Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

OBJECT-ORIENTED SIMULATION

Diane P. Bischak
Stephen D. Roberts

Department of Industrial Engineering
North Carolina State University
Raleigh, North Carolina 27695-7906

ABSTRACT

Object-oriented simulation languages provide simula-
tionists the tools to produce modular, re-usable sim-
ulation models. In this tutorial we discuss the ma-
jor features of object-oriented languages and their
application in simulation. We also discuss some of
the problems with and areas of special potential for
object-oriented simulation.

1 INTRODUCTION

The appeal of object-oriented simulation is that it
conforms to the notion that the world is composed
of “objects.” If you are modeling a factory floor, you
see lots of objects—people, machines, pallets, fork-
trucks, conveyors, etc. If you are modeling a hospi-
tal emergency room, you see lots of objects—doctors,
nurses, examining rooms, medical records, x-ray ma-
chines, etc. It’s not difficult to view the real world as
a set of objects which interact with each other. Thus
an “object-oriented” simulation language or modeling
system has great intuitive appeal.

Moreover, it’s natural to describe things that are
not physical as objects. For example, a record in a
data base might easily be seen as an object. The
data base would then be a collection of objects. Even
mathematical symbols could be viewed as objects.
For instance, the symbol y may be an object that
represents a variable. The symbol 2 may be viewed
as the object representing the numerical quantity 2.
Likewise 2y would be the object that represents 2
times the variable y. Although the idea that the most
elementary notions can be described as objects may
seem a little far-fetched, these examples demonstrate
the descriptive appeal of the word “object.”

In this tutorial we give an overview of the object
orientation, its features, and its potential for use in
simulation. Like “intelligence” in the artificial intel-
ligence community, the word “object” in the object-

194

oriented community is used for a variety of purposes
(Winblad, Edwards, and King 1990; Wirfs-Brock,
Wilkerson, and Wiener 1990). We will limit our dis-
cussion of object-orientedness to simulation. It is of
historical interest to note that Simula, a simulation
language, was the first computer language to promote
the object orientation (Birtwistle et al. 1979).

2 THE OBJECT ORIENTATION AND
SIMULATION

In an object-oriented simulation language, the de-
scription of objects and their interaction plays the
central role in modeling. Each real-world object is
modeled as an “object” in the language. Technically,
an object is an abstract data type plus the set of op-
erations or functions that can be performed on that
data type. A fundamental property of objects is that
they are encapsulated: their data usually cannot be
accessed except through the operations defined on
them. Thus an object’s set of operations forms an
interface through which the rest of the objects in the
model can interact with it.

An object-oriented simulation language can be dis-
tinguished from other simulation languages by its
support for the creation and description of objects.
Object-oriented languages support the crafting of
new objects as an extension of existing objects, and
a new object’s behavior can be described from the
behavior of existing objects or from a combination of
the behaviors of several objects. Some proponents of
object-oriented simulation will argue that the ability
to re-use and extend existing objects and object be-
havior in this way is the central feature that defines
an object-oriented simulation language.

Using an object-oriented simulation language does
not force you to use a particular simulation world-
view. It is even possible to write an event-oriented
simulation using an object-oriented simulation lan-
guage. The object orientation is a programming lan-



Object-Oriented Simulation

guage orientation, not a simulation orientation, and
the language is a tool, not something that forces you
into a single mode of operation. Instead of thinking
of the object orientation as a separate world-view or
simulation orientation, it is more useful to think of
it as a different way to define entities—the way they
act, interact and communicate with each other—and
to organize the types of entities in the model and the
data or attributes which each entity possesses.

There is, however, a relationship between the ob-
ject orientation and the process world-view in simula-
tion. In contrast with procedural-based programming
languages such as Pascal or C, the programming con-
structs of an object-oriented programming language
are mainly concerned with the communication among
objects which result in changes in the values belong-
ing to an object, rather than with function calls to
which variables are sent to have their values changed.
The focus is on the objects rather than on the func-
tions. A rich variety of methods of communication
and interaction between entities is also readily avail-
able in an object-oriented language.

Thus, the greatest benefit from using an object-
oriented simulation language accrues when writing
a process world-view simulation, because unlike the
event-scheduling or activity-scanning world-views,
the process world-view is most centrally concerned
with the objects or entities in the model and their
lives while in the model.

