Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

EXTENDING COMMON LISP OBJECT SYSTEM FOR
DISCRETE EVENT MODELING AND SIMULATION

Suleyman Scvinc

Dcpartment of Computer Science
University of Sydncy
NSW 2006 AUSTRALIA

ABSTRACT

We described DEVS-CLOS modelling and simulation
cnvironment. The environment combines Zcigler’s
DEVS formalism with powerful constructs of CLOS.
DEVS-CLOS allows dynamic model crcation and
modification and is capable of supporting advanced
simulation rescarch, as well as applications.

1 INTRODUCTION

Common LISP Object System (CLOS) is an extension
of Common LISP to support object oricnted program-
ming (Steele 1990). There are various reasons behind
our choice for using CLOS to do modclling and simu-
lation. To start with, simulation environments do not
rcquire any programming constructs that can not be
supported by a general purpose programming language
such as CLOS. Morcover, CLOS consists of some
attractive {caures that reducc model development time
considerably. Most importantly, the resulting cnviron-
ment is entircly open o modifications, therefore capa-
blc of being used in research as well as applications.
The cxtension is named DEVS-CLOS after the formal-
ism it is bascd on (DEVS, Zcigler(1976)). We will
briefly review relevant parts of CLOS in the next scc-
tion. This will be followed by a summary of novel
simulation conccpts supported by DEVS-CLOS.

2 CLOS

Basic CLOS facilities include thosc for dclining
classes, gencric functions and methods. A class delin-
ition consists of a sct of slots, gencric functions to
access these slots and other classcs (called direct
superclasscs) whose definitions arc inhcrited. Generic
functions arc constructs with a set of methods and a
dispatching mcchanism. Methods arc rclated to the
classcs via a rclation called applicability. A mcthod is
said to be applicable only if its paramcter specializers
arc satisficd by the current sct of arguments. For mul-
tilevel inheritance, a class precedence algorithm is

204

included in CLOS definition which produces a unique
ordering of superclasses for a class. The output of the
algorithm is used to order all applicable mcthods asso-
ciated with the generic function call and the dispaich-
ing mechanism selects and applies a subset of these, in
the order specified. For more information, the reader is
advised to refer to Steele (1990).

3 DEVS-CLOS

DEVS-CLOS is an advanced implementation of
DEVS concepts which have been developed by B.P.
Zcigler in his seminal works Zeigler (1976, 1984). It
is closely related to DEVS-SCHEME described in
Zeigler (1990) in some detail (see also Cellier, Zeigler
and Wang (1990) and Zeigler, Hu and Rozenblit
(1989) It is implemented with two goals in mind; We
used DEVS concepts and abstract simulator code 10
ensure correctness of our simulator and we tried giving
our modcllers a flexible basis to do applications or
rescarch. A typical simulation study in DEVS-CLOS
starts with a series of decompositions. The decompo-
sition process results in a hierarchical representation of
the system being studied (see Figure 1 for an example
supcrmarket modcl). The leaves of the system decom-
position ree arc called the ATOMIC-MODELS
whereas intermediate nodes are COUPLED-
MODELS.

SUPERMARKET

T

CHECK-OUT-AREA SHOPPING-ARCA

N T

CASHIER-1 CASHIER-2 ... CASHIER-N

Figurc 1: Hicrarchical Model Representation

Extending Common LISP for Simulation

In contrast to the analysis process, the synthesis
starts at the bottom. ATOMIC-MODELS are imple-
mented first. COUPLED-MODELS arc (ormed
using coupling specifications which arc mappings
between input/output ports of other models. To com-
plctely define an atomic model, we have to define 3
functions; cxternal transition function to process input
cvents, intcrnal transition function to process cvents
scheduled by the model itsclf and output function
whosc return value constitutes an output which is for-
warded to the proper destination using coupling
specifications. Figure 2 shows all the rclated defini-
tions for thc CASHIER model of Figure 1. We will
now providc an cxample to illustratc dynamic model
creation controlled by logic statcments in DEVS-
CLOS.

(defclass CASHIER (atomic-models)
((queue-length :initform 0 :initarg :ql
:accessor queue-length)))

(defext CASHIER
(setf (queue-length model)
(+ 1 (queue-length model)))
(if (> (queue-length model) 1)
(continue)
(hold-in WORKING (random 10))
))

(defint CASHIER
(setf (queue-length model)
(- (queue-length model) 1))
(if (> (queue-length model) 0)
(hold-in WORKING (random 10))
(passivate)

))

(defout CASHIER
(send (make-instance ' data-message
:port'OUT
ccontent t)

)))

Figure 2. Dcfinition of model CASHIER
in DEVS-CLOS

3.1 Novel Model Oriented Operations in DEVS-CLOS
Suppose we arc trying to simulate the three is a
crowd policy of a supcrmarket in which a ncw cashicr
is promised to be made available whenever all the
queues contain 3 or more customers (Figure 3).

