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ABSTRACT

We explain the main techniques for estimating deriva-
tives by simulation and survey the most recent develop-
ments in that area. In particular, we discuss perturba-
tion analysis (PA), likelihood ratios (LR), weak deriva-
tives (WD), finite differences (FD), and many of their
variants. We also mention some other approaches. Our
discussion emphasizes the relationships between the meth-
ods. For that purpose, all of them are presented in the
same framework, which is based on L’Ecuyer (1990).

1 INTRODUCTION

Simulation is a popular tool for estimating the ex-
pected (average) performance measure of a complex stoch-
astic system. Various statistical techniques have been de-
velop ed in that context. Estimating the derivative or
sensitivity of such an expectation certainly looks more
difficult, but is nevertheless important for many practical
applications. For example, let @ be a real-valued (contin-
uous) parameter and suppose that the performance mea-
sure of interest depends on # either directly, or indirectly
through the probability law that governs the evolution of
the system, or both.

If 6 is a decision parameter, one might want to opti-
mize the expected performance, say a(8), as a function of
8. It is a well known fact that if o is well behaved, much
more efficient algorithms are available when derivative
evaluations (or estimations), and not just function eval-
uations, can be obtained. See, e.g., Andradéttir (1991),
Benveniste, Métivier, and Priouret (1987), Glynn (1986,
1989a), Kushner and Clark (1978), L’Ecuyer, Giroux,
and Glynn (1991), Luenberger (1984), Meketon (1987),
Métivier and Priouret (1984), Pflug (1990), and Rubin-
stein (1991). For that purpose, one would need a way of
estimating a’(#) at any given point 6 in the domain of o.

In other applications, @ is not a decision parameter,
but a parameter of the model that has been estimated
from statistical data. Then, one might be interested in
the sensitivity of a(8) with respect to 6. Again, this is
a’(8). Sensitivity analysis is useful for discovering which
parameters in a model are important and which ones are
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not. It could also indicate that the model is excessively
sensitive to some “critical” parameters. This may imply
a questionable model or at least warn the decision maker
not to be overly confident in the simulation results.

A third class of applications is tnterpolation. See
Reiman and Weiss (1989) and the references given there.

In this paper, we look at different methods for esti-
mating o'(f), for 6 € R. Here, a(f) can be either the
expected performance measure (or “cost”) over a finite
(deterministic or random) horizon, or an infinite-horizon
For the case where 6 is
a vector of parameters, one can just apply the methods

average cost per unit of time.

discussed here to obtain estimators of the derivative with
respect to each component of §. This yields the gradient
of a(@) with respect to 8, which is the vector whose i-th
component is the derivative of o with respect to the i-th
component of 4.

We examine finite-differences (FD), perturbation anal-
ysis (PA), likelihood ratio (LR), and weak derivative
(WD) methods. For more on these methods, the reader
can look at the many recent references given at the end
of this paper. We recommend in particular the following
ones, which are more “general scope” or “survey style” :
Glasserman (1991a), Glynn (1990), Ho and Cao (1991),
L’Ecuyer (1990), Rubinstein (1991), and Suri (1989).

2 SAMPLE PERFORMANCE DERIVATIVE

2.1 Infinitesimal Perturbation Analysis (IPA)

Consider a simulation model defined over a probabil-
ity space (2, Z, P). Let h(0,w) denote the sample value
(cost), where the sample point w € Q2 obeys the probabil-
ity law P, and 6 € ©, where O is some open interval in R.
We assume that h(6,-) is measurable for each 8 and (for
the moment) that P does not depend on 6. For example,
in a typical simulation, w can be viewed as the sequence
of underlying independent U(0,1) variates that drive the
simulation. The expected value (cost) is

a(0)=[2h(0,w)dp(w). (1)

The basic idea of IPA is simply to take h'(6,w), the
derivative of h(6,w) with respect to 8, for fixed w, as
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an estimator of o’(4). This yields an unbiased estima-
tor if one can differentiate o by differentiating inside the
integral in (1), i.e. if the derivative and expectation
can be interchanged. Sufficient conditions for that inter-
change to be valid are given in Glasserman (1988, 1991a),
L’Ecuyer (1990, 1991b), and Pflug (1991). The conditions
of L’Ecuyer (1991b) are recalled in the following theorem.

