Proceedings of the 1991 Winter Simulation Conference

Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

PASION TUTORIAL

Stanislaw Raczynski

Universidad Panamericana
Augusto Rodin 498
03910 Mexico City, Mexico

ABSTRACT

PASION is a process- and event-oriented
simulation language designed for PASCAL users. The
language has a two level (process/event) structure
and permits the use of all the Pascal structures. It
also offers the main features of object-oriented
programming. PASION provides necessary facilities
to handle sequences of random events, queues and
quasi-paralle]l processes, both discrete and conti-
nuous.

1 WHY A NEW LANGUAGE ?

A look at the annals of simulation software
development could result in the impression that we
have enough (or, rather, too many) simulation
languages and packages. The idea of creating a new
one might appear to be crazy. However, looking at
the existing simulation software and at the recent
tenden-cies in programming, it can be seen that the
existing simulation software becomes somewhat
obsolete. The new simulation software should be
object-oriented not only because almost all new
software is object-oriented (see Schmucker, 1986,
for a review on object-oriented programming).
The simulation software must have this orientation
simply because the real world is object-oriented.
Second, it is not a proper way to develop good
simulation tools modifying or extending languages
which are 20 or even 30 years old. In my didactic work
I have been looking for a well structured and easy-to-
teach simulation language. It seems that the most
complete one is Simula. However, it is somewhat
difficult to teach Simula quickly, for its relation to
Algol. Similar difficulties appear when using Modula-
2. Shortly speaking, the new language should be
object-oriented, and should offer the following
features: clear process/event structure, efficient
clock mechanism, com-bined continuous/discrete
modeling and inheritance. It also should have an

152

environ-ment which supports graphics, interactive
simulation and auxiliary modules (program
generators) for queuing and continuous models.

2 THE LANGUAGE

Let us recall some basic concepts of process-
oriented simulation. To describe a sequence of
events we must specify event operations and
describe both dependence of each event on the
model time, and the interactions between the
events. A process-oriented language offers
something more. Namely, it defines a structure within
the set of events by introducing different processes.
By the process we mean a generic program
segment which declares a specific object type. This
declaration describes the properties of objects which
can exccute events in relation to the model time.
According to this decla-ration the corresponding
objects can be crea-ted at run-time. This approach
makes the simulation object-oriented . Recall that
an object-oriented language should support
information hiding, data abstraction, dynamic binding
and inheritance (see Dahl and Nygaard 1967, Koehler
and Patterson 1986a, 1986b; Pascoe 1986; Schmucker
1986). PASION does not fully implement all these
concepts. It sup-ports dynamic creation of objects,
data hiding and, to some extend, data abstraction by
the mechanism of predefined processes and inheri-
tance. The following example shows a PASION
program where two objects activate each other.

PROGRAM TRIGGER;
REF A B:X;
{A and B point to objects of type X}

PROCESS X,2; {A process type}

-ATR N:STRING]I6);

PASION Tutorial

EVENT ONE; {ONE is an event}
WRITELN(Active object: ’,N);

IF THIS=A THEN B.ONE:=TIME +1.0
ELSE A.ONE:=TIME + 1.0 ENDEV;

START {Main program}
NEWPR A; AN:="FRED’;
NEWPR B; B.N:=’ANDREW’;
A.ONE:=TIME;,

{The object A starts immediately.
B waits. }

$ {This terminates the program.}

This is a complete PASION program. The
reference variables A and B are used to refer to the
two objects of type X. The instruction
A.ONE:=TIME +1.0 schedules the event ONE of the
object A to be executed at TIME+1.0, where TIME
is the model time. THIS is a reserved word which
can be used to refer to the object from within its
scope. Thus, THIS=A is true when the object is
referred by A and false for the object referred by B. It
can be seen that the two objects activate each
other. The output from this simple program is as
follows.

Active object: FRED

Active object: ANDREW
Active object: FRED

Active object: ANDREW
Active object: FRED etc.

It is a very simple example. In practice, the
simulation programs can have up to 50 process
declarations (object types) and up to 400 events in
each process. The number of objects generated at
run time depends of the complexity of the objects.
Models with more than 2000 objects were successfully
run on the IBM XT.

3 CORRESPONDENCE BETWEEN MODELS AND
PASION PROGRAMS

According to the commonly used simulation
terminology (see Zeigler, 1976) a simulation model
is composed by its components (e.g. clients in a
shop). The state of each component is described
by the corresponding set of descriptive variables and
its activi-ties are given by the rules of interaction
between the components. Experimental frames
define the actually used set of descriptive variables
and determine the complexity of the model. The
PASION language has all these basic modeling
elements. Model components are ob-jects,

153

component specification is given by the process
declaration, descriptive variables are process
attributes and the component ac-tivities are events.
Experimental frames can be expanded using the
mechanism of inheri-tance. Inheritance enables
programmers to create classes and therefore objects
that are specia-lizations of other objects. This enables
the programmer to create complex models by using
code created and tested before. Inheritance in
PASION can be applied using prefixed process
declarations. Let PA be the name of an existing
process. Suppose that we wish to create a new one,
say PB, having all the properties of the process PA

(this means all its attributes and events). This can be
done using the name PA/PB instead of PB in the
heading of the process declaration. While
processing such declaration, the translator looks for
the process PA (the parent process) and inserts all the
attribute declarations and event descriptions from
PA into the new process PB (derived process).
Parent processes can reside in separate files, or be
placed in the same source file. Thus, the user can
prepare and store some useful source "capsules” and
use them while creating new processes. During the
creation of the new (derived) process some of the
names used in the parent process can be changed.
This includes variable or type identifiers.