Prior to a more detailed discussion, let’s address
several questions which are often raised regarding
object-oriented simulation (OOS).

3 ISSUES IN OBJECT-ORIENTED SIMU-
LATION

What are the central virtues of 00S?

Without going into too much detail, we will sug-
gest that OOS offers significant potential over exist-
ing popular simulation languages in several respects.
First, perhaps the most convenient feature is re-
usability. Although a language like GPSS (Schriber
1990) offers extensive re-use of predefined objects like
transactions and gates, it does not permit the modeler
to create their own versions of a transaction or gate.
Objects defined within an object-oriented language
are inherently extensible. You can craft new objects
out of existing ones. For example, an AGV (auto-
mated guided vehicle) object may be crafted from a
fork-truck object, since many of the properties of the
two are similar. Second, object-oriented simulations
are modular, with objects being the modules. With
modularity, all the information known about the ob-
ject is held in one place; you don’t need special pro-

195

cedures to find information. This encapsulation of
information means that changing the meaning of an
object or modifying its behavior is easy to do, and
changes to the object can be easily maintained.

What is the history of 00OS?

Early simulation languages like GASP (Pritsker
1974) and Simscript (Russell 1989) focused on time-
flow control through the handling of simulation
“events.” In an event-oriented simulation, the mod-
eler identifies circumstances when a system changes
state (i.e., events) and describes what happens when
an event takes place (in event procedures). SIGMA
(Schruben 1991) embodies this approach with simu-
lation (event) graphs. The next generation of simu-
lation languages, like GPSS, SLAM (Pritsker 1986),
and SIMAN (Pegden, Shannon, and Sadowski 1990)
emphasized the flow and processing of entities within
a routing (network). The notion of entities flowing
through a process is a natural paradigm for produc-
tion systems and forms the basis for several “man-
ufacturing” simulation languages. The concept of
a process having its own lifetime was prominent in
Simula and the later version of Simscript. Object-
oriented simulation languages like Simula, MODSIM
(Belanger 1990), Sim++ (Lomow and Baezner 1990),
and Smalltalk-80 (Goldberg and Robson 1989) con-
tinue the emphasis on entities but provide the user
with simulation facilities and the ability to craft their
own objects, rather than relying on pre-defined enti-
ties.

Aren’t entily flow languages like SIMAN, SLAM,
and GPSS object-oriented?

It might be argued that these are object-oriented
since transactions, resources, queues, activities, etc.
are objects. In many ways these languages are im-
mediate predecessors to OOS languages. But while
users can “specify” the nature of the transaction, the
queue, or the sink, the user cannot create their own
objects. Instead users must resort to either find-
ing ways to use the pre-defined objects as a way
to “model” something else, or they must write their
own programs (typically through FORTRAN or C) to
achieve their ends. With an OOS language the user
can define new types of objects very easily. There
is no longer the necessity of trying to match what
you want to do in the simulation model to the lim-
ited number of constructs available in the simulation
language.

Isn’t O0S just simulation using an object-oriented
programming language?

Any general-purpose programming language can be
used for simulation, but we wouldn’t call it a simu-
lation language. Similarly, just because a language is
object-oriented, we won’t say it is an object-oriented



196

simulation language, even though it may be used for
simulation. We prefer to reserve the name OOS to
those languages that have convenient simulation use
and have object-oriented facilities.

In the following two sections we discuss features of
an object’s data, its operations, and other properties.
The examples given are in a “pidgin” C++ (Lippman
1991) which is meant to show the general nature of
declarations in an object-oriented language.

4 OOS: CRAFTING OBJECTS

Before creating an object, the type of the object must
be described. Another word for “type” is “class.”
Note that built-in object types like int (integer) and
float (real) in general programming languages do
not need to be described since their meaning (i.e.,
their type) is generally well-understood. Object types
like queue and activity in a simulation language do
not need to be described since the designers of that
language have already determined what such objects
are like. However, when no pre-existing description
exists, an object description is needed.

4.1 Describing an Object

Object descriptions are similar to record descriptions
in Pascal or structure descriptions in C in that an ob-
ject type is viewed as a composite of more elemental
types. An object description is a template for cre-
ating objects. For instance, objects of type vehicle
might be described as a class of objects whose com-
ponent objects consist of the make of the vehicle, its
capacity, and its speed:

class vehicle
{
string make;
int capacity;
float speed;
};

A newly-defined class becomes a new type. Thus
vehicle is now a data type within the language in
a fashion analogous to an integer or real data type.
Object classes may be stored in a library that can
be drawn upon in order to write a simulation; this
enhances the possibility of re-use of objects across
models.

