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ABSTRACT

Genichi Taguchi has made an innovative contribution
to quality planning activities through the integrated
use of loss functions and orthogonal arrays. In this
tutorial, we focus on the improvement and implemen-
tation of certain of these techniques in the simulation
arena. The orthogonal arrays advocated by Taguchi
are related to classical experimental designs, which
have played important tactical roles in the explo-
ration of simulation model output and the construc-
tion of mathematical metamodels for the simulation
response surface. However, the loss function and the
associated robust design philosophy provide fresh in-
sights into the process of optimizing or improving the
simulation’s performance. We use examples to illus-
trate concepts such as the simultaneous treatment of
variability and mean of performance measures, strate-
gies for achieving system robustness, and implemen-
tation of noise (uncontrollable variation) through fac-
torial designs. We also discuss relationships to other
issues in designing and analyzing simulation experi-
ments, such as response surface metamodels and vari-
ance reduction. The tutorial is meant for both prac-
titioners and researchers. We assume a knowledge
base at the level of Chapters 11 and 12 of Simulation
Modeling and Analysis (Law and Kelton, 1991), but
will review essential elements in the presentation.

1 INTRODUCTION AND SCOPE

The exploration of simulation models and metamod-
els of their response surfaces has been assisted by ex-
perimental design methods and techniques developed
specifically for simulation such as variance reduction
and perturbation methods. We illustrate how tech-
niques drawn from Taguchi’s strategy for process im-
provement, developed for the purposes of design for
quality in manufacturing, are applicable in simulation
settings as well.
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Taguchi’s philosophies and teachings have sparked
a great deal of both criticism and support in quality-
engineering and related circles. Kackar (1985), Pig-
natiello (1988) and Ramberg and Pignatiello (1985,
1991), are just a few of the many articles in the litera-
ture that reflect this mixed reaction. One of Taguchi’s
notable contributions has been his strategy for incor-
porating variability measures into the evaluation of
alternative systems. He pioneered this approach be-
cause he found that it was often more costly to con-
trol causes of manufacturing variation than to make
a process insensitive to these variations. We refer the
reader to Ramberg (1989) for manufacturing exam-
ples.

Taguchi’s three-stage approach for quality improve-
ment activities consists of system design, parame-
ter design, and tolerance design. System design is
the application of scientific and engineering knowl-
edge to produce a functional prototype model. This
prototype model defines the product/process design
characteristics (parameters) and their initial settings.
The goal of parameter design is the identification of
settings that minimize variation in the performance
characteristic and adjust its mean to an ideal value.
Tolerance design is a method for scientifically as-
signing tolerances in order to minimize total product
manufacturing and lifetime costs. In the simulation
context, system design might correspond to building
and validating a functional model of an existing real-
world system or a prospective new facility, process, or
product. Parameter design would be appropriate for
attempting to “optimize” or “improve” performance
of the simulation model by judiciously selecting set-
tings for some of the decision factors in the model.
Tolerance design can be viewed as a special case of pa-
rameter design for a single system configuration, with
the goal of characterizing the simulation response and
its sensitivity to randomly distributed inputs.

In Section 2, we discuss the concepts common to
all three stages of the improvement process: perfor-
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mance measures and their evaluation, the classifica-
tion of controllable and uncontrollable variation, and
experimental designs and analysis. Analytic meth-
ods, Monte Carlo distribution sampling, and a de-
signed experiment approach are then used to illus-
trate tolerance design for an electrical circuit in Sec-
tion 3. Static systems such as these have been the
focus of tolerance design activities, but this simple
example offers fresh insight into the process of meta-
model building and system optimization. In Section
4, we present an example of parameter design for a
dynamic stochastic simulation model. Our conclu-
sions are provided in Section 5.

2 THE TAGUCHI FRAMEWORK

2.1 Performance Characteristics

The first step in designing an experiment is to iden-
tify the performance characteristic(s) of interest. In
queueing system simulations, for example, the steady-
state mean waiting time of customers in the queue is
one widely-used measure. Percentiles of the steady-
state distribution of waiting time are other perfor-
mance characteristics which have received attention.

