Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

PROOF ANIMATION: THE GENERAL PURPOSE ANIMATOR

Daniel T. Brunner
Nancy J. Earle
James O. Henriksen

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003

ABSTRACT

Proof Animation™ is high quality PC-based
animation and presentation software. Proof Animation
runs on any 286 or better computer with a math
coprocessor, EGA or VGA graphics, and a mouse.
Among Proof Animation’s many advanced features are
smooth motion, true zooming, and presentation
portability. An open architecture makes Proof
Animation compatible with most popular simulation
software.

1 INTRODUCTION

During all phases of a simulation project,
animation is a critical tool in presenting simulation
results to management and clients. Animation is also
important during model building. Users of simulation
software find that complex logic problems often (though
not always) come to light quickly when animated.
Furthermore, animation can play an important part in the
overall system design process as well as in presentation
and model building. In this paper we describe
characteristics of Proof Animation that help simulation
modelers address all of these needs.

Throughout this paper, we use the Proof
Animation Release 1.0 designation wherever it is
necessary to distinguish the current product from
possible future versions.

2 ABOUT PROOF ANIMATION
2.1 Overview

Proof Animation Release 1.0 is a PC-based
product. The minimum hardware is a 286 machine with a
math coprocessor and either an EGA or VGA display.
This common hardware allows Proof Animation to be

90

portable, which is especially advantageous when projects
are presented off-site.

Proof Animation Release 1.0 is a “post-processing”
animation package. In order for an animation to run,
two files must exist: the layout file and the trace file.
Typically, a simulation model produces the trace file that
drives the animation. There are tradeoffs when this
approach is compared to “concurrent” animation, which
animates while the simulation executes—but many of
the tradeoffs favor post-processing.

Proof Animation offers a special “presentation
mode.” Professional-looking static slides can be created
and interwoven with animation segments and shown on
the computer screen or with a computer projection
display. It may soon be possible for a Proof Animation
user to take such a presentation and create a diskette that
can be given to others for presentation viewing.

Proof Animation has an open architecture. This
makes Proof Animation compatible with many popular
simulation software packages. In fact, simulation-
specific software is not necessarily needed to drive the
animation. If the software used has file I/O that is
capable of producing an ASCII file, it can produce a
Proof Animation trace file.

Proof Animation has a geometry-based (CAD-like)
internal data structure. Changing the orientation or scale
of an object, static or moving, will not affect the quality
of its appearance on screen. Many options are available
for zooming, panning, rotating, or re-orienting the
animation. Individual objects can rotate while they
move around curves.

Although Proof Animation is not a full-featured
CAD program, it does have a mouse-driven, CAD-like
drawing mode. Through a series of pull-down menus,
the layout geometry and path and shape definitions can
be created using using the mouse. It is also possible to
read existing CAD layouts into a Proof Animation
layout. Proof Animation’s drawing mode has been

Proof Animation

developed to easily handle a wide variety of systems.
This means that diverse applications, such as network
communications and health care systems, can be handled
as easily as complex material handling systems.

2.2 Hardware Requirements

Proof Animation Release 1.0 runs on IBM or
compatible PCs, primarily because of the large installed
base of color-capable systems. The MS-DOS operating
system was chosen for its large installed base and also
because it behaves as a single-tasking environment (even
under some third-party multitasking software). When
Proof Animation can take total control of the CPU, the
result is an animation with very smooth motion.

New simulation packages have been developed,
such as GPSS/H 386, that take advantage of a 386- or
486-based machine’s faster 32-bit architecture and large
memory address space while still running under MS-
DOS. This means that an MS-DOS PC can handle large
simulation models. Using Proof Animation, the user
can do almost any simulation and the animation on one
machine.

Proof Animation Release 1.0 supports both EGA
and VGA color graphics displays at a resolution of 640 x
350. In Proof Animation, one pixel needs four bits of
video memory, and four times 640 times 350 (the screen
dimensions, in pixels) is 896,000 bits, or 112K bytes.
Given the 256K of video memory found on nearly all
EGA cards and on every VGA adapter, Proof Animation
can double buffer a 112K screen — that is, improve the
appearance of the animation by keeping two copies of
the screen in video memory, displaying one while
updating the other. Double buffering is very important
for quality animation.

We are carefully studying the evolving XGA,
8514/A, TIGA, and “Super VGA?” display options, all of
which offer resolution at or above 1024 by 768. Once
the PC graphics market has moved clearly in onc of
these directions, the resolution of Proof Animation will
be enhanced.

2.3 Post-Processing vs. Concurrent

Proof Animation Release 1.0 is post-processing,
meaning the simulation runs first, then the results drive
the animation. Some animation packages run
concurrently, displaying state changes while the
simulation runs. What are the tradeoffs?

