Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIGMA TUTORIAL

Lee Schruben

School of O.R.IE.
Cornell University
Ithaca, NY 14853

ABSTRACT

SIGMA (denoting Simulation Graphical Modeling and
Analysis) is an interactive graphics approach to discrete
event simulation. This tutorial contains a brief
introduction to simulation graph modeling with SIGMA.
In addition, there is a discussion of some recent advances
in the SIGMA software and an example. Among the
recent enhancements to SIGMA are graphs for output
analysis, ranked lists, and a facility for creating an
English description of the simulation graph.

1 BASIC APPROACH AND NOTATION

SIGMA was developed for teaching discrete event
simulation on personal computers. Although SIGMA is
very easy to learn, it is completely general and can be
used to create large-scale simulations that run faster than
many commercial codes. Indeed, any computer program
can be created with SIGMA [1]. Outside the classroom,
SIGMA has been used successfully to study such diverse
systems as banks, food production facilities, and
computer architectures as well as in military and
manufacturing applications.

In October of 1990, The Scientific Press published
SIGMA and began distributing it to academic
institutions [2]. Despite a simple user interface, SIGMA
is a fully functional simulation, modeling, and analysis
system. For best results, an IBM PS/2 class system
under MS-DOS 5.0 is recommended; however, people
have reported running SIGMA successfully on Apple,
SUN, and DEC equipment. SIGMA has been
implemented under WINDOWS 3.

In SIGMA, stochastic discrete event systems are
represented as simple dynamic graphs. Models are
created by drawing these graphs on a computer screen
with a mouse. A few mouse clicks will run the
simulation. By means of its graphic displays, students
learn how various events in the system interact. SIGMA
provides a "logical" animation of the model. Each run
produces output charts and traces on a disk that are
compatible with most spreadsheet and statistical analysis

95

packages.

In SIGMA, the relationships between system events
are represented by a simple directed graph based on the
familiar "event graph" concept [3]. Event graphs are an
elementary way of capturing the dynamics of discrete
event systems.

An event graph is a directed graph that organizes the
objects of a simulation into a model. Pictorially the
vertices of the graph represent state changes that are
associated with the various events in the simulation.
The edges of the graph represent the logical and temporal
relationships between the vertices. For example,
suppose the following is part of a simulation graph,

K
This edge is interpreted as follows:
Whenever event A occurs, if condition (i) is true,
then event B will be scheduled to occur t time
units later with parameter(s), j, having the
values(s) of expression(s) k.

Once students understand this single network symbol,
they have learned about simulation graphs. SIGMA is
the computer implementation of these graphs. Several
recent textbooks use such graphs to explain simulation
models [4,5,6]. While SIGMA nicely complements
these textbooks, it might also be used to introduce more
complicated commercial simulation languages. A
SIGMA graph with GPSS(SLAM,SIMAN)-like vertex
names is a good way to introduce process oriented
models and helps make the corresponding models in
GPSS(SLAM,SIMAN) much more plausible.

Persons familiar with process network modeling might
think of SIGMA as having a single, "generic," model
building block as opposed to many special-purpose
blocks found in most commercial network-oriented
languages. In fact, the primary motivation for
developing event graphs was to combine the advantages
of network modeling with the more general and efficient
but abstract event-oriented simulation approach without
losing the ability to develop intuitive process models.

96

2 SPECIFIC FEATURES OF SIGMA

Some specific features of SIGMA are highlighted
below.

WRITE_In_ENGLISH: Exploiting the graph structure
of SIGMA, English translations of the model can be
generated with a few mouse clicks. The "Write in
English" command automatically translates the graphical
model into English. The English model description is
an excellent tool for finding errors in model logic. If the
English translation does not make sense, it is highly
unlikely that the program will function correctly. It is
much easier to recognize nonsense in an English
sentence than in a complex computer program. To
illustrate: the following is an exact SIGMA-generated
English description of a "start service" event in a simple
queueing system graph. The code for this event is given
later.

The START event models the start of service.

This event causes the following state change(s):
SERVER=0
QUEUE=QUEUE-1.

After every occurrence of the START event:

Unconditionally, service will take 5 minutes; therefore,
schedule the LEAVE event to occur in 5 time units.

The English translation can be used for model
verification, explaining a model to others, and as an
alternative or supplement to time-consuming physical
animations. This is also valuable in grading
homeworks, comparing what students claim their models
are doing with what SIGMA says it is doing.