In order to determine the degree of satisfaction
with the performance characteristic, an ideal state
must be specified for comparison purposes. Such an
ideal state is called the target value for the perfor-
mance characteristic. Three types of targets, and as-
sociated goals, are considered. First, one could strive
to make the performance characteristic as small as
possible. For example, in a manufacturing simula-
tion, one might seek to identify the system which min-
imizes the (average) time between order arrival and
delivery of the product. Second, one could strive to
make the performance characteristic as large as pos-
sible. For example, the goal of exploring a model of a
nuclear power plant which runs until failure (a termi-
nating simulation) might be to identify systems where
the expected time until failure is quite large. Finally,
one could strive to make the performance character-
istic as close to some ideal state as possible. An eco-
nomic simulation model, designed to assist the Fed-
eral Reserve Board in manipulating money supplies
and interest rates to exercise control over the level of
inflation, would fall into this category.

In systems where some stochastic variation is
present, the performance characteristic will exhibit
random fluctuation or variation around its target
value. The cost of variation in the performance char-
acteristic is thus something which must be measured.
Taguchi advocates using loss to society, and has been
commended for looking beyond manufacturing costs
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and considering the costs incurred by end-users of
the product. The ezpected loss is the expected value
of the monetary losses that an arbitrary user of the
product is likely to suffer during the product’s life
span due to performance variation. Unfortunately,
it is usually difficult or impossible to specify an ex-
act form for the underlying loss function. Instead,
a quadratic loss is often utilized. Letting Y denote
the performance characteristic (a random variable),
7 denote the target value, and £(-) denote the loss
function, we have

LY)=K(Y —1)? (1)

for some constant K. (Loss is assumed to be zero
when Y achieves the ideal state.) It follows that the
expected loss

L = E[Y)]=KE[Y -7)? (2)
= K [Var[Y]+(E'[Y]—T)2
= K[MSE)

Quadratic loss functions have been used in a vari-
ety of other settings, e.g., minimizing mean squared
error loss is the basis for linear regression. It is also
intuitively appealing: small deviations from the tar-
get value 7 have little impact on the loss, while large
deviations from 7 will result in extremely large losses.
Thus, in the context of system evaluation, the ex-
pected loss will tend to be low if most noise in the sys-
tem inputs is not transmitted to response, and tend
to be high for systems where the response variability
is large.

Despite its apparent simplicity, the concept of ex-
pected loss redefines optimality in the context of sim-
ulation optimization. Attaining the ideal state in ex-
pectation is neither sufficient nor necessary for op-
timality: joint consideration of the mean and wvari-
ability of the response is necessary. In contrast, the
traditional emphasis of output analysis for simulation
optimization efforts has been the valid estimation of
expected performance, with variability viewed as a
nuisance to be minimized as much as possible.

2.2 Parameter Design versus Noise Factors

In order to achieve systems/products with little vari-
ation in performance characteristics, several steps are
necessary. First, one must identify factors in the sys-
tem which are anticipated to affect the system re-
sponse. Factors are classified as parameter design
factors (hereafter called parameters) or noise factors,
where the noise can result from sources either internal
or external to the system. In a real-world setting, the
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parameters are all those over which it is possible to
exercise control, while the noise factors are not eas-
ily controllable or controllable only at great expense.
Although all factors are truly controllable when the
system under investigation is a computer simulation,
the classification into parameter and noise factors can
still be made on the basis of their controllability in
the real-world system for which the simulation is a
model.

2.3 Experimental Design and Analysis

Potential model configurations result from changing
the settings of some or all parameters in the system
(simulation model). Sometimes there may be man-
agerial reasons for limiting investigation to a few al-
ternatives. For example, the simulation might have
been written to assess which station within a multi-
server queueing network would yield the greatest im-
provement in processing time via the addition of an-
other server. If, due to budgetary constraints, these
are the only alternatives which can be considered (at
least in the short term), then simulations of all alter-
natives could be conducted and evaluated to deter-
mine which is preferable.

Alternatively, experimental design techniques can
also be utilized to observe how the expected value
of the performance measure varies across several dif-
ferent system configurations. If the parameters are
quantitative, then experimental design and analysis
can lead to mathematical models of the simulation
model (metamodels) of the system response. Meta-
models provide much more information about the un-
derlying system than haphazard investigation of a few
alternatives. Thus, if the goal of the analyst is to
optimize or improve the model’s performance, and
flexibility exists in the settings of the parameter lev-
els (as in prospective studies), then building a meta-
model is appropriate. The actual number of configu-
rations studied, and the form (linear, quadratic, etc.)
of the resulting metamodel are dependent on the ex-
perimental design chosen.

