Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIMULATION OF COMPUTER SYSTEMS AND NETWORKS WITH MOGUL AND REGAL

Peter L. Haigh

High Performance Software, Inc.
4288 Upham Road
Dayton, Ohio 45429

ABSTRACT

MOGUL(TM) and REGAL(TM) are easy to use,
powerful tools for simulation modeling of com-
puter systems and communication networks. Using
MOGUL and REGAL along with Wolverine Soft-
ware’s GPSS/H and PROOF, the user gets a com-
plete environment for building computer system and
network models, running simulation experiments, and
evaluating results. Animation of the graphical output
is supported. Graphical input specification of the pro-
cessors, devices, and networks in a model will also be
possible in an upcoming release.

1 INTRODUCTION

MOGUL (MOdel Generator with User Leadthrough)
is a package for rapid generation of simulation models
of computer systems and computer communication
networks. REGAL (REport Generator And Lister) is
a companion program to MOGUL for quick inspec-
tion of simulation results. When used with GPSS/H
and PROOF, MOGUL and REGAL comprise a pow-
erful set of tools for the system performance analyst.
(GPSS/H and PROOF are products and trademarks
of Wolverine Software Corporation)

MOGUL and REGAL are available from High Per-
formance Software, Inc. on a personal computer DOS
platform and on selected UNIX platforms (Unix is a
trademark of ATT).

2 OVERVIEW

MOGUL provides an expandable repertoire of pro-
cessors, peripheral devices, and communication links.
The user picks the desired type of object for each
processor, device, and link in the model using a se-
ries of menus. Activity flow in the model is specified
using an easy to use interactive editor, complete with
on-line help for the high-level activity description lan-

86

guage. The user indicates the amount of simulation
time for the startup period and the run time. When
the model definition is complete, MOGUL generates
a complete GPSS simulation program. The GPSS/H
compiler is used to compile and execute the simula-
tion. REGAL may then be used for a quick inspec-
tion of selected statistics from the simulation output.
An animation of the simulation may also be run on a
personal computer.

Using MOGUL and REGAL for simulation model-
ing of computer systems and networks gives the user
the following advantages:

e Productivity. MOGUL is extremely easy to use.
The productivity of the MOGUL/REGAL pro-
cess, compared to the task of writing a simulation
program using a general purpose simulation lan-
guage, is on the order of fifty to one (Bornhorst
and Haigh, 1986).

e Predefined Objects. No programming is neces-
sary to model processors, devices, and commu-
nication links. Simulation code is included.

o Communication Protocols. Most link level pro-
tocols are provided with the package, including
BiSync, SDLC/HDLC/X.25, CSMA/CD (Eth-
ernet et al.), Token Ring, SCSI Bus, and several
others.

e High-level Language. The user codes activities in
the model using a powerful high-level language,
which is specifically designed for simulating com-
puter system components, including software.

o User Friendliness. The menus and screens are
human engineered, with on-line help and error
checking during user input.

o Reliability. The simulation code for the standard
system components has been used and tested in
many models. This makes MOGUL generated
models highly reliable.

Simulation with MOGUL and REGAL

¢ Animation. An animation of the simulation out-
put may be viewed using Wolverine Software’s
PROOF. Animation is useful for model verifi-
cation (debugging), demonstrations, and greater
understanding of the simulation systems.

o User-Defined Objects. The user may extend or
modify the repertoire of processors, peripheral
devices, and communication links. All defini-
tions are in an editable text file.

o User Simulation Code. The user may code pro-
cesses is GPSS which are not supported by the
MOGUL primitives. This code may then be in-
cluded with a MOGUL generated model.

o Any Level of Detail. Although a model my be de-
fined at a high level, the path definition language,
coupled with the ability to add GPSS code, per-
mits any level of detail to be built into a model.

o Language Ezxtensions. The high-level language
may be extended to include new statement types
created by the user.

3 THE MOGUL WORLD VIEW

MOGUL views the world (to be simulated) as consist-
ing of processors, peripheral devices, and communica-
tion links. These are types of objects whose behavior
may be described by parameters. The parameters
represent time delays for such things as transfer rate,
latency, etc. and flags to indicate such things as “is it
a disk?”, “does it have a cache?”, etc. The repertoire
of objects is described in a text file, which may be
edited by the user. The code to simulate these three
basic object types is included in the package.

In addition to these three types of objects, there
are constructs called activity paths. The activity
paths consist of statements in a high-level language.
The activity specified by each statement may be such
things as “use 3 msec of cpu time”, “send a message
to cpu #3”, “write 512 bytes to disk 2”, etc. There is
no limit (except the host machine’s memory) to the
number of activity paths the user may define, or to
the length of any path.

The final element to complete the world view is
a dynamic object called a message. When the sim-
ulation begins, messages begin flowing down one or
more of the activity paths. As a message encounters
a statement, it causes that activity to be simulated.
There may be any number of messages in the model
at a given time. Messages may be created automati-
cally, where the user specifies the mean of a Poisson
interarrival process. Messages may also be created by
other messages by executing a “spawn” statement.