4.2 Creating Objects

A created object is said to be an “instance” of a class.
Just as in the above example capacity is an instance
of type int, an instance of the class vehicle might
be obtained by:

Bischak and Roberts

vehicle fork_truck;

where fork_truck is one object instance from the
class of vehicles.

Instances can be obtained statically (where the lan-
guage permits) or dynamically. The previous exam-
ple is an illustration of a statically created object,
obtained when the instantiation occurs and continu-
ing until the context is destroyed. Instances of ob-
jects may be created dynamically in a fashion similar
to the use of the “new” construct in Pascal or “mal-
loc” in C. In Pascal or C, an object created with the
“new/malloc” function is a representative of the data
type referred to with the memory management func-
tion. The same is true in an object-oriented language.
One construct to create a fork_truck dynamically
might be:

fork_truck = new vehicle;

This construct causes an object of the class vehicle
to be created and assigned the name fork_truck. In
this case, fork_truck may be a “reference” to the
object.

4.3 Using Other Objects

Often in simulation, one object is similar to another.
For example, an AGV is a vehicle but is somewhat dif-
ferent from a fork-truck in its use, so that instances of
AGYV cannot be created from class vehicle defined
above. AGVs need their own class. It would be ef-
ficient and more error-resistant if we could form the
AGYV class by modifying the design of the vehicle
class. Re-use of a “parent” class in this way is called
“inheritance.” Inheritance is one of the foundational
ideas of object-oriented software.

4.3.1 Inheriting From One Parent Class

If a new class you wish to create has similarities to a
previously-defined class, you can exploit that fact and
avoid duplicating your efforts. For example, suppose
you wanted to model vehicles that were restricted to
operating in aisles. Thus you might use the following
description:

class fixed_path
{
string make;
int capacity;
float speed;
float xloc, yloc;
float distance();
h



Object-Oriented Simulation

where the function distance() computes some rect-
angular distance based on aisles and the location is
given by (xloc, yloc). But this description includes
all the properties of a vehicle, which we have previ-
ously described. Taking advantage of that prior de-
scription and “inheriting” its properties, one might
then use the description:

class fixed_path: vehicle
{
float xloc, yloc;

float distance();
};

with the understanding that now the fixed_path
class is derived from the vehicle class.

In a more complicated (and realistic) example, you
may be interested in designing an AGV class and real-
ize that the simulation library you are using already
has a vehicle class for vehicles such as fork-trucks.
You know that vehicles have a “pick up load” func-
tion and your class for AGVs will have a “pick up
load” function also. You could create a “superclass”
called conveyance that has all the data and func-
tions of general conveyances. The three classes can
then be set up in a hierarchical structure so that when
you create your AGV class, you call it a “subclass” of
conveyance. Immediately and with no further work
your AGV class has inherited the component data and
functions of a conveyance. You can then alter the
inherited functions to make them appropriate for an
AGV (this is called “overloading”, meaning “loading
over the previous or default meaning”) or add data
or functions as required for the special properties of
an AGV. The superclass is then the “parent” class
for both the vehicle and AGV classes.

4.3.2 Multiple Parents

It is possible in certain OOS languages such as those
based in C++ to allow a class to have more than
one parent class. Thus, for instance, an AGV could
be considered both to be a conveyance (because it
moves loads) and to be a resource (because it can
become idle, perhaps needs to be recharged, etc.) and
to have the properties of each (a conveyor might be
considered to be a conveyance but not be considered
a resource; a fixed machine would be a resource but
not a conveyance). This may be useful if, for exam-
ple, different statistics are gathered concerning con-
veyances and resources, and we want to gather both
on AGVs. If inheritance from more than one parent
class is possible in the language, portions of several
classes may be re-used to obtain a new class. This
use of more than one parent class is called “multiple
inheritance”.