Traditionally, the parameter space has been the fo-
cus of experiment design, and analysts have assumed
that all randomness between replications at a single
design configuration is due to the influence of ran-
dom, uncontrollable noise factors. Taguchi, on the
other hand, incorporates the identifiable noise fac-
tors into the experimental design by crossing a pa-
rameter matrix with a noise factor matrix. Output
from each configuration in the parameter space (com-
monly a simulation run) is then calculated across the
noise factor space, in order to determine the param-
eter levels which result in the smallest sensitivity of
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the response to the noise factors. For example, con-
figurations C; and C» in Figure 1 have the same mean
response resulting from variation of the noise factor
around its mean puy. However, much less of the noise
variability is transmitted to the response for C; than
for Cl .

Response
T—

T
UN
Noise

Figure 1: Response Sensitivity to Noise

Taguchi advocates the use of orthogonal arrays for
the parameter and noise designs, and the use of an
appropriately selected signal-to-noise ratio to system-
atically evaluate the tradeoffs between a performance
characteristic’s variability and its deviation from the
target value. These tactical issues are the basis of
most of the controversy concerning Taguchi’s meth-
ods (Pignatiello and Ramberg, 1991). We implement
the Taguchi strategy using the more conventional fac-
torial designs. Typically, either two or three levels are
chosen for each parameter: designs with two levels are
simpler and require fewer experimental runs, but de-
signs with three levels allow one to model quadratic
as well as linear effects. Complete factorial designs
(CFDs) allow estimation of all interaction effects (or
all but one if a single replicate is used). Fractional
factorial designs (FFDs) allow one to reduce the num-
ber of experimental runs if one is willing to assume
that high order interactions are less important. While
Taguchi combines the mean and variance of the per-
formance characteristic into a signal-to-noise ratio,
the drawbacks to that approach are well-documented
in the literature (Box, 1988). We thus advocate joint
analysis of the two measures.

3 TOLERANCE DESIGN

Ideally, tolerances for manufactured products are
set to reflect the amount of variation in the perfor-
mance characteristic anticipated to result from un-
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controllable variation in the manufacturing process
and component parts. In the simulation context, we
can view tolerance design as a means of understand-
ing system performance for a single configuration of
parameters. Random fluctuation in the response is
then attributable solely to noise factors.

Taguchi breaks down tolerance design into three
phases (D’Errico and Zaino, 1988). In the first phase,
system evaluation, a metamodel of the system re-
sponse is constructed and the overall mean and vari-
ance of the response are determined. In the second
phase, noise factor assessment, the sensitivity of the
response to variation in each of the noise factors is de-
termined. As we will show, these phases can be im-
plemented using Monte Carlo distribution sampling
or, as Taguchi advocates, designed experiments. The
Taylor series approximation method is another alter-
native when the system model is analytical.

The final phase of tolerance design is system opt:-
mization. If some parameters are no longer consid-
ered fixed (i.e., alternative configurations are possi-
ble), then noise factor assessments can be combined
with cost information to determine whether or not ad-
justments to the system will decrease expected loss.

3.1 Initial Circuit Configuration

Consider an electrical circuit with a performance
measure of current I (in amps) and a target 7 = 10
amps. The analytical expression for the system is:

[=— YV (3)
VR?+ (2rfL)?

where V' is the voltage (in volts), R is the resistance
(in ohms), f is the frequency (in Hertz), and L is
the inductance (in Henries). In the first phase, sys-
tems design, L and R were specified as parameters of
the circuit configuration. In the second phase, their
nominal values were determined as part of the pa-
rameter design process in order to satisfy the appli-
cation. Finally, in tolerance design, the variability
of these components around their nominal values is
evaluated. Thus L and R are treated as noise factors.

Table 1: Component Distribution Models

Percent
Component | Mean | Std. Dev. | of Mean
L 0.004 0.0008 20%
R 10 1.0 10%
\Y 100 5.0 5%
f 50 5.0 10%
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V and f are also sources of noise: their distributions
should be established from information on the envi-
ronment in which the circuit will operate.