Although it is possible with most concurrently
running simulation/animation software to make certain
limited types of changes to the system and watch the
impact, many types of changes (such as scheduling

91

algorithm changes) are difficult or impossible to animate
without advance work by the modeler.

Concurrent animation is completely dependent on
the execution of the simulation model. This can be very
tedious when the software is under consistent use (e.g.
during the model building phase), especially if the
underlying simulation software is not particularly fast at
executing.

With a post-processing animator, it is possible to
fast forward quickly to any point in simulated time.
Concurrent animators can only do this as fast as the
simulation will run.

Post-processing adds to the portability of Proof
Animation. The user needs to take only the Proof
Animation software to a remote location, and the target
machine need not be equipped to handle the simulation
software. Thanks to ongoing “demo maker”
development efforts, it may soon be possible to detach
animations for distribution to others who don’t have the
main Proof Animation program at all.

Despite all of these arguments in favor of post-
processing, there are those who do not believe they can
do without concurrent animation. To address this
requirement, we are planning a future version of Proof
Animation that is capable of concurrent animation.

3 PROOF ANIMATION FEATURES
3.1 Presentation Mode

Proof Animation has a full-featured presentation
mode. This lets users create “slides” made up of words,
objects, screen snapshots, or even dynamic animated
segments. These slides can be linked together to produce
a polished, complete presentation. Awkward transitions
from overhead transparencies to a computer display
during a presentation are eliminated. The presentation
developer can choose to highlight areas of interest (in
space or time) within the animation, and thus draw the
viewer’s attention to particular aspects of the simulation.

3.2 Open Architecture for Trace Events

Some animation software is integrated into a
simulation language or package. In order to use the
animation, the user must go through the process of
building a simulation model using the integrated tool.
Other animators use post-processing, but the
specifications of the trace file are generally not available
to the user.

Proof Animation has an open architecture. The
specifications for generating trace events are public and
easily followed. The most dramatic impact of Proof
Animation’s open architecture has initially been the

92

quick adoption of Proof Animation as the animation
engine of choice by many people using simulation
software other than Wolverine Software’s own GPSS/H.

It is also possible to build graphical depictions of
systems that have not been simulated, or to build a new
simulation/animation package around the Proof
Animation graphics engine. Proof Animation can also
be used by non-simulationists as presentation software.
The open architecture opens some wide doors for Proof
Animation and its users.

The trace event architecture of Proof Animation
consists of a very simple, record-oriented animation
language with English-like commands. A typical
Release 1.0 animation consists of a layout file and an
animation trace file. The layout file contains static
geometry information and definition commands. The
trace file is used for recording the time-dependent
information that controls all animation activity. Both
files are populated with printable ASCII characters.

Here are a few examples of the easy-to-use trace
event commands:

SET...COLOR...
MOVE
PLACE..ON.AT..
CREATE

TIME

DESTROY

Normally, a small set of commands used over and
over comprise the animation trace file. The process of
actually writing the trace file is automated. For
simulation, this means that the model writes commands
such as SET COLOR into the file each time an entity
passes a certain point in the simulation. For non-
simulation applications such as control algorithm
debugging, the process can be similarly automated.

3.3 Geometry-based Graphics Data Structure

A CAD-like, vector-based structure is used in Proof
Animation, allowing the software to rotate an object,
pan, and zoom in or out without losing the integrity of
the object. In contrast, zooming in with a pixel-based
system makes the object’s edges appear jagged.

The power of a CAD-like data structure provides
benefits in two areas. The first is the versatility of the
available drawing tools. The second is the flexibility
with which the display can be manipulated. Proof
Animation’s CAD-like architecture allows total control
of the viewing environment. This is unprecedented
among PC simulation animators. The geometric data
structure allows complete panning, zooming, rotating,
and changes of viewpoint.

Brunner, Earle and Henriksen

Complementing the graphics data structure is a
CAD-like drawing mode for creating the layout file.
Using a series of menus and a mouse, the static layout,
dynamic objects, and paths can be created.

3.4 CAD Interoperability for Design

Proof Animation is the first animation software
that enables a two-way CAD interface via the DXF file
format. A separate utility makes it possible to read in
an existing DXF file to create the background portion of
the Proof Animation layout file. This saves time in
developing the animation. Then, if changes are made in
the animation layout, the utility can produce an updated
DXF file (comprised only of the subset of CAD
primitives available in Proof Animation). The project
design team can now rely on the simulation and
animation as a timely and dependable design check. If
changes are needed, they can first be tested with the
simulation. Once a final design is achieved, the updated
animation will produce the final layout in a file that can
then be read into nearly any PC CAD system.