4 SOME EXAMPLES

Let us consider a simple example of object-
oriented simulation in PASION. To simulate the
growth of a plant it is suffi-cient to describe the
behavior of one ‘"cell' of the plant. It can be a
"branch element" which can generate one or more
other branch elements which grow upwards, with
random inclination. The branch element can also
increase its thickness to "support" more bran-ches. The
program describes one branch element with two
events: "generating new branch" and "to get fatter”.
The main program generates one initial core
element which generates the branches (other objects
of the same type), which, in turn, generate other
branches etc. It is easy to show this process on the
screen, as indicated in Fig.1.

Observe that this simulation is not only the
generation of the image of the plant. Each "branch
element” of the plant is "alive", being an active
object of the model and its behavior can be
modified in order to experiment with the model.
As an example of another object-oriented
simulation consider a two dimensional heat

154

Figl. Simulation of a growing plant.

distribution problem. Suppose that the heat
propagates in a rectangular plane section. Let us
discretize this region replacing it with a uniform red
of points, without defining any time-discretization.
Each point is an object in the simulation program.
The attributes of an object are its coordinates,
its temperature and the proper heat. The only
activity of each object is to adjust its tem-perature
according to the temperatures of the four nearest
points and according to the heat conductivity of the
material between the points (not necessarily the

same for different points). The fixed boundary
conditions in this model can be defined by fixing the
temperature for some objects (disactivate them). The
"free boundary condition" for the points at the
boundary of the region consist in the fact that these
points have only three and not four neighbors. The
activities of the objects are programmed to be
executed in random time intervals, so that no fixed
time-step exists in the model. The simulation consists
in gene-rating the points and activate them. The
steady state reached by the program gives the solution
to the simulated heat distribution problem. The
stability of such algorithm depends on some
additional model parameters, not discussed here. Fig.
2 shows a solution where the region consists of 400
points (20x20 net). The point (13,13) is a heat source
with constant temperature and the point (3,3) is an
ideal heat sink. The boundaries of the region are
isolated from the environment (free boun-dary
conditions). The figure shows the final, steady-state
situation. The dynamics of the simulated heat
propagation is given by the evolution of this plot in
the model time.

Simulation of such kind of the distributed-parameter
systems is rather slow and not so efficient as the
solution of the corresponding partial differential
equation. On the other hand, observe that the object-
oriented model does not involve any differential

Raczynski

equation at all. Conscquently, we are not restricted
by regularity assumptions which are rather strong
when the partial equations are considered. With
little modifications the model can describe any
strongly "irregular” system, when, for example, the
properties of the material are discontinuous
functions of the temperature or when two or more
similar non-continuous processes interact with each
other as occurs in alloy solidification problems, quite
difficult to simulate using differential equations.

Fig.2. Heat transfer simulation.

5 PASION ENVIRONMENT

There are few programming languages which can
be effectively used without an appropriate
environment. PASION is equipped with the
Minimal PASION Programming Environment
(MPPE) which consists of a library of predefined pro-
cesses and other modules. It supports interactive
simulation, graphics, statistical analyses of the results,
continuous dynamic models and queuing models.
The core of MPPE consists of the library of PASION
predefined processes. These are generic program
segments which generate process declarations
(not objects). Predefined processes are written in
PASION extended by a simple "meta-language"
which permits a process to have formal parameters.
The user invokes a predefined process by its name
and specifies the actual parameters, which are
passed to the corresponding process declaration in
the user program by name, be-fore the program is
translated to PASCAL. These parameters can
represent not only variable names but also types,
complete ex-pressions, instructions, comments etc.
The user can prepare his own predefined appli-
cation-oriented processes and add them to the library.

PASION Tutorial

6 QUEUING MODEL GENERATOR

PASION has a predefined type QUEUE which is
a line of type FIFO, LIFO or RANDOM. It offers a
number of procedures and functions to handle lines in
the queuing models. Thus, the user can declare
some queues and code operations on them. Other
mode to simulate queuing models is provided by a
module of the MPPE named Queuing Model
Generator (QMG) which makes it possible to
simulate systems with queues without any
programming, using a graphical model description
provided by the user. When applied to queuing
models, QMG offers nothing more then GPSS or
SLAMII which are, perhaps, better packages to such
applica-tions. Observe, however, that in some
situations it has certain advantage. For example,
the flexible manufacturing systems (FMS, see The
Charles Stark Draper Lab, Inc., 1984) are controlled
by quite complex algo-rithms and run in a complex
computerized environment Consequently, any
package used to simulate FMS must be embedded
in an appropriate programming environment.
QMG satisfies this requirement, being related to an
algorithmic, object-oriented language (Ra-czynski
1990).