We assume that all four factors are mutually in-
dependent, although the components might well be
correlated due to the manufacturing process. Means
and standard deviations for the factors are shown in
Table 1. For the Monte Carlo approach, we also as-
sume that the distributions are Normal.

3.2 System Evaluation

We first illustrate system evaluation using analyti-
cal methods. Letting H(V, R, L, f) denote the right-
hand side of Equation (3) and g denote the vec-
tor (pr, MR, pv,pys), Oone can approximate the per-
formance characteristic I with the following Taylor
series expansion:

OH
I = H(pr,ur,pv,pg) + (L= pr) 5=+
u
OH 0*H
+(f—Hf)W +(L—HL)2—3L2 +...
b B
0*’H
+(f—lif)3ﬁ + Error
m

Rearranging terms, we have a linear metamodel for
the mean response as shown in Equation (4). (Gen-
eralization to higher-order models would be possible
if higher-order moments were calculated.)
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Solving for the derivatives and then substituting
the appropriate component characteristics of Table 1
yields the metamodel in the first column of Table 2.
Table 2 also provides the estimates of the system’s
overall mean and variance obtained by evaluating the
Taylor series approximations below.

pur = H(ur,pr,pv,pys) (5)
o2~ (1Y 2 ary?
I~ \az) |t + \3r

H I
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Table 2: System Evaluation for Circuit Model

| Metamodel

| Mean | Variance

Taylor Series

I ~9.922—-38.56L —0.9762R + 0.0992V — 0.00308 f 9.922 1.200

Monte Carlo (Metamodel)

I~10.325—35.150L — 1.002R + 0.1004V — 0.0039 f

10.018 1.257

Monte Carlo (Direct)

10.032 1.313

Designed Experiment

I~10.145—40.86L — 0.9853R + 0.1005V — 0.00329 f

10.014 1.225

Alternatively, system evaluation could be carried
out using observational data (from the real system)
or Monte Carlo distribution sampling in a simulation
setting. These are commonly used when analytical
models are not amenable to analysis, and may be par-
ticularly beneficial if higher-order models are desir-
able. Separate random number streams are used for
each component (which will assist in noise factor as-
sessment) and substituted into Equation (3) in order
to generate n values of the response, I; (1 =1,...,n).
A (linear) metamodel of the mean response is

I~ fo+5L+BR+ BV +fsF (7

where the s are the regression coefficients. By treat-
ing the regression coeflicients as constants, the follow-
ing estimates of the overall response mean and vari-
ance result:

pr % fo + Prpv + Bapr + Bapr + Bapr  (8)
of m B} + Biot + Brok + Biol + fiok  (9)
(Although the regression coefficients are actually ran-
dom variables, their variances are small relative to the
factor variances if n is large.) Alternatively, the re-

sponse mean and variance could be estimated directly
from the output:

#I%T

Il
I

n 1 n 2
2 .
;Ii, a,Nn_lz(I,—T) (10)

i=1

The metamodel constructed from a regression of
1000 simulated values of current on the associated
values for the four noise factors is shown in the sec-
ond row of Table 2. (The adjusted R? = 0.982, in-
dicating that the linear metamodel is a good fit over
the given ranges of component values.) Table 2 also
provides the estimates of overall system performance
computed both from the metamodel and directly.

We now demonstrate how system evaluation can
be carried out using a designed experiment. Two-
level designs are sufficient for fitting a linear meta-
model comparable to those from the Taylor series and

Monte Carlo distribution sampling analyses. Our de-
sign matrix (a 24! FFD, or ‘two-level half-fraction’)
is shown in Table 3; a coded level of ‘-1’ in a column
indicates that the corresponding factor is set at its
low level, while a ‘41’ indicates the factor is set to
its high level. The system configuration is summa-
rized in the treatment combination column. Here,
letters indicate which factors are set at their high
levels; all four factors are at their low levels in the
‘(1) row. (We remark that for this design matrix,
main effects and three-factor interactions are con-
founded, and two-factor interactions are confounded
with each other. A CFD could be used in order to
avoid this confounding and include the above inter-
action terms in the metamodel. We refer the reader
to Box, Hunter, and Hunter (1978) or Montgomery
(1990) for detailed presentations of factorial designs.)