OUTPUT CHARTS: By clicking on the "Output
Chart" command button, several charts are created that
allow one to visually analyze output files. Students can
explore various initial truncation, batching, and run
duration strategies and quickly see the results. For those
so inclined, sufficient statistics are also given for
inference and interval estimation. However, the graphs
alone will meet most analysis needs.

The following charts can be selected:

08T vs Count for YIELDS1.0UT with batch size = 18, sample size = 188
time average = 49.83, SIS area - 4.359
COST (8 to 44.5)

Count (8 to 9%.5)

Figure 1. Line plots, which show how variables change
over time.

Schruben

00S? vs LOT for YIELD, batch size=5, sanple=208, ave.product-91.82
average = 7.269, ave. of squares = 04,94
COST (8 to 11.6)

D
.....

.....
0

10T (8 to 15)
average = 12.44, ave. of squares - 155.4

Figure 2. Scatter plots, which show the relationship
between pairs of variables
Cell Count (8 to 26)

m| I 1
COST (8 to 11.6)

Figure 3. Histograms, which count the values of
variables

futocorrelations for COST, std. dev. = 2.8

Lag (B to 48)

Figure 4. Autocorrelation plots, which show serial
dependence in the output

SIGMA Tutorial

{(linscaled) Standardized Time Series for CCST (8 to 24.78)

Observation number (1 to 1089)

Figure 5. Standardized Time Series (STS), which can be
used to detect trends

The standardized time series plot should appear to be
symmetric about zero if there is no trend in the data. A
trend might be due to model warm-up bias and inadequate
initial truncation. This plot will be pulled above or
below the zero line by initialization bias.

Note that Figure 5 is for the same data as Figure 1. A
subtle trend in the data can now be readily detected.

Frequency Plot (Correlation Transform) (8 to 3.629)

AN

\

97

a compiled program is desired, a SIGMA graph will
automatically generate portable standard C or Pascal
simulation source code. The generated code is
extensively commented so that no prior knowledge of C
or Pascal is necessary. Furthermore, unlike most
conventional simulation languages, complete source code
for the entire SIGMA-generated simulation is provided;
there are no proprietary "mystery" functions. Since these
features make the modeling process easier to understand,
more class time can be spent on other crucial elements of
the simulation process such as validation,
experimentation, analysis, and communication of the
results.Students immediately see what is going on since
their SIGMA expressions and descriptions are embedded
(in capital letters) right in the code. To illustrate, the
following is the SIGMA-generated C code for the "start
service" event referred to earlier in this paper. Some
non-essential comments and code were removed to save
space, but nothing was added.

/* START OF SERVICE */

int START

{

/* state changes */
SERVER=0
QUEUE=QUEUE-1.

/* schedule future events */

/* SERVICE TAKES 5 MINUTES ¥/
event_time = current_time + 5;
event_type = 4;
event_priority = 5;
schedule_event();

)

Frequency (8 to .5)

Figure 6. Frequency Spectra, which can be used to

detect cycles

USER DEFINED FUNCTIONS: A USER type
variable is actually an executable function on the default
disk drive, written perhaps in FORTRAN, C, Pascal, or
BASIC. As long as a simple calling convention is
followed, these executable files do not even have to be
linked with SIGMA. USER variables can be used in
expressions like any other variable. Extensive use of
user functions requires a workstation or a PC running
with MS-DOS 5.0.

INSTANT INPUT VERIFICATION: There is instant
spelling, syntax, and computation checking of all
expressions. Unlike mere syntax checkers, SIGMA
verifies that each computation is legal by actually
executing expressions when they are entered.

AUTOMATIC SOURCE CODE GENERATION: If

Compare this with the SIGMA-generated English
description given earlier for this event to see how the
vertex and edge descriptions tie things together. The
Pascal source code generator is similar.

SIGMA has been used as a C or Pascal program
generator for applications that have nothing to do with
discrete event simulations. The graph becomes an
executable flow-chart enriched to permit blocks of code
(vertices) to be easily executed in a state-dependent,
dynamically-changing sequence. Thus, programs are
conceptually written in a plane rather than as a linear
stream of code with sometimes confusing branching.
Loops look like loops and all branching (if-then-else,
call, goto) is identical.