197

To illustrate with a simple example, suppose
you have the fixed_path class that was de-
scribed previously. Now suppose you have a
resource_statistics class that collects resource
utilization statistics, such as percent of time in busy
and idle states. You might create a new class called
fork_truck by:

class fork_truck: fixed_path,
resource_statistics

{

int id_number;

string name;

enum {BUSY, IDLE} status;
int state();

};

where the class fork_truck “inherits” all the prop-
erties of fixed_path vehicles and the properties of
resource_statistics collectors. The id_number
and name are needed to know the identity of the
fork_truck, and the state() function determines
the status of the truck, which is needed both for
statistics collection and to establish the availability
of the truck.

With multiple parents, a problem can arise if a
name is not unique across parents. If two parents
have the same name for different properties, the OOS
language must have a way to resolve the inheritance
conflict or to request that the user make a resolution.

5 OO0OS: OBJECT PROPERTIES

We have spoken about the properties of objects rather
loosely. You should notice that object-oriented termi-
nology tends to treat an object’s data properties (like
integers) and functions in a similar fashion. They are
both viewed as properties. This perspective is used
because it gives the designer of object classes com-
plete flexibility over how a property is implemented.
For instance, consider the property time_busy of a
resource. A designer of a resource class may im-
plement that property by accumulating each unit of
time busy in a floating point variable. On the other
hand, suppose the designer has already implemented
the collection of time_idle and total_time in the
system for a resource. Thus time_busy might be
determined by a function that computes:

float time_busy(void)
{

return total_time - time_idle;

};

The manner of implementation is irrelevant to the
user, who only needs to know that a resource has a



198

time_busy (assuming all they need is its value and
do not need to change it).

5.1 Visibility

Since users of a class don’t need to know how things
are implemented, most object-oriented languages give
class designers control over what users need to see.
This is often called the “class interface.” The interface
describes what users of the class can access. For ex-
ample, in C++, the keywords “public” and “private”
are used in class descriptions, and only the “public”
properties become visible to the users of the class. A
class that is described as:

class simulation_time

{
private:
float t_now;
public:
float begin;
float current();
};

has “private” and “public” properties. An object’s
data will usually be private, since class designers gen-
erally do not want users to be able to change that in-
formation directly. Read-only access to information
is then provided by public functions. In this case the
interface to the user of the class becomes:

class simulation_time

{
public:
float begin;
float current();
3

Here users have read/write privileges for begin but
read-only for current(). Now if a user creates an
instance of the simulation_time class as:

simulation_time time;

they can refer to the properties of their time object
directly as:

time.begin = 0.0;
/* set beginning time to 0.0 */
queue_entry = time.current;
/* set queue_entry variable
to value of current time */

Most object-oriented languages permit variables
and functions to be referenced in the same format
(note we dropped the parentheses for current).

Bischak and Roberts

5.2 Scope

While the visibility of object properties relates to
what the user can access, there is also the question of
scope. In traditional programming languages scope
refers to the visibility of a variable or function in or
out of its procedural context, whereas in an object-
oriented language scope will include reference to an
object context. The most common scope differenti-
ation with respect to objects relates to instance and
class variables.

5.2.1 Instance Variables

Each instance of an object class has its own variables,
which are usually declared as private data. For ex-
ample, each instance of a fork_truck has its own i.d.
number and name. A user may have access to the i.d.
and name through public functions as in the following
description:

class fork_truck

{
private:
int id_number;
string name;
public:
int id_number();
string name();
}

Here id_number and name are “instance” variables,
and each fork_truck object will have its own
id_number and name.

5.2.2 Class Variables

Sometimes a variable is a property of all the objects
in a class. Such variables are “class” variables. As
an example, consider how the i.d. number for the ob-
Jects from the fork_truck class are established. We
would like to keep some variable such as “number”
visible to all the objects in the fork_truck class.
That way, when assigning an i.d. for a new object,
we can be certain not to duplicate the i.d. of another
object from the class. For instance, when an object
from fork_truck is being created, we would like to
do the following:

id_number = number + 1;
/* set the id for this object */
++number;

/% recognize another object */

In such a case the variable number is a class variable
and we might recognize it in the class description as:



Object-Oriented Simulation

class fork_truck

{

int number;

private:
int id_number;
string name;

public:
int id_number();
string name();

};

One place a class variable is useful in simulation
is to seed the random number generators so they do
not all begin at the same place in the random number
sequence.

5.3 Object Creation and Destruction

Although we have described how to create objects
statically and dynamically, we have not described
how the class designer can affect the creation (and
destruction) of an object. Generally, whenever an
object is created the process of creation involves exe-
cution of a “constructor.” Whenever an object is de-
stroyed, a “destructor” is executed. Although object-
oriented systems usually provide a default construc-
tor and destructor for any class, class designers may
provide their own.