3.5 Smooth Motion

Smooth motion was a primary design goal for
Proof Animation, and it has been achieved with stunning
success. In most media, it is necessary to create and
recreate static images rapidly in order to create the
illusion of motion. This is, of course, the principle
behind motion pictures and television as well as cartoon
animation.

In the case of a computer and raster-based CRT
screen, or the equivalent raster-based video game, the
image is created as a set of discrete pixels represented in
video memory. For these applications, the pixel
representation must be either recreated continuously at
different locations, or saved and “blitted” to different
locations on the screen. This process must be repeated
many times per second, or the motion will appear jerky.

How fast is fast enough? Motion pictures run at
about 20 frames per second, and standard television at
about 30 frames. Simulation animation software
available in the 1980s was plagued by slow frame rates.
Due to the discreteness of the pixels and the resulting
high bandwidth images, computer displays of artificially
created objects can require even higher frame rates than
television, or the motion will appear to buzz or jerk.
The frame rates on much of the available software have
been on the order of 10 frames per second or less, while
Proof Animation has starting rates of 60 to 70 frames
per second.

When Proof Animation cannot move pixels quickly
enough to keep up with such high frame rate, the frame

Proof Animation

rate is reduced in order to maintain a constant (though
user-adjustable) ratio of animated time to “wall clock”
time. With other animation software, the apparent speed
of objects moving across the screen generally diminishes
in such circumstances. Proof Animation performs this
adjustment continuously. With Proof Animation’s high
starting frame rates, the effect of reducing the frame rate
remains visually acceptable.

4 THE LAYOUT FILE

A Proof Animation layout file contains basic
geometry and also definition information. The basic
geometry is simply the lines, arcs, fill points, and text
that make up the static background of the animation.
The definition information consists primarily of Object
Class definitions, Path definitions, Object initializations,
Message definitions, and Named View definitions.

A Proof Animation Layout file is generally
developed or completed using the mouse and saved from
Proof Animation. The format is ASCII and open, which
allows programmers to develop other software which can
read and possibly modify or create the contents of a
Layout file. However, most users should never need to
look at the ASCII contents of a Layout file

4.1 Object Classes and Objects

Among the most important constructs in Proof
Animation are the Object Class and the Object.

An Object Class is a geometric description of some
type of object, such as an automobile. A traffic model
might have five different Object Classes: Automobiles,
Trucks, Buses, Campers, and Motorcycles. In addition
to shape information, an Object Class contains a few
other properties such as physical clearances, color, and an
optional speed.

Although Proof Animation does not purport to
implement a true “object oriented” framework, it is
meaningful to call an Object an “instance” of an Object
Class. Expanding on the traffic model mentioned above,
one could have northbound and southbound cars; cars
making continuous turning movements; red, green, or
beige cars; large cars and small cars. Each of these cars
is an Object, based on the single geometric description of
an automobile. There can be an arbitrary number of
“Automobile” Objects in the system at once, but there
need be only one “Automobile” Object Class.

All of the motion and color-changing primitives in
Proof Animation operate on Objects. Most layouts are
drawn directly on the screen, and the background
geometry components cannot move or change color.
However, if movement or color change is desired, then
the appropriate components can be made into Objects.

93

4.2 Paths

The simple things the user can do with an Object
include: CREATE or DESTROY, PLACE (making it
visible), SET COLOR and SET SPEED, and MOVE
(causing the Object to move smoothly from points A to
B.) Object movement can also be achieved via a Path.
A Path is a graphically defined data structure composed
of references to parts of existing lines and/or arcs. Once
defined, Paths are saved as part of the layout file.

The more complicated things one can do with an
Object involve Paths. Actually, using Paths is very
simple, because Proof Animation does all the work. The
most commonly used Path command is PLACE [object]
ON [Path]. Once an Object is placed on a Path, it will
follow that Path until it visually comes to rest at the end
of the Path (or until it is placed elsewhere or destroyed).
Paths provide outstanding power in response to a single
trace event command.

A variant is the Accumulating Path, which offers
even more power. On an Accumulating Path, Proof
Animation reflects physical reality by allowing objects
to queue visually if there is a blockage. This often
makes a simulation model of the system much simpler
to construct, because such queueing need not always be
explicitly represented in the model. A surprising number
of systems behave in this manner, from certain types of
conveyors to supermarket checkout lanes. Paths play an
especially important part in transportation and material
handling animations.