MODELING RESOURCE CONSTRAINTS: If
several types of resources are needed to schedule an event,
simply list the names of these resources on the
scheduling edge in a SIGMA graph.

USING SEVERAL RANDOM NUMBER
STREAMS: Function definitions in C make it very easy
to make your SIGMA random number stream a "vector"
of random number streams.

SIMPLE MANAGEMENT OF RANKED QUEUES:

98

SIGMA now supports easy management of priority
ranked queues. Ranked queues occur whenever the order
of service might differ from the order of customer arrival.
Management of priority queues is done with the simple
PUT and GET functions.

Attributes of individual transient entities (customers in
a queueing system) can be assigned to the elements in
the array ENT[]). For example, ENT[0] might be the
customer arrival time, ENT[1] the class of service, and
ENT(2] the amount of product to be purchased. The
state change vector

ENT[0]=CLK, ENT[1)=CLASS, ENT[2]=DEMAND

might model the relevant attributes of a customer. The
ENTT] array is used exclusively as a buffer for customers
joining ranked queues using the PUT({} and GET{)
functions. The array, RNK[LINE], determines a
customer's position in the LINE.

The pair of SIGMA functions, PUT(} and GET{},
allow customers (with their various attributes) to be put
into and retrieved from ranked queues.

The PUT{OPTION;LIST) function, places the current
contents of the ENT[] array in the LIST. LIST is a
number, variable, or function that identifies the queue to
be joined. The OPTIONS include:

FIF (first-is-first) inserts the new entity after the
last record on the LIST.
LIF (last-is-first) inserts the new entity before

the first record on the LIST.

INC (increasing) the LIST is ranked by
increasing values of ENT[X], where
X=RNK[LIST] is the ranking entity
attribute.

DEC (decreasing) the LIST is ranked by
decreasing values of ENT[X], where
X=RNKI[LIST] is the ranking entity
attribute.

EVN (even) when the values of ENT[0] for two
entities are even, then the tie is broken by
increasing values of ENT[2] with
remaining ties broken by "first-is-first.”

GET{OPTION;LIST) removes a record from the
specified LIST places its contents in the ENT[] array.
The OPTION:S include:

FST (first) removes the first element of LIST.
LST (last) removes the last element of LIST.
For example: either pair, (PUT{FIF;1} and
GET(FST;1}) or (PUT(LIF;1} and GET(LST;1}), could
be used in modeling a first-come-first-served queue. Both
PUT(} and GET{} return 1 if successful and 0 otherwise.
They are typically used as an edge condition where
0=FALSE. Naturally, these functions should not be
used as part of an edge condition that might be false,
they are executed regardless. If used in a state change,
PUT and GET should appear on the right-hand side of an

equation, such as

QUEUE(N] = QUEUE[N] + PUT{FIF;N}.

Schruben

This state change will increase QUEUE[N] (the length of
the nth queue) by 1 when the customer with attributes
currently in the ENT][] array is put into this queue. The
customer can later be removed (with attributes placed in
ENTI(]) with the state change,

QUEUE(N] = QUEUE(N] - GET(FST;N}.

DISTINCT EXPERIMENTAL FRAME: With the
new SET function, students can run complete
experimental designs within a single graph.

3 AN EXAMPLE

The simulation of a series of limited-space queues is a
very common application. In this example, a series of N
tandem queues are modeled with different service times
and different buffers (waiting spaces for work in
progress). A machine cannot start a new job until it
passes its current job down the line. If there is no space
in front of a queue, then the upstream machine becomes
"blocked.”

The event graph for this system is given in Figure 7
and the exact SIGMA-generated English description is
given in the Appendix. This model is pretty
straightforward except perhaps for the DONE event
vertex. The DONE vertex models the event where the
Jth machine is done with a job. The status of this
machine might change to idle (1) or to blocked (-1),
depending on whether or not there is room to unload the
job into the downstream queue.

[CURRENT SIGMA MODEL: TANDEMQS.MOD J
Create Process
. . Delete
Create Single Edge
Move
(romerm)-{amom-{somp-oe) B
Read or DOS
Save
| Append
Write Source
. Clear
Run
Zoom
@ @ @ Output Charts
Help
MEMORY EXPANSION ... OK Retum

Figure 7. SIGMA graph for example

If the machine is not blocked and can unload its job,
then it might unblock the upstream machine (change
status of the j-1st machine from -1 to 1). The
unblocking of machine j-1 might also unblock machine
J-2, and on up the line. The system temporarily behaves
like a "pull" production system. All the logic for
changing the status of servers involves simply passing
the value of the status of the jth server into the DONE
vertex as an attribute of its scheduling edge.