Table 3: Design Matrix in Coded Levels

Trtmt Coded Levels
Comb. L R V F
(1) -1 -1 -1 -1
If +1 -1 -1 +1
rf -1 41 -1 41
Ir +1 +1 -1 -1
vi -1 -1 41 +1
Iv +1 -1 41 -1
Iv -1 41 41 -1
Irvf +1 +1 41 +1

The low and high levels must then be determined.
For two-level factorial designs, these levels are set to
one standard deviation below and one standard devia-
tion above the mean so that each of these discrete dis-
tributions has a mean and standard deviation equal
to the specifications. Table 4 gives the design ma-
trix in terms of these natural values, along with the
responses computed from evaluating Equation (3) at
the corresponding configurations. We emphasize that
all randomness has been removed from the experi-
ment: we control the levels of the noise factors rather
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Table 4: Results of Designed Experiment
Trtmt | Response: Natural Levels
Comb. I L R vV F
(1) 10.5026 | 0.0032 9 95 45
If 10.3807 [ 0.0048 9 95 55
rf 8.5931 | 0.0032 11 95 55
Ir 8.5714 | 0.0048 11 95 45
vf 11.5796 [ 0.0032 9 105 55
lv 11.5362 | 0.0048 9 105 45
v 9.5133 | 0.0032 11 105 45
lvrf 9.4387 | 0.0048 11 105 55

than allowing them to vary.

As for the Monte Carlo sampling approach, we
can construct a metamodel for current from Equa-
tion (7) and estimates of overall system performance
from Equations (8) and (9). These are provided in
the third row of Table 2. (The adjusted R? for the
fitted regression line was 0.994.) The results ob-
tained from the designed experiment are comparable
to those from the Taylor series expansion and Monte
Carlo distribution sampling methods.

3.3 Noise Factor Assessment

Assuming independence, the system variance is the
sum of the variances transmitted by each noise fac-
tor. From Equations (6) and (9), we see that these
transmitted variances are the product of the compo-
nent variance and the squared coefficient in the meta-
model.

The transmitted variance can be assessed directly if
Monte Carlo distribution sampling is used. All noise
factors except the one of interest are set to their re-
spective mean values, and a new set of response val-
ues are generated. The random number stream for
the component of interest is seeded as it was during
the system evaluation stage. The variance of this new
response data is an estimate of the variance transmit-
ted by the noise factor of interest.

The transmitted variances, in amps? and contri-
butions as percents of MSE, are presented in Ta-
ble 5. These results indicate that the inductor and
frequency noise factors are not important: their vari-
ability is not transmitted to variability in the re-
sponse. On this basis, one could simplify the system
model (over the given ranges of factor levels) and ap-
proximate Equation (3) by a functional relation of the
form I = V/R.

The importance/unimportance of the factors is not
the same as statistical significance/insignificance for
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the factors in the metamodels determined using re-
gression. The latter is largely dependent on sample
size: for sufficiently large n one will find all factors
to be significant (since the underlying system is non-
linear) while if n is small then it may be the case
that no individual factors are statistically significant.
Regardless of sample size, results from noise factor as-
sessment provide valuable information regarding the
attribution of variability in the response to the differ-
ent components.

3.4 System Optimization

The quadratic loss function means that losses will be
minimized when the response is equal to the target
value: in our example, when a circuit produces a cur-
rent I = 10 amps. The basis for system optimization
is the quantification of expected loss in dollars, so
the benefits of altering the initial system configura-
tion can be evaluated. For example, suppose that
the cost of a 4 amp deviation from the target is as-
sessed at $150.00 per unit. Substituting this into the
right-hand side of Equation (1) and solving for the
constant K yields K = $9.375 per amp? per unit.
The expected loss can then be evaluated from Equa-
tion (2) using estimates of yu; and o7 obtained in the
system evaluation phase.