THEOREM 1. Let 8o € T C O, where T is an open
interval, and let = C Q be a measurable set such that
P(Z) = 1. Suppose that for every w € Z, there is
a D(w) C Y, where T\ D(w) is at most a denumer-
able set, such that h(-,w) ezxists and is continuous ev-
erywhere in T, and is also differentiable everywhere in
D(w). Suppose also that there exists a P-integrable func-
tionT : Q@ — [0,00) such that
sup |h'(0,w)| < T(w)
6€D(w)

for every w in Z. Then, everywhere in T, a is differen-
tiable and

a'(ﬁ):[)h'(ﬂ,w)dP(w). (2)

Further, if h'(-,w) is continuous all over Y for eachw € E,
then o is continuously differentiable in T. W

Unfortunately, there are many practical applications
where the conditions of Theorem 1 do not hold and
where the interchange is not valid. Roughly speaking,
in a discrete-event simulation, IPA assumes that an in-
finitesimal perturbation on 8 does not affect the sequence
of events, but only makes their occurence times “slide
smoothly”. (Note that the perturbation can also affect
h(8,w) without affecting the event times either). In some
applications, varying 6 affects the performance of the sys-
tem only (or mainly) through a drastic change in the
sequence of events. This is the case, for example, if
@ is a routing probability in a multiclass queueing net-
work, or a threshold in an production/inventory or re-
pair/replacement model (L’Ecuyer 1990). In some cases,
the model can be reformulated differently, i.e. the func-
tion h(6,w) can be replaced by an alternative one which
has the correct expectation but which is “smoother” in
some sense, so that Theorem 1 applies. Sometimes, for a
given interpretation of w, there are many possible func-
tions h(6,w) which have the correct expectation and not
all of them satisfy the conditions of Theorem 1. See
Glasserman (1991c) for an example where IPA does not
work when k(8,w) is defined in a standard way, but does
work if a more clever (and more complicated) definition
is adopted. In most cases, the interpretation of w is also
changed to obtain a smoother function. Basically, all the
methods that we will discuss later on under the names of
LR, SPA, RPA, and so on, are variants of this “smooth-
ing” idea.

L’Ecuyer

Example 1 : Total Sojourn Time for the First ¢
Customers in a GI/G/1 Queue. This is a classic
example in the field. Consider a GI/G/1 queue with ser-
vice time distribution Bg and corresponding density be.
For simplicity, assume that 6§ is a scale parameter, that
is Bo(s) = B(s/6) for some distribution B with bounded
density b. Let © = (£,u) for 0 < £ < u. Fori > 1, let W;,
Si = 0Z;, and X; = W, + S; be the waiting time, service
time, and sojourn time for the i-th customer, and A; be
the time between arrivals of the i-th and (i + 1)-th cus-
tomer. Here, Z; follows the distribution B and is assumed
to have finite expectation. One has W; =0, and for: > 1,

X =W;+S; =W.+62Z; and Wiy1 = (X,‘—A,')+

)
where zt means max(z,0). Suppose that we are inter-
ested in the expected total sojourn time in the system for
the first ¢ customers, and in the derivative of that. In
other words, let

h(B,w) =D Xi. (4)

X'/ = %Xo—" =7+ W,‘, =7 +X:_1I(W| > 0),

where I denotes the indicator function. From that,

Xi=>z
JE®;
where ®; is the set containing customer i and all the cus-

tomers that precede him in the same busy period (if any).
The IPA estimator is then

t
KWy =YY"z, (5)
=1 JEP;
In other words, an infinitesimal perturbation on 8 becomes
an infinitesimal perturbation on each S;, which affects the
system time of customer j and of all the customers (if any)
that follow him in the same busy period.

The assumptions of Theorem 1 are easy to verify in
this case. Indeed, from (3-4), h(f,w) is clearly continu-
ous in #. It is also differentiable in # everywhere except
when two events (arrival or departure) occur simultane-
ously, which happens at most for a finite number of values
of 8. Also, |h'(8,w)| < tY"i_, Z:, which is integrable since
each Z; has finite expectation.

In this example, we have viewed the sample space
in such a way that w represents a sequence of U(0,1)
variates. Alternatively, one can view w as representing
(Z1,A1,...,2¢-1,A¢-1, Z¢). The sample space and prob-
ability measure are then different, but this gives exactly
the same IPA estimator. On the other hand, if w is viewed
as representing (S1, As, ..., Se—1, At—1,S¢), the probabil-
ity measure then depends on §. We will see how to deal
with that in Section 2.4.
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Example 2 : Probability that the Sojourn Time
Exceeds L. (This is taken from L’Ecuyer and Perron
1990 and Wardi et al. 1991a) Suppose that in Example
1, the objective function is replaced by a(6) = P[X; >
L), for given j and L. If w is viewed as the underly-
ing sequence of uniform variates, as in Example 1, and
h(8,w) = I(X; > L), where I is the indicator function,
then h'(,w) = 0 except when X; = L, where it is un-
defined. But since S; has a density, P[X; = L] = 0, so
that E[k'(f,w)] = 0 # a'(d). In other words, this naive
IPA derivative estimator is completely useless. One can
nevertheless use IPA in this case, as will be shown in the
next subsection.