5.3.1 Constructors

A constructor could be used to assign a name to cre-
ated instances of the fork_truck class:

class fork_truck
{
int number = 1;
/* initialize to one! */
private:
int id_number;
string name;

public:

int id_number();

string name();

fork_truck(string id_name);
};

The function fork_truck() is the constructor, taking
a string argument, possibly implemented by:

fork_truck::fork_truck(string id_name)
{
copy(id_name, name);
/* copy id_name to name */

199

id_number = number++;
/* use and increment */

};

which sets the name and the i.d.

5.3.2 Destructors

A destructor is used to handle some kind of finaliza-
tion associated with the destruction of an object. For
example, upon destruction of a fork_truck, some re-
source statistics might be printed. A destructor for a
fork_truck might look like:

fork_truck:: “fork_truck()
{
resource.print();
/* print statistics on this object */

};

Destructors provide a convenient means of cleaning
up when the object is destroyed.

5.4 Polymorphism

When we think about the behavior of objects, we may
want different objects to employ the same behavior.
For example, fork_trucks and stacker_cranes may
both have the ability to pick up and deliver unit loads.
Perhaps the function pick_up() should apply both to
fork_trucks and to stacker_cranes. The ability to
make different objects appear to do the same thing is
called polymorphism.

Much of arithmetic in procedural programming is
polymorphic. For example, two integers or an integer
and a float are both acceptable addition operands.
The addition operator (and other operators) works
for many combinations of atomic data objects.

The same should be true for functions. For in-
stance, it would be convenient if the square root func-
tion, sqrt(), was defined for integers as well as for
floats. Then sqrt(2) would have as much meaning
as sqrt(3.2). (It doesn’t in most programming lan-
guages, even though it is a natural thing to do.)

The ability of an object-oriented program to inter-
pret what function to call at run-time, rather than
resolving the call at compile-time, is related to the
concept of “dynamic binding.” With dynamic binding
the actual function called depends on the argument
given at run-time rather than the type of a pointer or
reference. Dynamic binding, also called “late bind-
ing,” is a major contributor to polymorphism since
the actual behavior of a function is determined only
after the arguments are known.



200

5.4.1 Function Overloading

The use of the same function name to do something
similar to different object classes is called “function
overloading.” Generally all that is needed is that the
function have the appropriately specified parameters.
Thus if the appropriate functions are declared in the
complex class, the following would work:

1]

double d 4.8;
double t = sqrt(d);
/* show sqrt for a double */
complex ¢ (1.0, 3.4);
complex z = sqrt(c);
/* show sqrt for a complex */

Here the name sqrt() is overloaded but performs a
similar function on different object types.

5.4.2 Operator Overloading

Operators can be similarly overloaded to accept ob-
ject classes as operands. For example, again assume
complex is a user-defined class, but that the + op-
erator is “overloaded” to accept complex objects as
operands. Thus,

complex a (1.0, 4.0), b (3.6, 3.2);
complex ¢ = a + b;
/* add two complex numbers */

Operator overloading and operator definition facil-
ities generally have limited use in simulation. How-
ever, one might find it convenient to have a time scale
operator that converts common time units to a stan-
dard internal time. Thus end users could write an
activity time as 3 hr or 180 min or .125 day at vari-
ous points in the model.

6 COMMUNICATION AMONG OBJECTS

Throughout the preceding we have assumed that
communication among objects takes place through
the standard practice of function calls or variable
fetching. Some object-oriented languages such as
Smalltalk-80 provide for “message passing” as a more
general way to communicate. When object-oriented
programs in these languages execute, the objects
send, receive, and interpret messages. For instance,
a message from a unit load object may be sent to a
fork truck object that it is ready to be picked up. The
fork truck object will receive the message, interpret
it, and act as it deems appropriate: it may respond
directly, queue the message, or reply that it is busy
and can’t serve the sender.

Bischak and Roberts

In a message-sending environment, the sender
doesn’t tell the receiver how to interpret the mes-
sage or what to do. The receiver will similarly act
independently. The set of messages to which an ob-
ject can respond is called a “protocol” and generally
involves the functions contained in the object (just
like a function call). Sometimes the functions are
called “methods” to describe how an object responds
to messages.