In a process model of this system (where each job is
identified), the simulation will run slower and use more
memory if many jobs enter the system. Furthermore, a

SIGMA Tutorial

process-oriented simulation which distinctly represents
each individual machine (perhaps for the sole purpose of
animation) would be limited (o a relatively small number
of machines.

In the event-oriented model presented here, large
numbers of machines can easily be simulated. If
necessary, temporary entities (jobs) can be entirely
removed from the model (simply remove the single PUT
and GET functions) without changing the behavior of the
machines or the queue sizes. This would result in a
vastly more efficient simulation which does not require
any more memory when it becomes congested. Probably
the best way to dramatically speed up a simulation of a
manufacturing system is to use a resident entity event
model like that given here. This model can be used to
quickly focus on bottlenecks in very large systems.
Transient entities can be introduced to measure job delay
times anywhere in the system with PUT and GET
functions.

ACKNOWLEDGEMENTS

Many SIGMA users have contributed suggestions that
have been incorporated in the second release. Persons
not acknowledged in [1] who have since contributed
include Sheldon Jacobson, Douglas Morrice, Enver
Yucesan, and Tony Zalewski.

Sheldon and Enver showed me an easy way to
implement Perturbation Analysis in SIGMA, and Tony
showed me a clever way to include optimization
algorithms in SIGMA modecls. Although they were
acknowledged in the SIGMA manual, Peter A. W. Lewis
and Quint King have continued to be particularly helpful
(Quint implemented SIGMA in Microsoft Windows).
My earlier appreciation of David Briskman grows as I
work with code he had written years ago when he
introduced me to HOOPS graphics software [7]. The
author's research on graph modecling and decomposition
was supported by the National Research Council and the
Naval Postgraduate School through their Senior Research
Associates Program. Some of the results of that research
will be included in the next release of SIGMA.

APPENDIX: SIGMA-GENERATED ENGLISH
DESCRIPTION OF TANDEM QUEUE:

The SIGMA Model, TANDQ2.MOD, is a discrete event
simulation. It models buffered tandem queues.

I. STATE VARIABLE DEFINITIONS

For this simulation, the following state variables are

defined:

I: index for loop reading input data (integer
valued)

J: index for stations (intcger valued)

Q[10]: number of jobs waiting at station j
(integer valued)

B[10}: waiting space for jobs at station j
(integer valucd)

99

S[10]: jth server's status (free/busy/block=1/0/-
1) (integer valued)

SYSTEM: the global system queue (integer valued)

ENT[10]: job attributes (ent[5]=time entered) (real
valued)

RNK[6]: ranking of the global system queue (fifo)
(real valued)

MAKESPAN: total job time in system (real valued)

N: number of stations in sequence of queues
(integer valued)

L[10]: lower bound on uniform processing time
at j (real valued)

U[10}): upper bound on uniform processing time
at j (real valued)

II. EVENT DEFINITIONS

Circumstances where the values of state variables
might change are called events. State changes for this
simulation are given below; these are represented by one
or more event vertices (nodes or balls) in a SIGMA
graph. Event parameters, if any, are given in
parentheses.

The occurrence of an event often leads to further
events. The logical and dynamic relationships between
pairs of events are represented in a SIGMA graph by the
edges (arrows) between event vertices. Unless otherwise
stated, vertex execution priorities, to break time ties, are
equal to 5.

1. The RUN(N) event models the initialization of the
simulation. Initial values for, N, are needed for each
run.

After every occurrence of the RUN event:

Unconditionally, read in the input data from
tandq.dat; therefore, immediately execute the
INPUT(,J)) event.using the parameter value(s) of
1,1.

Unconditionally, initiate the first job arrival;
therefore, schedule ARRIV() to occur without
delay.

2. The ARRIV() event models the arrival of a new job.
After every occurrence of the ARRIV event:
Unconditionally, schedule the next arrival in about
10 minutes; therefore, schedule ARRIV() to occur
in -10*In{rnd) time units.

If B(11>Q[1],
then there is room in queue 1 for the job;
therefore, schedule ENTER() to occur without
delay. (Time ties are broken by an execution
priority of 3.)