2.2 Smoothed Perturbation Analysis (SPA)

The basic idea of SPA is to replace the cost estimator
h(8,w) by its expectation conditional on some “part” of w,
before taking the derivative with respect to 8. See Glasser-
man and Gong (1990), Gong and Ho (1987), L’Ecuyer
and Perron (1990), Vizquez-Abad and L’Ecuyer (1991),
and Wardi et al. (1991a, 1991b). Equivalently, this cor-
responds to viewing w as representing something different
than the whole sequence of underlying uniform variates,
and then using the same framework as for IPA. We illus-
trate that on Example 2.

Example 2 (continuation). Let us view w as repre-
senting the sequence of uniform variates that have been

used to generate (51, A1,...,Sj—1,Aj—1), and redefine

h(8,w)=P[X,>L | 8, w] =1— Bg(s),

where s = L — (X;—1 — A;j—1)*. The corresponding IPA
estimator (L’Ecuyer and Perron 1990, and Wardi et al.
1991a) is then

W(Ow) = —25Bols)+ bo(s)Xjm(Xom1 > 4,ma)

= b(s/O)s/6° + X} I(Xyo1 2> Aya)):

Since the service time density is bounded, h(f,w) is
continuous and piecewise differentiable for each w, and
R'(8,w) is integrable. Therefore, Theorem 1 applies and
we now have an unbiased IPA (or SPA) derivative estima-
tor.

Note that strictly speaking, for the conditional proba-
bility P[- | 6, w] to be well defined, it is assumed implicitly
that there is a “lower-level” probability space in which
the sample point @, say, can be interpreted as the whole
sequence of uniform variates that is used throughout the
simulation. In other words, that & has the same meaning
as w in “standard” IPA. The reason why we rename it &
and use w to denote what we condition on is to re-obtain
cost and derivative estimators h and h' that are functions
of w. Then, the fact that SPA is just IPA applied over a
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different cost estimator is made more apparent, and the
results of standard IPA can be applied directly with the
same notation.

For a given application, different SPA derivative esti-
mators can often be obtained by conditioning on different
things, i.e. with different choices of what w represents. In
Example 2, for instance, one can view w as representing
the sequence of uniform variates that have been used to
generate (S1, Ai1,...,Aj_2,5;-1). Since we condition on
less, this will give and estimator with less variance. See
L’Ecuyer and Perron (1990) for more details and numeri-
cal results.

2.3 Other IPA Variants

Another perturbation analysis variant which is some-
what related to SPA is called Rare Perturbation Analysis
(RPA) (Brémaud and Vizquez-Abad 1991, Vizquez-Abad
and Kushner 1991, and Vizquez-Abad and L’Ecuyer 1991)
or Light Traffic Perturbation (LTP) (Simon 1989). In-
stead of sliding events smoothly in time, RPA or LTP will
cancel or add some events with very small (or infinites-
imal) probabilities. Originally, RPA has been designed
as a finite-difference (or FPA) method, but Brémaud and
Vizquez-Abad (1991) have developped a way of taking
RPA to the limit. This yields a derivative estimator which
is an average of conditional expectations, i.e., roughly
speaking, an average of SPA estimators. The condition-
ing can be, for example, on the number of events that are
actually cancelled. An example is worked out in Vizquez-
Abad and L’Ecuyer (1991), in these Proceedings. LPT is
quite similar. Other variants of Perturbation analysis are
also described in Ho and Strickland (1990), Ho and Cao
(1991), and the references given there. Some of these are
based on “cutting and pasting” sample paths (Ho and Li
1988), on Markov chain aggregation via LR (Zhang and
Ho 1991), etc.

We also note that the term perturbation analysis of-
ten refers not only to the idea of computing h'(6,w), but
(perhaps above all) to the class of techniques that could
be used to actually compute or approximate h'(4,w) dur-
ing a simulation, or during the operation of a real-time
system, using a single sample path (Ho and Cao 1991).

2.4 Likelihood Ratios (LR)

In the previous subsections, the probability law that
governs w has been assumed independent of §. In standard
IPA, wis usually viewed as an underlying sequence of inde-
pendent U(0, 1) variates, or something equivalent to that.
But for many applications, for w viewed that way, valid
IPA or SPA estimators are quite difficult or impossible to
obtain. We will now consider the case where the probabil-
ity law of w depends on 8. The basic idea of the likelihood
ratio (LR) approach is to transform the value function and
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probability law in such a way that the latter will not de-
pend on § anymore, and that IPA can be applied after the
transformation. The method can be traced back to Alek-
sandrov, Sysoyev, and Shemeneva (1968). More recently,
it has been studied in Asmussen (1991), Glynn (1986,
1987, 1990), Heidelberger and Towsley (1989), L’Ecuyer
(1990, 1991b), Reiman and Weiss (1989), and Rubinstein
(1986a, b, 1989, 1991).