4.3 Static Objects

Objects that represent moving entities are usually
not permanent. Such Objects are typically created in the
trace event file. However, other Objects might persist
throughout the animation. Their initial placement might
be at a coordinate location rather than on a named Path.
We call such an Object a Static Object. The layout file
can save individual Objects that are created and placed
using the mouse prior to running the animation.

The Static Objects feature was added to Proof
Animation just before final release. It serves two
important functions. First, this feature largely relieves
the simulation model of needing to deal with the
coordinates of resources depicted in the animation.
Second, Static Objects allow Proof Animation to be used
as a sort of model builder. If the relationship between
specific Object Classes and corresponding simulation
constructs can be well defined, then a user could simply
place Static Objects on the screen and save the layout for
further processing by a model generator program.

We must emphasize that Proof Animation, Release
1.0, is not a model builder. The main limitation is the

94

inability to set up custom-defined parameters that a
model-building user could modify when placing the
Static Objects. However, the Static Objects approach
offers possibilities for future enhancements.

4.4 Messages

A Message in Proof is a definitional construct. It
looks and acts similar to regular text, but the contents of
the text can be changed from the trace file. Messages are
named, placed, and saved during layout construction.
Properties such as character size, location, and rotational
orientation are saved. Messages are used for later display
of statistics or status information.

4.5 Named Views

Proof Animation supports Named Views. At any
time during layout construction or with an animation
running, a user can preserve the current View by
attaching a name to it. A View in Proof Animation
contains properties such as center point and scale factor.
Once meaningful Named Views have been defined, a
view can be accessed quickly from Draw Mode or Run
Mode.

Proof Animation provides three pre-defined Views:
Home, Class, and Previous. The Home view is used at
startup. The Class view is used during Class definition
only. The Previous view always returns to the previous
view. The Home and Class views can be modified and
re-saved.

Named Views would be unimportant in an animator
that offered only one or a few screens’ worth of
animation. However, Proof Animations can be very
large, and Named Views can be very helpful for
navigating them. Example Named Views in a particular
animation might include Loading Area, Stat Summary,
and Work Cell 12A.

S5 SUMMARY

Animation is a powerful addition to any simulation
effort. An animation benefits the modeler in
verification, validation, and presentation of results, and
helps with the overall system design process.

Simulation and animation technology is
improving. Wolverine Software Corporation is
contributing to this improvement by providing an
innovative animation package called Proof Animation.
This general purpose animator boasts many important
features. Among these features are the ability to create
presentations, an open architecture (for compatibility
with a variety of software), a CAD-like structure,
smooth motion, and powerful drawing features.

Brunner, Earle and Henriksen

REFERENCES

Brunner, D.T. and N.J. Earle. 1991. Using Proof
Animation. Annandale, Virginia: Wolverine
Software Corporation.

Brunner, D.T. and N.J. Earle. 1991. Proof Animation
CAD Translator User's Guide. Annandale,
Virginia: Wolverine Software Corporation.

Brunner, D.T. and J.O. Henriksen. 1989. A General
Purpose Animator. In Proceedings of the 1989
Winter Simulation Conference, eds. E.A. MacNair,
K.J. Musselman, and P. Heidelberger, 249-253.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Earle, N.J., D.T. Brunner and J.O. Henriksen. 1990.
Proof: The General Purpose Animator. In
Proceedings of the 1990 Winter Simulation
Conference, eds. O. Balci, R.P. Sadowski, and R.
Nance, 106-108. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHIES

DANIEL T. BRUNNER received a B.S. in Electrical
Engineering from Purdue University in 1980, and an
M.B.A. from The University of Michigan in 1986. He
has been with Wolverine since 1986, where his
responsibilities include product marketing, product
development support, training, and simulation
consulting. Mr. Brunner served as Publicity Chair for
the 1988 Winter Simulation Conference and is Business
Chair for the 1992 conference.

NANCY J. EARLE received B.S. (1982) and M.S.
(1984) degrees in Industrial Engineering from Purdue
University, where her concentration was in simulation.
She joined Wolverine as an industrial engineer in 1989.
Her responsibilities include consulting, training,
technical support, and product development support.
Previously, she worked for Corning, Incorporated as a
simulation analyst in manufacturing. While there, she
developed and taught short courses in simulation. Ms.
Earle is a member of SCS and will serve as Exhibits
Chair for the 1992 Winter Simulation Conference.

JAMES O. HENRIKSEN is the president of
Wolverine Software Corporation. He is a frequent
contributor to the literature on simulation and has
presented many papers at the Winter Simulation
Conference. Mr. Henriksen served as the Business
Chairman of the 1981 Winter Simulation Conference and
as the General Chairman of the 1986 Winter Simulation
Conference. He has also served on the Board of Directors
of the conference as the ACM representative.