Now suppose that enhancements to the system can
be made at some cost. For our example, two po-
tential upgrades are possible: the 20% inductor can
be replaced by a 5% inductor at an additional cost of
$2.00/unit, and the 10% resistor can be replaced by a
5% resistor at an additional cost of $1.00/unit. (Since
we have shown that a linear metamodel is reasonable,
we can assess the benefits of the upgrades separately.)
Each would reduce the variability of one component:
replacing the inductor would decrease o2 by a factor
of 16, while replacing the resistor would decrease 0%
by a factor of 4. The transmitted variances for these
components would also decrease by factors of 16 and
4, respectively. Thus, we can recompute the over-
all system variance for the circuit with an upgraded
inductor as follows:

of = Z“?,L + Ut2,R + Utz,v + atz,f
where the transmitted variances are those determined
in the noise factor assessment phase. Similarly, an
estimate of the overall system variance can be com-
puted for the circuit with an upgraded resistor. For
the transmission variances estimated using the de-
signed experiment, we find that the expected loss
remains at $9.10 if the upgraded inductor is used,
resulting in a net loss of $2.00 per unit. However,
upgrading the resistor decreases the expected loss to
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Table 5: Noise Factor Assessment for Circuit Model

Transmitted Variances (% of MSE)
Inductor (L) | Resistor (R) | Voltage (V) [ Frequency (f)
Taylor Serics 0.001_(00.0) | 0.953 (79.4) | 0.246 (20.5) ] 0.000 (00.0)
Monte Carlo (Metamodel) | 0.001 _(00.0) | 1.003 (79.8) | 0.252 (20.1) | 0.000 (00.0)
Monte Carlo (Direct) 0.001_(00.0) | 1.058 (80.5) | 0.241 (18.3) | 0.000 (00.0)
Designed Experiment 0.001 (00.1) [ 0.971 (79.3) | 0.253 (20.6) | 0.000 (00.0)

$6.82, for a net savings of $5.82 per unit. Thus, al-
though the relative improvement in the inductor is
greater than that of the resistor, only the resistor up-
grade is cost-effective.

3.5 Implications

First, we have shown the type of information that
it is possible to obtain using tolerance analysis.
This provides new insights into evaluation of sim-
ulation systems, namely the assignment of variabil-
ity in the response to variability in the noise factors
and the use of this information for system improve-
ment /optimization.

Second, we have shown that the designed experi-
ment gave comparable results to the other methods.
However, it has benefits over both. It can be used in
situations for which no analytical models are known,
or Taylor series expansions of analytical models are
difficult to compute. This is particularly true of com-
plex systems: indeed, simulation models are often
built because of the difficulty in obtaining analytical
results. The designed experiment also requires many
fewer runs than does the Monte Carlo distribution
sampling approach. The benefits of designed exper-
imentation are even more apparent when the “sys-
tem model” under investigation is itself a simulation
model, since each realization of system performance
correspond to results of a (potentially lengthy) run.

4 PARAMETER DESIGN

The system used for this application is a variation of
a dynamic, stochastic simulation model taken from
Law and Kelton (1991). We describe the problem in
Section 4.1, and discuss alternative model configura-
tions and design considerations in Sections 4.2 and
4.3. In Section 4.4 we discuss issues related to the
simulation metamodel and preparation of the simu-
lation output for analysis. Results are summarized
in Section 4.5: handouts containing more detailed re-
sults will be provided at the tutorial.

4.1 Initial Job Shop Simulation Model

A manufacturing shop consists of five groups of ma-
chines, and at present groups 1 through 5 consist
of 3, 2, 4, 3, and 1 identical machines, respectively.
Jobs are assumed to arrive at the shop according to
i.1.d. exponential interarrival times with a mean of
0.40 hours. There are three types of jobs, and arriving
jobs are of type 1, 2, or 3 with respective probabilities
0.3, 0.5, and 0.2.

Batch setup times, which we assume do not vary
by job type, are fixed at 0.07, 0.10, 0.075, 0.10, and
0.03 hours for machine groups 1 through 5, respec-
tively. Processing times are assumed to be indepen-
dently distributed 2-Erlang random variables. The
routings and mean processing times at a station dif-
fer by job type, and are provided in Table 6. For
example, jobs of type 1 are first routed to machine
group 3, where they require an average of 0.50 hours
each in processing. They then proceed to machine
group 1, and so forth. If a job arrives at a particular
machine group and finds all machines in that group
already busy, then the job joins a single FIFO queue
at that machine group.