Let {Ps, 6 € O} be a family of probability measures,
defined over the same measurable space (2, L), where ©
is some open interval in IR, as before. We now suppose
that w €  obeys the probability law Pg. In that case,
we cannot differentiate the expectation by differentiating
directly the sample cost inside the integral, as in IPA, be-
cause the expectation itself is with respect to a probability
measure Pp that depends on #. But if G is a given proba-
bility measure on (€2, X) that dominates all the Pp’s, that
is G(B) = 0 for a measurable set B implies Ps(B) = 0 for
each 0, then the expected value (cost) can be written as
a function of 8 as

a(f) = / h(8,w)dPe(w) = / h(8,w)L(G, 8, w)dG(w),
Q Q
(6)
where L(G,0,w) = (dPs/dG)(w) is the Radon-Nikodym
derivative of Py with respect to G, evaluated at w. Define

H(0,w) = h(0,w)L(G,8,w). ()

We are now in the same framework as for IPA, with h
and P replaced by H and G, respectively. Therefore, the
IPA results can be used again here. In particular, if the
sufficient conditions given in Theorem 1 are verified for
H, one obtains:

a'(6) = H'(0,w)dG(w),
where

H'(6,w) = L(G, 8, w)k'(8,w) + h(8,w)L'(G, 8,w).  (9)

In typical models where Py depends on 8, w can be
viewed as a sequence ((i,...,¢:), where the (i’s are in-
dependent, or where the distribution of ¢; conditional on
(¢1,...,¢i—1) is known for each 7 so that the joint distri-
bution (or likelihood) of (1, ...
easily as a product. We assume for the moment that ¢ is
deterministic and finite and that {; has density fig. Our
development extends trivially to the case where some or
all of the (i’s have probability mass functions instead, or
conditional laws as just explained. This will be illustrated
in the next example. The case of a random t will be dis-

,Ct) can be written down

cussed later on. For i =1,...,t, let g; be a density such

that {¢ | fi,e(¢) > 0 for some 6 € ©} C {¢ | ¢i(¢) > 0}.
The densities g; define the probability measure G over
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(2,Z). In that case, the Radon-Nikodym derivative be-
comes the likelihood ratio

L(G,8,w) = H fg"((cc (10)

Its derivative is

L'(G,0,w) = L(G,8,w)5(6,w), (11)

where

t
7]
S(8,w) = 55 In(L(G,8,w)) = Zl d; (12)
is called the score function and d; is defined as

9
di = ﬁln(ﬁ,e(ﬁ))- (13)

L’Ecuyer (1991b) gives specific conditions, in this con-
text, under which Theorem 1 applies. In particular, one
can take g; = fi,, for some 6o € O. In that case, the
likelihood ratio at # = o is 1 and the first term in (9)
becomes a “direct IPA” part.

Note that (9) could be used to estimate the derivative
o' everywhere in a given region by a single simulation.
The idea is to compute an expression for H'(-,w) in that
region (i.e. a whole function of 8, for fixed w), and take
that as an estimate of o’(-). See Asmussen (1991) and
Rubinstein (1991).

Example 3 : A GI/G/1 Queue with Rejections.
Suppose that the i-th customer arriving to our GI/G/1
queue (Example 1) is rejected with probability pi = 1 —
1/(N:8) when N; > 1, p; = 0 otherwise, where N; is
the number of customers already in the queue (waiting
or in service) when customer ¢ arrives. We assume that
0 € © = (f,u) for 1 < £ < u. The Lindley equations
(3) are still valid if the service times S; of the rejected
customers are replaced by S; = 0. (The values of W; and
X corresponding to rejected customers are meaningless,
but well defined.) Suppose that we want to estimate the
total sojourn time for the customers that are not rejected,
among the first t. Let I; = 1 if customer ¢ is rejected,
I; = 0 otherwise. A straightforward cost estimator is

h(6,w) =D Xi(1 - L). (14)

For simplicity, suppose that the service time distribution
does not depend on 6.

If w represents the underlying sequence of uniform
variates, changing 6 by a small amount for fixed w may
change N;, so that p; is discountinuous in 8. Then, the
continuity condition in Theorem 1 fails to hold. In fact,
one can easily check that h'(6,w) = 0 with probability
one, so that this derivative estimator is useless. Further,
a valid SPA estimator does not come to (my) mind easily.