The message-passing paradigm may be more natu-
ral for a beginning programmer because it allows you
to avoid thinking in terms of functions, variables, op-
erators, and so forth. For experienced programmers
it may be awkward to talk about 3 + 4 as the ob-
ject 3 receiving the message + with the argument 4
(which is another object), but outside mathematically
operations, message passing is a useful abstraction of
communication among objects.

7 SIMULATION WITH OBJECTS

While the primary contribution of object-oriented
technology to simulation is in the modeling orienta-
tion, there are several issues of specific concern to sim-
ulation. Generally speaking, simulation involves com-
munication among objects over simulated time. It is
convenient to talk in terms of discrete-event simula-
tion, although this discussion easily extends to con-
tinuous or combined simulation.

There are three key questions that are a source of
controversy in object-oriented simulation. They are
(1) the treatment of processes, (2) the control of sim-
ulation time, and (3) the collection of statistics.

7.1 The Treatment of Processes

Simulation processes are familiar to everyone who
does simulation modeling. However, a process in sim-
ulation has two interpretations, one of which is com-
mon in queuing simulations and the other in com-
puter performance analysis.

In queuing, a process is a network of queues and ac-
tivities through which pass transactions (also called
entities or customers). As a transaction works its
way through a network, it encounters queues where
it must wait for service, and it encounters activities
where it is served. In both cases simulation time
advances—for an unpredictable amount of time in
queues and for a predictable (usually by a known ran-
dom variable) amount of time in activities. Here the
process is the network. The network itself could be
regarded as a process object that contains permanent
objects for its nodes and branches. The transaction
objects would be temporary, since they arrive and



Object-Oriented Simulation

leave. This first process view corresponds to network
simulation models such as those of GPSS, SLAM, and
SIMAN. In a sense the network has global scope while
individual transactions have local scope and proper-
ties. The relation between objects and process are
that the objects low through the process.

The second process interpretation argues that pro-
cess should be a property of the object. Such a view is
offered by Simula and its successors. A process could
be viewed as a function that can consume simulation
time. Thus an object could act out a process just as
it executes a function. However, its actions would
depend on the advancing of simulation time. For
instance, a given object could be running (utilizing
time), idle (waiting to be activated), or terminated
(not on the simulation clock). When an object con-
tains its process in this manner, that object is able to
act independently. Even in a queuing network, trans-
actions could contain their own routing (process).

The value of permitting an object to possess its
own processes is that processes can be regarded as a
property of the object. Thus processes are encapsu-
lated, they can be inherited, and, in general, a process
is treated just like a function except that the execu-
tion of that “special” function can consume simula-
tion time.

7.2 The Control of Simulation Time

Simulation time is typically kept centrally in a simu-
lation, since synchronization with respect to a single
clock is a key feature of a computer simulation. In
an OOS model, time can be managed throughout the
simulation within a single time object which would
advance time and activate processes or call functions.

Another approach is to permit individual objects
to control their own time. Thus an object would exe-
cute and advance its own simulation clock. Of course,
all these object clocks would have to be synchronized
with respect to some central clock, but that would
only be done periodically. If a simulation model can
be divided up into objects and objects can manage
their own time, then there is the possibility of “par-
allel simulation,” which we discuss in the next section.

7.3 The Collection of Statistics

As with the control of simulation time, statistics col-
lection could be delegated to objects or dealt with
centrally. Most simulation languages are written in
a procedural language, so there is a tendency to fo-
cus on the functionality of statistics collection with
the attendant statistics accumulation and display of
tables and histograms. Centralizing statistics collec-
tion simplifies the creation of statistical methods, so

201

that one function for computing a mean or a standard
deviation can be applied to a variety of statistical in-
terests.

On the other hand, decentralization of statistics
collection to the object has its advantages. If statis-
tics collection is done in an object, polymorphism can
be accomplished since what appears to be a similar
function can be obtained across objects. For example,
the mean utilization of vehicles, fork trucks, AGVs,
and so forth could be obtained in the same fashion:

fork_truck.utilization

or

agv.utilization

or
vehicle.utilization

would provide the same functionality.

