are the UNITY assertions specifying a
G/G/1 queue from which program CS2 is derived.

Ql: (1:0<i<N:ui=zunlessi=z+1)

Q2: (1:0<i<N:ui=zA-(QTVg=0)
unlessi =z A (Q 1 Vg =0))

Q3 ((:0<i<N:ui=zA(QTVg=0)
—i=z+1)

Q4: (J:0<j<N:uj=zunlessj=z+1)

Q5 (j:0<j<N:uj=zA~(QLAg>0)
unless j =z A (Q | Ag > 0))

Q6: (j:0<j<N:uj=zAQ|ANg>0—
j=1:+1)

Q7: g=0unlessqg=1

Q8: (g:0<g< N:qg==z unless
g=z—-1Vvg=z+1)

Q9 q=N unlessg=N -1

Ql0: (g:0<g<N:ug=zAQT—g=z+1)

Qll: (g:0<qg<N:ug=zAQ|—qg=2z-1)

Q12: (j:1<j< N :d[j]=k unless
dlj) = + 8V d(j) = k + afs])

Abrams, Page and Nance

Q13: (j:1<j<N:udlj]=kAQIAg>0
>—>d[j]=k+5[}])

Ql4: (j:1<j<N:zdfl=kA(QTVg=0)
o dji] = k +ali)

REFERENCES

Abrams, M., E. H. Page, and R. E. Nance. 1991.
Simulation Program Development by Stepwise Re-
finement in UNITY, 1991 Winter Simulation Con-
ference.

Balci, O. 1986. Requirements for Model Develop-
ment Environments, Computers and Operations
Research 13(1), 53-67.

Barger, L.F. and R.E. Nance. 1986. Simulation
Model Development: System Specification Tech-
niques, Technical Report SRC-86-005, Systems Re-
search Center, Virginia Tech, Blacksburg, VA.

K. M. Chandy and J. Misra. 1988. Parallel Pro-
gram Design: A Foundation, Reading, MA: Addi-
son Wesley.

R. M. Fyjimoto. 1990. Parallel Discrete Event Simu-
lation, CACM, 33 (10), pp. 30-53.

A. G. Greenberg, B. D. Lubachevsky, and I. Mitrani.
1990. Unboundedly Parallel Simulations Via Re-
currence Relations, SIGMETRICS 1990, May, 1-
12.

C. P. Kruskal, L. Rudolph, and M. Snir. 1985. The
Power of Parallel Prefix. IEEE Transactions on
Computers, C-34 (10), Oct. 1985.

Neighbors, J.M. 1984. The Draco Approach to
Constructing Software from Reusable Components,
IEEE Transactions on Software Engineering SE-
10(5), September, 564-574.

AUTHOR BIOGRAPHIES

Refer to the paper, “Simulation Program Develop-
ment by Stepwise Refinement in UNITY,” elsewhere
in these proceedings, for the author biographies.