Overview of Derivative Estimation

Now, let us view w as representing the sequence
(Sl,Il,Al, ...,Ag_l,Sg,It). iFrom that, the N;’s, W,’s,
and X;’s can be deduced easily, independently of 8. There-
fore, for fixed w, h(f,w) does not depend anymore on
6, so that A'(d,w) = 0. Now, only the probability
law of w depends on 8, via the pi’s. For each 1, let
p.'(o) =1- 1/(N;0) = Po[I.' =1 I N.'] if N; > 0, and
pi(8) = 0 otherwise. Here, the I;’s are not independent,
but the joint probability mass of ([1,...,I:), for given
(S1,A1,..., A1, S:), is the product H:=1 2:(0)(1 -
p;(O)l'I', with the convention that 0° = 1. Let G = Py,
for some 8y € ©. The likelihood ratio is then

pi(8)" (1 - pi(6))' "

uebw) = 1 G r oy

and the score function is
]

SOw) = z5mL(G,6,w)

t
a 1
Z -a—g[l.ln (l—m)

i=1, N;>0

+(1 - Ii)ln(N.»o)]

1 I; )
T 9 Z [N.-e—1+I' l]‘

i=1, N;>0

Also, H(8,w) is continuously differentiable in . Assume
that Eg,[S:] < K for each ¢, for some constant K < oo.
Then,

|H'(6,w)]

t=1

5] (29) (%),

which is Pg,-integrable. Therefore, from Theorem 1,
Eo,[H'(8,w)] = o'(8) for each 8 € O.

IA

2.5 The Weak Derivative (WD)

In LR, we obtained a derivative estimator by chang-
ing both the value function and the probability measure,
and differentiating inside the integral. In IPA, the value
function was differentiated directly and the probability
measure kept unchanged. Now, we will look at the op-
posite idea: keep the value function unchanged and try
to differentiate directly the probability measure. We will
in fact replace it by its weak derivative. This idea was
introduced by Pflug (1989, 1991).

Under appropriate conditions (Pflug 1991), one can

write

a’(e):Ah'(O,w)dPe(w)+/nh(o,w)dPé(w), (15)

[% S Wi+ 8 - 1.)} L(G,8,w)IS(8, )|
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where Pj is a finite signed measure. The first term in (15)
is an IPA term that can be dealt with as usual: generate w
according to Pp and compute h’(8,w). In the second term,
P, is not necessarily a probability measure, but from the
Jordan-Hahn decomposition, it can be written as

Py = c(8)(s - Py), (16)

where Py and Py are probability measures on (2, 5).
Then, if w and & are sample paths generated from P,
and Py, respectively, a weak derivative (WD) estimator
for the second term in (15) is given by

c(0)(h(8,w) — h(8,@)). (17

(Note that in Equation (11) in Pflug (1989), the c(z)
should be in the numerator.)

For example, let Q@ = IR, Py have a density fo, and
h'(8,w) = 0. Then,

a(0)=/nh(9,w)fo(w)dw,

and, under appropriate regularity conditions,

' 3
9) = h(6,w) | — fo(w) ) dw.
«(0)= [ 16,0 (7550
One can decompose
—(,;90 fo=c(fo— fo)

where

(e =]

(G o

e o]

() o

fo = p (-a%fa>+ ;
AR

A WD estimator of a’(6) is then

Il
=~

c(h(07 “") - h(or L.“"))

where w and @ have respective densities fg and fg. One
disadvantage of this method is that two simulations must
be performed. Numerical illustrations are given in Pflug
(1989).

2.6 Frequency Domain Experimentation (FDE)

Jacobson (1991a, b) and Jacobson and Schruben (1991)
study the use of frequency domain experimentation (FDE)
for estimating derivatives. They point out the relationship
between FD and FDE. The basic idea of FDE is to oscil-
late the different parameters at (different) given frequen-
cies during the simulation and analyze the oscillations in
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the response through, e.g., harmonic analysis. Whether
or not (and in which situations) FDE would be compet-
itive in practice for derivative estimation is not clear at
this point.

2.7 Higher Order Derivatives

IPA and LR estimation can be generalized to higher
order derivatives. See, e.g., L’Ecuyer (1990) or Rubinstein
(1989, 1991). For example, by taking the derivative of (9),
under appropriate regularity conditions given by an easy
adaptation of Theorem 1, one obtains the following second
derivative estimator:

H"(8,w) = L(G,8,w)k"(8,w)+ h(8,w)L"(G,8,w)
+2k'(8,w)L'(G, 6, w).

There are also generalizations for mixted partial deriva-
tives of higher order when there are many parameters. For
example, one can estimate a Hessian.

3 FINITE DIFFERENCE METHODS

Finite differences (FD) have been used for a long time
to estimate derivatives. See Glynn (1989a), Kushner and
Clark (1978), L’Ecuyer and Perron (1990), Pflug (1989),
Rubinstein (1986a), and Zazanis and Suri (1988). FD
can be used when none of the methods presented in the
previous section would apply, or when they are judged too
complicated to implement.