8§ PROBLEMS WITH OBJECT-ORIEN-
TED SIMULATION

While this tutorial has explored some of the poten-
tial of object-oriented simulation, the approach is not
without some drawbacks. Perhaps foremost among
the difficulties with OOS is the fact that it represents
a major paradigm shift from the “usual” procedu-
ral orientation. In simulation we are concerned with
what happens among objects because most simula-
tion languages take that orientation. This might be
called a procedural orientation and, in fact, most lan-
guages permit only procedural extension, such as call-
ing C or FORTRAN subroutines. Allowable changes
to the basic object representations are very limited
and are often restricted to changes in the variables
associated with the transactions or globally associ-
ated with the model. Typically, the ability to change
basic object representations is held by the software
house.

Object-oriented simulation means that the user
must now become a kind of language designer. No
longer will the user have a set of pre-defined objects
to employ; instead, there will be tools for crafting
one’s own objects. The user must not only know how
to employ the objects but must know how to describe
classes and implement them. The user must carefully
consider the objects to be created as well as their use.
Furthermore, the object orientation tends to demand
that everything be represented as objects. Sometimes
it’s not easy to think of a queue as an object contain-
ing objects or a server as an object servicing objects
in a queue. A good deal of time must be spend in



202

OO0S just deciding what the object classes are and
how they are to be used. Such a responsibility may
be a burden.

A related issue is object management. Since users
have the responsibility of describing and creating ob-
jects, they also have object management responsibil-
ities. Two of the more complicating issues are the
“gone/forgotten” problem and “garbage collection.”

As an example of the first problem, suppose you
have a reference to an object. In the process of han-
dling the object, you may destroy the object but not
the reference (“gone but not forgotten”) or you may
destroy the reference but not the object (“forgotten
but not gone”). Such situations can create serious
memory and storage problems. Many users don’t like
to deal with such problems.

Object management also means that the user often
must keep a tidy model by getting rid of unneeded
objects. This responsibility is often called “garbage
collection” and it represents a very difficult problem.
Most users don’t like to deal with simulation details
like file management. Object management can be
even more complicated since more complicated struc-
tures like objects now exist.

Not every OOS provides a means of dealing with
these problems. Hopefully better garbage collection
algorithms and technology will reduce this burden in
the future.

Finally, dynamic binding can be a curse as well
as a benefit. Sometimes late binding slows execu-
tion, and this can be exacerbated by message pass-
ing. Late binding places additional responsibility on
run-time software support to identify the appropri-
ate properties (variables and functions) to be ob-
tained. Message passing can be slower than func-
tion calls or variable fetching. Thus execution speed
of a simulation can be decreased beyond acceptable
limits. However, many object-oriented programming
languages are hybrid combinations of procedural ap-
proaches combined with the object orientation and
retain some of the efficiencies of traditional program-
ming language implementations.

9 POTENTIAL FOR OBJECT-ORIENTED
SIMULATION

While object-oriented simulation technology is just
beginning to flourish, its potential is very great. At a
minimum, it can be expected that “objectness” will
be added to existing simulation languages to some
extent as a means of offering extensibility. Most sim-
ulation languages have some form of procedural ex-
tension via programming. By adding object-oriented
facilities, these languages can provide data abstrac-

Bischak and Roberts

tion so that users can add their own objects to exist-
ing simulation procedures.

There are four areas in which the object orientation
has special potential. First is in the area of graphical
representation. Objects in an object-oriented simula-
tion tend to represent “real-world” entities and they
“encapsulate” these real-world behaviors. An object-
oriented simulation model has a close correspondence
to what one might “see.” Hence, a graphical represen-
tation can have an almost one-to-one correspondence
with the objects in the simulation. Furthermore, dur-
ing execution such a correspondence can produce a
very convenient basis for animation. Because the
object orientation requires the user to design object
classes, the design of graphical icons or sprites corre-
sponding to those objects can be a “property” of the
class. When the simulation executes, the execution
may be directly reflected in an animation.

A second area where the object orientation has spe-
cial potential in simulation is in the combination of
simulation and artificial intelligence. Objects encap-
sulate their functionality and that functionality could
include “intelligence.” To the extent that programs
can exhibit learning and adaptability, objects can per-
form the same tasks. A resource in a simulation lan-
guage could learn to determine the importance of per-
forming various tasks in providing service and even-
tually create an algorithm or neural net or something
that allows it “intelligence” in what it does. The en-
capsulation of objects encourages exploration of these
properties in the design of simulations.