.........-.-CHEGK‘OWARE:A
CASHIER-1 CASHIER-2
ouT T N {

SHOPPING-AREA

WHEN ALL QUEUE LENGTHS
ARE>=3

CHECK-OUT-AREA..,

e il

CASHIER-3

CASHIER-1 CASHIER-2

ouT IN{

SHOPPING-AREA

Figure 3: Creation and Intcgration of a Modcl

More formally, we would likc to crcatc a cashicr
modcl whenever the statement V. m € MODELS
m.queue-length 2 3 becomes true. In DEVS-CLOS,
models can be referred to by name and can be dynami-
cally created or destroyed. Suppose the cashier
models are named in some consistent manner such as
CASHIER-1, CASHIER-2, etc. The statement above
can be expressed by (conditional-expand CASHIER-
~a (elements MODELS)) which rcturns a list of sym-
bols (ICASHIER-1! ICASHIER-2! ..). The macro
conditional-expand rcturns all the models in sct
MODELS whose names match the form CASHIER-"a
where “a is don’t care. There arc many ways in CLOS
to test a specific condition on list clements;

(mapcar # (lambda (x)

(>= (queue-length x) 3))

205

206

(conditional-expand CASHIER-"a

(clements MODELS)))
will rcturn a list with all non-nil clements when all the
qucucs havc 3 or morc customers. This list may be
reducced to a single truth value using reduce opcration
of Common LISP (CL). The following is a completc
coding of the statcment whenever ¥V m € MODELS
m.qucuc-length > 3 make a new model in DEVS-
CLOS.

(if (reduce #'log-and
(mapcar # (lambda (x)
(>= (queue-length x) 3))
(conditional-expand CASHIER-"a
(clements MODELS)))
»»when V.m € MODELS m.qucuc-length > 3
(let
((new-name (car (cxpand CASHIER-"a rangc))))
(defmodcl new-name
(CASHIER atomic-models)
:couplings ((SHOPPING-AREA OUT)
(new-model IN))
))

We would like to note that the above code is edited
for clarity where nccessary. (expand string list) is a
macro that generates a list containing all combinations
of string substituted by the clements of list in a
manncr similar to the format statement of CL. defmo-
del is an cxtended model definition way in which cou-
plings can be specified in terms of (model port) pairs.
log-and is a function which performs logical and.

Similarly, 3 m € MODELS such that m.qucuc-
length 2 3 may be coded in the following way;

(reduce # log-or
(mapcar ¥ (lambda (x)
(>= (quecue-length x) 3))
(conditional-expand CASHIER-"a
(elements MODELS))))

4 CONCLUSIONS

DEVS-CLOS, bascd on DEVS, is a flexible simulation
cnvironment. The environment is model oricnted and
can fully support both behavioural and structural simu-
lation. The structural changes arc triggered by first
order statements and involve making new models and
integrating them into larger models, destroying exist-
ing modcls when they arc not nceded and changes in
thc model structure when necessary. Current research
looks into ways of using first order logic to reason
about the simulation behaviour.

Sevinc

5 REFERENCES

F. Cellicr, B.P. Zcigler and Q. Wang, "A Five Level
Hicrarchy for the Management of Simulation
Modcls", Proc. Winter Sim. Conf., Dec. 1990

Steele, G.L. Jr., COMMON LISP: THE LANGUAGE,
second cdition, Digital Press, 1990.

Zcigler, B.P., Theory of Modelling and Simulation,
Kricger Publications, 1984.

Zcigler, B.P., Muliifacetted Modelling and Discrete
Event Simulation, Academic Press, 1984,

Zeigler, B.P., Object-Oriented Simulation with
Hierarchical, Modular Models, Acadcmic Press,
1990.

Zeigler, B.P., J. Hu and J.W. Rozenblit, Hicrarchical
Modular Modelling in DEVS-Scheme, Proc. Winter
Sim. Conf., 1989.

6 AUTHOR BIOGRAPHY

SULEYMAN SEVINC is a lecturer in the Depart-
ment of Computer Scicnce at the University of Syd-
ncy, Australia. His rcsearch interests arc model
abstraction and theory-bascd modclling environments.