3.1 FD and FDC

Suppose that the sample point w represents the under-
lying sequence of uniform variates, as in IPA. Let w™ and
wt be two independent sample points generated under P,
and let ¢ > 0. The forward FD estimator is

R(6+¢,wt) — h(8,w™)
€

, (18)

while the central FD estimator is

RO+ e,wt) —h(8 —e,w7)
- : (19)

These estimators are biased. If « is three times contin-
uously differentiable, the bias is in the order of € for the
forward version and in the order of €2 for the central ver-
sion. The major problem here is that as ¢ decreases to
zero, the variance of these FD estimators goes to infinity.

This variance problem can be addressed by using com-
mon random numbers. The idea is simply to generate
only one w using P and to take w™ = w? = w in the
above formulas. This yields the forward and central FDC
estimators (FD with common random numbers). Using
+

w™ = w™ corresponds to comparing very similar systems,

under the same conditions. For small ¢ one should expect
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k(6 + €,w) and h(6 — €,w”) to be highly correlated, so
that a considerable variance reduction could be obtained.
Conditions that guarantee variance reductions are given
in Glasserman and Yao (1990) and Rubinstein (1986a).

3.2 Convergence Rates

In practice, to estimate a derivative, one would usually
compute n independent replications of a given derivative
estimator, take the average, and perhaps compute a con-
fidence interval. The mean square error (MSE) of such
an average should converge to zero. But at which rate ?
For IPA, SPA, or LR, if the estimator is unbiased and
the variance is finite, the MSE is in O(1/n), from the
central-limit theorem. For FD or FDC, things are more
complicated. Let ¢ be a function of », say € = cn. To get
the MSE down to zero as n — oo, one must take ¢, — 0
to get rid of the bias, but ¢, should not go to zero too
fast, otherwise the variance would not go to zero. Glynn
(1989a), Zazanis and Suri (1988), and L’Ecuyer and Per-
ron (1990), among others, give optimal sequences c, and
optimal orders of convergence for MSE in various FD and
FDC contexts and under different sets of assumptions.
With independent random numbers, the best convergence
rates for MSE are in O(n~!/?) in the forward case and in
O(n~2/%) in the central case. For FDC and under a given
set of assumptions, Glynn (1989a) has obtained respective
convergence rates of O(n~2/%) and O(n~*/%). It turns out
that his assumptions could hold only when IPA does not
apply, but it is precisely in that situation that FDC has
more chances of being used. L’Ecuyer and Perron (1990)
have shown that under the conditions of Theorem 1, if the
variance is bounded and a is twice continuously differen-
tiable, the MSE of FDC is in O(1/n) provided that c» is
in O(n~*/?). In other words, when IPA works, FDC has
the same convergence rate as IPA. This is interesting to
know because in some situations, computing the IPA esti-
mator can be complicated and/or tedious and FDC might
be a reasonably efficient alternative. On the other hand,
IPA estimators require just one simulation, whatever be
the number of parameters, while if there are d parame-
ters, FDC estimators require 2d simulations for the central
case and d + 1 simulations for the forward case. IPA can
be applied to real-life systems (not just simulations), but
not FDC (see Suri 1989). FDC can also have numerical
problems when the intervals are too small. Finally, im-
plementing FDC with the proper synchronisation is not
always easy in practice, especially for complex systems.

3.3 Finite Perturbation Analysis

When ¢ is small, there is sometimes little change be-
tween the two sample paths in FDC. Sometimes, it is even
possible to perform only one simulation and trace the few
changes. This is called finite perturbation analysis (FPA).
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There are applications where IPA does not apply easily,
but where a cleverly designed FPA approach does. See Ho
and Cao (1991). Note that PA was originally introduced
in its FPA version (Ho, Eyler, and Chien 1979).

4 A DISCRETE-TIME MARKOV CHAIN

Most discrete-event simulation models can be viewed
as discrete-time Markov chains over general state spaces.
Consider a Markov chain {Xi, 1 > 0}, with Borel state
space S, defined as follows. Let Xo = 3o for some fixed
initial state so € S. Let {Qo(- | s), 0 € ©, s € S} be a
family of probability measures on IR, with corresponding
densities {ge(- | ), 8 € ©, s € S}. Let ¢ : ©® x S x
R — R and ¢: 0O x S x R — S be measurable functions
called the cost and transition functions. The chain evolves
as follows. At step i, a real-valued random variable (;
is “generated” according to Qe(- | Xi-1). A cost Ci =
¢(6, Xi-1,¢:) is incurred at that stage and the next state
is X: = (8, Xi-1, ).