A third area where the object orientation is being
actively explored is in the parallel execution of simu-
lations. Again, because of the encapsulation of infor-
mation needed for an object, individual objects could
be assigned their own processors to execute their be-
havior. Dividing a system up into objects generally
means that those objects behave somewhat indepen-
dently. It is this independence among objects that
gives rise to the potential for parallel execution. The
speed of a simulation could be greatly accelerated by
exploiting such parallelism. Research and develop-
ment is currently underway to formalize this approach
(e.g., Sim++).

Finally, the notion that users can build their own
simulation elements and then use those elements gives
rise to the possibility of simulation software engineer-
ing. In programming, a systems programmer pro-
vides tools for applications programmers. Through
object-oriented technology, a new category of simu-
lation professionals may emerge that develop simula-
tion tools for simulation applications engineers. Cur-
rently such expertise only resides at simulation soft-
ware houses that have access to the internal work-



Object-Oriented Simulation

ings of simulation technology. Object-oriented simu-
lation languages would make that capability generally
available. One could envision companies with simula-
tion software engineers that develop objects and their
functionality for use by others who require specific
simulation modeling facilities. This would provide
the opportunity for greater “vertical-specific” simu-
lation facilities such as those now gaining popularity
in the areas of manufacturing and materials handling.
With object-oriented simulation, companies and indi-
viduals would have the opportunity to develop their
own simulation technology.

REFERENCES

Belanger, R., and A. Mullarney. 1990. MODSIM II
tutorial, Revision 8. La Jolla, California: CACI
Products Company.

Birtwistle, G.M., O.J. Dahl, B. Myhrhaug, and
K. Nygaard. 1979. Simula begin, Second Edition.
Lund, Sweden: Studentlitteratur.

Goldberg, A., and D. Robson. 1989. Smalltalk-80:
the language. Reading, Massachusetts: Addison-
Wesley.

Lippman, S.B. 1991. C++ primer, Second Edition.
Reading, Massachusetts: Addison-Wesley.

Lomow, G., and D. Baezner. 1990. A tuto-
rial introduction to object-oriented simulation and
Sim++. In Proceedings of the 1990 Winter Simula-
tion Conference, eds. O. Balci, R.P. Sadowski, and
R.E. Nance, 149-153. Institute of Electrical and
Electronics Engineers, San Francisco, California.

Pegden, C.D., R.E. Shannon, and R.P. Sadowski.
1990. Introduction to simulation using SIMAN.
New York: McGraw-Hill.

Pritsker, A.A.B. 1974. The GASP IV simulation lan-
guage. New York: John Wiley and Sons.

Pritsker, A.A.B. 1986. Introduction to simulation and
SLAM II, Third Edition. New York: Halsted Press.

Russell, E.C. 1989. Building simulation models with
SIMSCRIPT II.5. La Jolla, California: CACI
Products Company.

Schriber, T.J. 1991. An introduction to simulation
using GPSS/H. New York: John Wiley and Sons.

Schruben, L. 1991. SIGMA: a graphical simulation
system. South San Francisco, California: Scientific
Press.

Winblad, A.L., S.D. Edwards, and D.R. King. 1990.
Object-oriented software. Reading, Massachusetts:
Addison-Wesley.

Wirfs-Brock, R., B. Wilkerson, and L. Wiener. 1990.
Designing object-oriented software. Englewood,
New Jersey: Prentice Hall.

203

AUTHOR BIOGRAPHIES

DIANE P. BISCHAK is an assistant professor in
the Department of Industrial Engineering at North
Carolina State University. She received the B. Mu-
sic and the M.S. and Ph.D. degrees in Industrial and
Operations Engineering at the University of Michi-
gan. Her research interests are the statistical analy-
sis of simulation output and the use of object-oriented
languages in the simulation and modeling of material
handling systems. She is a member of the TIMS Col-
lege on Simulation and a member of ORSA, IIE, and
ACM.

STEPHEN D. ROBERTS is professor and head
of the Department of Industrial Engineering at North
Carolina State University. He received his B.S.I.LE.,
M.S.I.E., and Ph.D. degrees at Purdue University. He
is the Modeling Area Editor for the Transactions on
Modeling and Computer Simulation, an Associate Ed-
itor for Management Science, and an Associate Editor
for Simulation. He has served as Proceedings Editor
and Program Chair for the Winter Simulation Confer-

ence and is the TIMS College on Simulation member
of the Board of Directors of WSC.