3. The ENTER() event models the job entering the
system (mark time). This event causes the
following state change(s):
ENT[5]=CLK

After every occurrence of the ENTER event:

If PUT(FIF;SYSTEM]},
then put the job in the first queue; therefore,
immediately execute the WAIT(J) event...using
the parameter value(s) of 1.

The WAIT(J) event models the job joining queue j.

This event causes the following state change(s):
QUI=QUI+1

After every occurrence of the WAIT event:

If S[J1>0,
then the jth server is free, so start work; therefore,
schedule START(J) to occur without delay...using
the parameter value(s) of J. (Time ties are broken
by an execution priority of 4.)

The START(J) event models the start of work at
station j. This event causes the following state
change(s):
QU1=QU]-1
S{J1=0
After every occurrence of the START event:
Unconditionally, work at station j; therefore,
schedule DONE(J,S[J]) to occur in I[j]+u[j]*rnd
time units...using the parameter value(s) of J,1.

The DONE(J,S{J]) event models the job finishing at

station j.

After every occurrence of the DONE event:

If Q[J1>0 and (B[J+1]>Q[J+1] or J==N),
then start working on the next job in queue j;
therefore, schedule START(J) to occur without
delay...using the parameter value(s) of J. (Time
ties are broken by an execution priority of 2.)

If J==N,
then this is the last station, job is finished ;
therefore, schedule FINSH() to occur without
delay.

If J!=N and B[J+1]>Q[J+1],
then the job goes o the next queue ; therefore,
schedule WAIT(J) to occur without delay...using
the parameter value(s) of J+1. (Time ties are
broken by an execution priority of 3.)

If J!'=N and B{J+1]<=Q[J+1] and S(J]!=-1,
then server j becomes blocked, change status to -
1; therefore, schedule DONE(J,S[J]) to occur
without delay...using the parameter value(s) of J,-
1. (Time ties are broken by an execution priority
of 1.)

If J!=1 and S[J-1]==-1 and S{J]!=-1,
then free currently blocked server j-1; therefore,
schedule DONE(J,S[(J]) to occur without
delay...using thc parameter value(s) of J-1,1.
(Time ties are broken by an execution priority of
6.)

The FINSH() event models the job finishing with

the last station.

After every occurrence of the FINSH event:

If GET(FST;SYSTEM},
then get the job from the system queue so it can
leave; therefore, immediately execute the
LEAVE(MAKESPAN) event...using the

Schruben

parameter value(s) of CLK-ENT(5].

8. The LEAVE(MAKESPAN) event models the job
leaving the system. No additional events are
scheduled here.

9. The INPUT(I,)) event models the data input (reads
tandq.dat). This event causes the following state
change(s):
L[J]=DISK{TANDQ.DAT;I)
U[J]=DISK (TANDQ.DAT;I+1)
B[J]=DISK (TANDQ.DAT:;1+2)
Sp=1

After every occurrence of the INPUT event:

If J<N,
then read the input data for the next queue;
therefore, schedule INPUT(I,J) to occur without
delay...using the parameter value(s) of I+3,J+1.
(Time ties are broken by an execution priority of
4)

REFERENCES

(11 Schruben, L., and Yucesan, E. (1988), "Simulation
Graphs," Proc. 1988 Winter Simulation
Conference.

[2] Schruben, Lee, SIGMA: A Graphical Simulation
System, (Release 2), Scientific Press, San
Francisco, 1991.

[3] Schruben L. (1983), "Simulation Modeling with
Event Graphs," Comm. of the A.C.M. 26(11).

(4] Hoover, Stewart, and Ronald Perry (1989)
Simulation: A Problem Solving Approach,
Addison-Wesley.

(5] Law, Averill and Kelton, W. David (1991),
Simulation Modeling and Analysis (2nd Ed.),
McGraw Hill.

[6] Pegden, C. Dennis (1988), Introduction to SIMAN,
2nd ed., Systems Modeling Corp.

(7] HOOPS—Hierarchical Object Oriented Picture
System, Ithaca Software, San Francisco, CA.

AUTHOR BIOGRAPHY

LEE W. SCHRUBEN is on the faculty of the
School of Operations Research and Industrial
Engineering at Cornell University in Ithaca, NY.
During the first half of 1991 he was a visiting professor
at the Naval Postgraduate School in Monterey,
California, supported by a National Research Council
Senior Research Associateship.