4.1 Deterministic Horizon
Let
ht(G, w) =

t
% >oa, (20)
=1
the average cost for the first t steps, where ¢ is fixed. Here,
one can view the sample point as w = ({1,...,(t). This
w obeys some probability law Pe implied by the above
framework.
If Qo is independent of 6 and if ¢ and ¢ are “smooth
enough”, IPA can be applied. The IPA derivative estima-

tor is then .
1 '
i=1

where the prime denotes the derivative with respect to
g, for fixed w. Note that in general, computing C! in-
volves Xi—1, X!_y, ¢, and (/. Therefore, for deriva-
tive estimation purposes, one can consider an “extended”
Markov chain for which the state at step i is defined as
(Xi—1,X!_y). If this Markov chain is regenerative, then
standard renewal theory can be used to study the behav-
ior of h.(6,w), hi(#,w), and of their expectations, as t goes
to infinity. In particular, when h.(6,w) has the form (20),
the variances of h¢(f,w) and h;(6,w) decrease linearly in
t.

h:(O,w) =

If Qo really depends on 6, one can use LR. Let {g(- |

3), s € S} be a family of densities such that for each s, the
support of g(- | s) contains the support of each gs(- | 3).
We will simulate using the densities g instead of go, i.e.
these densities g define the probability measure G. The

likelihood ratio is then

H go(i | Xizn) (22)

Lt(Gvovw C' | X._1
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and the score function is
t
a
Si(8,w) = Z 3 n(g0(Ci | Xi1))- (23)

When t — 0o, a major problem is that the variance of (23)
increases linearly with t. Suppose that h(d,w) converges
to a constant K, as should be expected, that the likelihood
ratio is one, i.e. that we want a derivative estimate at
6o and we take g = go,, and that h’(,w) = 0. Then,
under mild conditions, the variance of the LR derivative
estimator H{(8,w) = h(6,w)S:(8,w) increases linearly in
t. This is really bad. However, if K = 0, things are
slightly better. Indeed, L’Ecuyer and Glynn (1991) show
that the variance is then in the order of 1 (with respect
to t). This can be exploited as follows: just replace Ci by
C: — K in (20). If K is unknown (the usual case), replace
it by an estimation. Appropriate limit theorems are given
in L’Ecuyer and Glynn (1990).

Another (less dramatic) way of reducing the variance
is to use a triangular LR derivative estimator. The idea
is to estimate the derivative of Eg[C;] separately for each
i, and then take the average. Since C; depends only on
(1,...,¢:, the appropriate score function that should mul-
tiply C: is the sum up to i instead of up to ¢t. The trian-
gular LR estimator is then

1gm = 9
7 Zc Y 5 Inlae(¢s | X5-0)).
1= 1=1

An alternative way of defining the likelihood ratio in
this context, assuming that C; can be expressed as a func-
tion of X|, is to base it directly on the transition probabili-
ties (or densities) between the successive visited states. In
other words, one can use the likelihood of (X3, ..., X:) in-
stead of the likelihood of ({1,...,¢t). Thisis what is done,
for example, in Glynn (1987, 1990) and Pflug (1991).
With Xo known, (X;i,...,
,Ct) and often contains less, so that

X¢) never contains more infor-
mation than ((1,...
the score function should be expected to have less vari-
ance when based on the former. However, the latter is
often easier to deal with in actual implementations.

4.2 An IPA vs LR Paradox

In L’Ecuyer (1990), IPA was presented as a special
case of LR: the case where Py does not depend on 6.
In Section 2.4 of this paper, we have presented LR as
IPA applied to a modified mathematical expectation. So,
broadly speaking, IPA and LR represent the same ap-
proach. But we saw in Section 4.1 that for the model de-
scribed there, the variance of the IPA estimator decreases
linearly in t, while that of the LR estimator (which is
IPA applied to H:(,w)) increases linearly in t. This ap-
parent paradox can be explained by noting that the func-
tion H¢(8,w) = h:(8,w)L:(G,0,w) does not have the form
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(20). When we said that the variance of h¢(8, w) decreases
linearly in ¢, we assumed that h¢(#,w) had the form (20).
This is a special case. In general, when h.(6,w) does not
have this form, anything can happen to the variance of
the IPA estimator.

4.3 Random Horizon

In the previous subsection, for each t, let &, denote
the sigma field generated by {(i,...,(:}. Now, suppose
that h(f,w) is §,-measurable for some (random) stopping
time 7. We assume that for w fixed, r does not depend
on 8. In the development of the previous subsection, t
must now be replaced by 7. In the LR context, verifying
the conditions of Theorem 1 then becomes more difficult
in general, because the likelihood ratio is now the prod-
uct of a random (generally unbounded) number of terms.
L’Ecuyer (1991b) gives a set of sufficient conditions for
that context. Other such conditions are given by Reiman
and Weiss (1989) and Glynn (1986), in his Theorem 4.9.