7 CONTINUOUS MODEL GENERATOR

This program was designed in order to facilitate
simulation of dynamic continuous systems. The
Continuous Model Generator (CMG) is a program
generator which generates source PASION and/or
PASCAL code, according to the model specifications
given by the user, mainly in graphical form. The
CMG output is created in the form of a PASION
process declaration which can be inserted into any
PASION (continuous, discrete or combined) model.
CMG also can generate a complete PASCAL
program which can be run using a PASCAL compiler.
The input to CMG is formu-lated in terms of
graph diagram which describes the dynamics of the
modeled system. By the graph diagram we mean a
network com-posed of nodes and directed links.
Nodes represent signals and links represent transfer
functions. CMG permits the following types of
links: Static linear, Static non-linear, ~Dynamic
linear (given transfer function), Time delay, Sample-
and-hold and Superlink (a complex dynamic
system). The last link type (Su-perlink) permits to
include whole dynamic model (specified earlier and
stored in a file) to the model actually being created.
This feature is useful while developing complex
models, composed by submodels created and tested

155

separately. When simulating combined
(discrete/-continuous) systems it is possible to declare
"state events" i.e. events which occur when some
continuous state variables reach a specific level.

8 IMPLEMENTATION

PASION-to-PASCAL translator runs on the IBM
PC and compatibles. The "6000" version is being
developed for the IBM RISC RS-6000 computer.
The code produced by the translator must be
compiled by a PASCAL compiler. The resulting
program expands dynamically while new objects
appear, so that the number of objects which can run
simultancously depends on the amount of the
operational memory available at the run time and on
the size of data blocks (attributes) of the objects.
PASION has been used in teaching simulation
methods. It is important to have an easy to learn
simulation tool which may be used to illustrate the
concepts of process declarations, objects, events,
inheritance, preprocessing and animation, when the
students have some knowledge on structural
programming in PASCAL and does not have any
experience in simulation.

REFERENCES

The Charles Stark Draper Lab, Inc., 1984
"Flexible Manufacturing Systems Handbook", Noyes
Publications.

Dahl O., Nygaard, 1986, “Simula - An Algol-
based Simulation Language", Communications of
the ACM no.9, pp.671-678.

Koehler T., Patterson D., 1986, "A Small Taste of
Smalltalk”, BYTE 11(8), August 1986, pp.145-159.

Koehler T., Patterson D., 1986 "A Taste of Smalltalk",
W.W.Norton & Co., New York.

Pascoe G.A., 1986, "Elements of Object-orien ted
Programming”, BYTE 11(8), August 1986, pp.139-
144.

Raczynski S., 1986, "PASION - Pascal-related
simulation language for small systems",
SIMULATION 46(6), June 1986, pp.239-242.
Raczynski S., 1987, 'PASION, Lenguaje para
Simulacion: una Introduccion”, Computer-
World/Mexico, n0.178,179,180, April-May 1987.
Raczynski S., 1988, "On a simulation experi ment with

a parallel algorithm for optimal control",
Transaction of the Society for Computer
Simulation, vol.5, no.1, pp.87-97.

Raczynski S., 1988, ‘"Process hierarchy and

inheritance in PASION", Simulation 50(6).

156

Raczynski, S., 1990, "Graphical description and a
program generator for queuing models”, Simulation
55(3).

Raczynski S., 1991,"Simulacio’'n por com putadora -
metodos y lenguajes”,LIMUSA.

Shmucker K.J., 1986, "Object-oriented Langua ges for
the Macintosh", BYTE 11(8), August 1986, pp.177-
185.

Zeigler B.P., 1976, "Theory of Modeling and
Simulation", John Wiley & Sons.

AUTHOR BIOGRAPHY

STANISLAW RACZYNSKI received his Ph.D in
automatic control from the Academy of Mining and
Metallurgy in Poland, 1969. He has been working for
several years at the same Academy, at the Institute
for Control Problems in Moscow USSR and at the
National University of Mexico. Recently he is a
professor at the Pan- American University in Mexico
City. He is an active member of SCS, working in the
area of control and simulation methods.

Raczynski

Probability distribution fof GUEUE2

=> value off
Zero — QUEUE2

Time

Fig.3. Exapmle of a QMG output. The
3D image of the probability density
function for a queue.

:

11 LIFD 12 13L1F0 ()

—{ sun s num }- @

L

Fig.4. An example of a QMG scheme.

1,2 and 3 are input streanms,

2,4,6,9,11,15,14,13, and 17 are queues, 7,18,12 and 16 are servers.