Table 6: Job Processing Requirements

Job | Machine Groups | Mean Times (hrs),
Type | in Routing Successive Tasks
1 3,1,2,5 0.50, 0.60, 0.85,
0.50
2 4,1,3 1.10, 0.80, 0.75
3 2,5,1,4,3 1.20, 0.25, 0.70,
0.90, 1.00

4.2 Alternative Model Configurations

The above description represents only one possible
configuration of the stochastic job shop model, such
as might be constructed to determine whether an
existing job shop configuration would be capable of
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responding to the pattern of demand described. A
metamodel of this job shop simulation would provide
additional insights into the system performance, by
allowing the analyst to compare several different po-
tential configurations (e.g., by changing the number
of machines in one or more machine groups). Al-
ternatively, experimental design techniques could be
used to construct metamodels of the expected value
of the system (simulation model) response (Kelton
1988; Law and Kelton, 1991).

As a first step, the performance characteristic of
interest must be specified. We choose to examine the
time elapsed from a job arrival to the completion of
that job (hereafter referred to as the time in system)
for job type 3. The average, steady-state value of
this random variable will be our performance mea-
sure. This single measure was choosen over multiple
response variables to simplify the analysis for expo-
sition purposes. Job type 3 was selected because it
requires processing at all five machine groups.

The job shop model has several additional factors
which could be investigated in more detail. We list
several of these in Table 7, and classify each as ei-
ther a parameter (e.g., controllable variable in the
real system) or a source of noise (internal/external).
Although it is not the focus of this paper, it is impor-
tant to recognize that when improvement efforts are
an ongoing process, factors which are uncontrollable
in the short term may be considered parameters in the
long term. For our example, purchasing new equip-
ment may affect the mean and/or variability of the
required processing time, while maintenance sched-
uled off shift may reduce or eliminate the problem of
machine breakdowns. Even external noise, such as
the product mix, may be influenced in the long term
by pricing and advertising strategies.

4.3 Experimental Design

For exposition purposes, we limit ourselves to the
study of five parameter and two noise factors. The
parameters are the number of machines in the first
four groups (M;, i = 1,...,4) and a common batch
size B for all job type/machine group combinations,
while the noise factors (PJ; and PJ;) describe the
job mix. (PJ3 is fixed by the values of the other
two.) The remaining factors were fixed at the orig-
inal levels or distributions according to the problem
statement.

As previously discussed, we will use conventional
factorial designs. In our example with five param-
eter and two noise factors, a single replicate of a
2% complete factorial design (CFD) would require
25 x 22 = 128 experimental runs, while a 3* CFD
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Table 7: Potential Factors for Job Shop Model

Factor Description Classification
M; Number of machines Parameter
in group ¢
B;; Batch size for jobs of Parameter
type j at group i
T;; Time to process job of Noise
type j at group (Internal)
Sij Batch setup time for Noise
job type j at group ¢  (Internal)
ID; Time between break- Noise
downs of machines in  (Internal)
group 1%
D; Downtime for a ma- Noise
chine in group ¢ (Internal)

PJ; Proportion of jobs of Noise

type j arriving at the (External)
shop

TA; Interarrival time for Noise
jobs of type j (External)

would require 35 x 32 = 2187 runs. Clearly, a 3*
design imposes a much greater data gathering bur-
den than does a 2F design. We select instead a 25!
resolution V design for the parameter space, which
insures that main effects and two-factor interactions
are not aliased with one another, and augment it with
a centerpoint. (This allows us to assess lack-of-fit of
the linear model with many fewer runs than would
be required by a 3* CFD.) The augmented FFD for
the parameter space is crossed with a 22 CFD for the
noise space. A total of 68 runs are then required for
a single replication of the experiment.

The levels must then be set for each of the fac-
tors. Normally, the choice of noise factor level set-
tings is accomplished by first establishing their re-
spective mean and variability. For two-level factorial
designs, the levels are set to one standard deviation
above and one standard deviation below the mean (as
we did in the tolerance design example). However,
Kelton (1988) observes that the choice of parameter
level settings is not nearly so clear, and requires some
knowledge of how the system behaves. In general, set-
tings ought to be selected such that the response sur-
face contained within the parameter boundaries can
be described by a linear or quadratic equation. The
parameter/factor settings established for our example
experiment are shown in Table 8.
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Table 8: Factor Level Settings

| Low Center High

M, 3 4 5
M, 2 3 4
Parameters | M3 4 5 6
My 3 4 5
B 1 3 5
Noise PJ; 025 0.30 0.35
PJ, 045 0.50 0.55

4.4 Simulation Coding and Data Collection

A program for the system described above was imple-
mented in C++ and validated by a structured walk-
through. The simulation was designed so that ei-
ther independent or common random number streams
could be utilized. Decoupling the system means that
15 random number streams must be utilized.