4.4 GSMP and Other Frameworks

The Markov chain model of this section could be gen-
eralized to semi-markovian or Markov renewal models, in
which the times between transitions are also random. The
cost per step would be replaced by a cost per unit of time.
Glynn (1989b) and Glasserman (1991a, b, c) suggest us-
ing a generalized semi-markov process (GSMP), with de-
numerable state space. This offers a convenient frame-
work for analysis and is used in most of Glasserman’s
work. Note that a GSMP can be viewed as a Markov
chain where the state of the chain is comprised of the state
of the GSMP (with denumerable state space) and of the
event list (with the “planned” time of occurence of each
event in the list). Glasserman (1991a, b, c) gives specific
conditions for IPA to work under the GSMP framework.

5 DERIVATIVE OF THE STEADY-STATE
AVERAGE COST

Consider again the Markov chain model of the previ-
ous section and suppose that it is regenerative, with finite
second moment of the cycle length. For a given regener-
ative cycle, let 7 be the length of the cycle (number of
steps) and h, be the total cost during that cycle. Let
u(0) = Eg[h+], £(6) = Ep[7], and a(8) = u(8)/£(9). Then,

from the renewal-reward theorem

t—oo

t t

. l a.8. . l

lim ~ E Ci = a(f) =t]in°1°? E Ey[Ci]. (24)
=1 1=1

5.1. Estimators Based on the Regenerative Method

Suppose that one simulates n regenerative cycles of
that process. Let Y; and T, denote the respective values

L’Ecuyer

of h, and 7 for the j-th cycle. A consistent estimator of

a(8) is then sy,
an(8) = S (25)

E;‘:l :I?’

The derivative of a, assuming that it exists, is

u'(8)£(8) — £'(6)u(6)

o'(8) = (8) (26)
u'(8) — a(6)€'(9)
= -—fw-)— (27)

*This could be estimated by

(22;1 YJI) — &n(6) Z;:l TJI

n )
=1 T

an(8) = (28)
where Y] and T are estimators of v’(6) and £'(9), respec-
tively, based on the j-th cycle. Such estimators can be
obtained, for example, by the LR method, as discussed in
subsection 4.3.

Observe that with standard IPA, the derivative of
will always be zero and will not be a valid estimator of
£'(8). However, Heidelberger et al. (1988) give conditions
under which (28) is nevertheless a consistent estimator
of a’(#). This looks surprising at first sight, but makes
sense if the IPA estimator (21) is unbiased for the deriva-
tive of the expected average cost for the first ¢ steps, for
each fixed t, because of (24) and because (28) with IPA
derivative estimators becomes the same as (21) with ¢ re-
placed by the total number of steps in the n simulated
cycles. For more on consistency of IPA, see also Glasser-
man (1991), Glasserman, Hu, and Strickland (1990), and
Hu and Strickland (1991).

Heidelberger and Towsley (1989) have extended LR,
in a regenerative setting, to the case where 6 is unknown
and its value in the derivative estimator is replaced by an
estimate. They prove almost sure convergence and discuss
the computation of confidence intervals.

5.2 Growing Horizon Estimators

Instead of exploiting the regenerative structure, one
can use an estimator based on a fixed (but long) horizon
t to estimate the steady-state derivative. As t goes to
infinity, the bias goes to zero. Suppose n replications (of
length t) are performed. Clearly, the optimal ¢ should be
a function of n, say t,. L’Ecuyer (1991a) has obtained
the optimal rate of increase of t,, for FD, FDC, IPA, and
LR, under different sets of assumptions. As an example,
in the context of the model of Section 4, for LR when the
variance increases linearly in ¢, the optimal rate is t, in
the exact order of n!/3 and the MSE for the steady-state
gradient is then in O(C'l/z), where C = nt,, corresponds
to the total computer budget. For IPA, in contrast, ¢, in
the exact order of n? for any p > 1 is optimal and the
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MSE is then in O(C™!). Since there is no upper bound
on the optimal p, it is optimal, in particular, to allocate
the total budget to just one very long run. Such an IPA
derivative estimator is as efficient (in terms of order of
convergence) as a standard cost estimator.

6 PERFORMANCE ASPECTS

In our Markov chain setup, we saw that IPA gives
the best convergence rate for growing horizons. Even for
fixed and short horizons, empirical evidence shows that
IPA, when it applies, typically gives a lower variance than
LR. However, there are applications where IPA does not
seem to apply directly and LR works well. Such applica-
tions usually exploit short regenerative cycles. When IPA
applies, FDC is essentially as good, but requires two runs
instead of one (and still more runs when there are more
parameters). Assessing the competitiveness of WD and
FDE would require further investigation.
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