The performance characteristic is the average
steady-state time in the system. Initially, the simu-
lation was run at a saturated design point for 25,000
simulated hours. Correlogram analysis indicated that
observations 900 apart were virtually independent.
This determined the truncation point for removing
the initial transient in the production runs.

The mean response for parameter configuration i
and noise configuration j, denoted by Yjj, is esti-
mated by the sample average of the output from the
corresponding run (after truncation). A measure of
the variability of the performance characteristic for
each design point is needed. Since the data are cor-
related, standard statistical measures are not appro-
priate. Instead, we compute an unbiased estimate
of ¢% by noting that observations 900 apart can be
considered virtually independent. Let Nj denote the
number of batches of size 900 (after deletion of the
initial transient), and let Y;;zp denote the kth obser-
vation in batch b for parameter configuration ¢ and
noise configuration j. Then for fixed k (1 < k < 900),
the set of observations {Yjjxs (b=1,..., N)} can be
used to construct a standard unbiased estimator of
0% as follows:

1 X

< \2
shik = W—_l; (Yijrs = Yijn )

The s?j %, although correlated, can then be averaged
across k to obtain the following unbiased estimate of
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the variability of the system response:

1 900
2= L $ g2
%5 = 900 ; L

We remark that this differs from standard simu-
lation analysis, where estimates of the variability of
the mean response, rather than that of the system re-
sponse, are of interest in order to construct confidence
intervals for the mean response. Mathematically, for
a covariance-stationary stream of data of length n,

02 n-1 J
2 _ 'Y < .
=L |1+ ; (1 n) pj (11)

where o2 is the variance of a single observation and
pr is the lag k autocorrelation of the output. Meth-
ods for obtaining confidence intervals for the mean re-
sponse, such as those based on batch means or repli-
cation, estimate o2 directly. However, we are un-
aware of a stable method for inverting Equation (11)
to obtain an estimate of the system variance, o%.

4.5 Results

Crossing of the parameter matrix and the noise ma-
trix means that for each configuration of the parame-
ters, runs are made for four configurations of the noise
factors. For each parameter configuration ¢, we com-
pute the following overall measures of performance
mean and variation:

n 1 n
§ :'— =2 __ z :—2
Yg'j, Si- - Z S.'j,
i=1 i=1

although we remark that other constructs of overall
variability could have been used.

A regression of 5;. on Y;. indicated that a square-
root transformation of the 5;. was appropriate. (The
square-root transformation is often utilized for Pois-
son data to stabilize the variance.) Metamodels with
linear terms and all two-way interactions were con-
structed for 7;. and /3. using linear regression. In-
vestigation revealed that M, My, B and the M,B
interaction were the most important determinants of
both the mean and the variability of the response.
Residual analysis also showed that M; affected the
mean performance in a quadratic manner. This term
could be included in the metamodel for the mean re-
sponse because of the additional degree of freedom
afforded by the center point.

These results were obtained from runs where all
random number streams were independently seeded.

Y=

| =
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Common random numbers can also be employed: us-
ing the same sets of random number seeds for each
run within a replication of the design matrix is a way
of “blocking” on the replication. Results obtained us-
ing common random numbers will be discussed at the
presentation.

5 CONCLUSIONS

We have shown how joint investigation of the mean
and variation in the performance measure may pro-
vide additional insights into system performance. We
have related these strategies to response surface meta-
models and illustrated how the results may be used to
improve system performance. The simulation arena
is particularly amenable to analysis using Taguchi’s
strategies, since all factors are controllable by the an-
alyst. Our results indicate that models of system per-
formance may be more easily constructed if some of
the random variation, or noise, in the simulation in-
puts is controlled in an appropriate manner.

Consideration of variance as other than a nuisance
represents a significant departure from traditional
simulation output analysis, and restricts but does not
eliminate the use of variance reduction techniques.
Reducing the variability between runs (as we did by
using common random number streams in our exam-
ples) may still be beneficial. However, any technique
which attempts to reduce the variance within a sim-
ulation run eliminates the ability to estimate the sys-
tem variance. This precludes noise factor assessment,
as well as system optimization efforts based on ex-
pected loss.
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