87

MOGUL
NAME. [mode | OUTPUT. [model gps
DESCRIPTION. | Test Mogs!] [Device # 3

MODE. [New mODEL [OLD MODEL | LI8T MODEL|GP88 CODE | BA/E
ENTITY: proceasons LINKS DEVICES |ACT. PATHI |AUN CNTAL

ACTION. | Abo/CHANGE J [oeete

DEVICE TYPE NAME ARILABLE DEVICE TYPEQ

<2 6 DIgk,30ms gsek,Intlv 1 gt %Iu mt.t:(dio)

« 3> . . » Casse 8uUato;

8 22 ESDi Diski30ms seek; <3 Printer (oharsoter)

«4» 8C8I Diuk;30me seak;i
«& 8C8I Disk;50ma sesk;i
«@ Disk;30ms saekntlv %
< Head per track diek

[HIT [ENTER] FOR NEXT PAGE, {ESC] TO EXIT)

Figure 1: MOGUL Menu—Defining Devices

4 BUILDING A SIMULATION MODEL

From the MOGUL top menu, the user may define a
new model, print a hard copy of the current model,
produce GPSS source code, or save the current model.
The menus begin user interaction near the top of the
screen, and progress downward as menu choices are
selected. Thus, a trace of the choices made to arrive
at the current menu screen is evident.

4.1 Objects

A repertoire of basic object types is provided from
which the user builds the simulated system.

4.1.1 Selecting the Objects

Menus are provided for instantiating the processors,
peripheral devices, and communication links to com-
plete the block diagram of the simulated system. Fig-
ure 1 shows a replica of the display seen during the
definition process. In the example, the user is modi-
fying an existing model [OLD MODEL]. The device
definition menu has been selected [DEVICES]. The
user is adding a new device to the model or changing
an existing device definition [ADD/CHANGE]. Near
the top, the current or last device to be affected by
user input is displayed [DEVICE #3]. Similar menus
are used for selecting processors and communication
links.

4.1.2 Graphic Object Definition

With Release 2, the user may alternately choose to
lay out the system diagram graphically, i.e., using
PROOF and a mouse. The PROOF diagram can then
be interpreted by MOGUL and incorporated into the

88

MOGUL
NAME: [model | OUTPUT: [model gps
DESCRIPTION: [_Test Modsl] [_ACT PATH # 1

MQDE: [New MODEL [0LD MODEL | LIaT MODEL |3P88 CODE | SAVE
ENTITY. proceEssoRrs LINKS DEVICES AGT. PATHS ||AUN CNTAL

ACTION: [apo/cuange | | DELETE]
Path # [1} SYSTEM INQUIRY

<P XMT] 1 SEND MSG TO CPU 1
<2> BTHRD 1 [CAP = 1] SINGLE THREADED PATH
«3» PRO 26 26 MSEC CPU TIME

READ INDEX J

b4 1OP 1 RND K
READ DATA BLOCK

<& 10P 1 RND 1K
<6 PRO 30 PREPARE QUTPUT MESSAGE
«7> ETHRD 1 END OF SNGL THD PATH

PATY(10 J]MAX #[1000000] CPU ORGN(0][COMM MSG LNGTH[260)
NTER-ARRIVAL TIME (210] (MSEQC)

ADD DELETE[] |[MENU_[[INITIALIZE] [HELP]

UP[] OOWN[1] [VIEW EXIT

Figure 2: MOGUL Menu—Activity Path Entry

model. The user may then request a trace file to be
produced by the simulation to drive the animation.

4.2 Defining Activity Paths

A replica of the screen display when editing activity
paths is shown in Figure 2. The top part of the screen
is similar to the object definition menus. We can
see that the user is modifying an old model called
“Test Model” and that Activity Path 1 is currently
being edited [ADD]. Path statement 4 is highlighted,
indicating the current cursor position. Additions or
deletions would occur relative to this point.

From this menu, the user may move the cursor, add
or delete path statements, page forward or reverse,
view a larger portion of the path in an expanded win-
dow, set the initial conditions for a message entering
the path, or obtain help for the activity description
language. Automatic syntax checking is performed
as new statements are added to the path. Additional
error checks are performed when the GPSS code is
generated to head off possible run time errors.

4.2.1 Language Flexibility

The design of the MOGUL high-level activity-
description language permits a great amount of flexi-
bility. A complete description of the language is avail-
able from the author.

Registers One hundred general purpose registers
are provided, with a full set of arithmetic operations.
These may be used for flow control through testing

Haigh

and skipping operations. Register values may also be
specified for any operand requiring a numeric value.
This permits dynamic indirect addressing. For exam-
ple, “PRO R5” means process (use the cpu) for the
number of milliseconds in Register 5.

User Code MOGUL will accept any statement
with the op-code USRx, where x is an integer, with-
out checking the syntax. To cause a message to
branch from an activity path to a user written GPSS
routine labeled USR23, for example, one needs only
to enter USR23 as the statement in the activity path.
Parameters may be passed to the user routine and
the message may be returned to the activity path at
the user’s discretion.

5 EXTENDING MOGUL

The user may extend MOGUL by adding processor,
peripheral device, and communication link types. In
addition, the user may create new statement types
for the activity description language used for the ac-
tivity paths. User-written model segments may also
be included with a MOGUL generated model.

5.1 Defining New Object Types

The types of processors, peripheral devices, and com-
munication links are defined in a text file. The def-
initions consist of time values for various operations
characteristic of the object type. Processors, for ex-
ample, are characterized by the cpu execution time
required by device drivers and interrupt handlers. A
peripheral device may have a start up time, latency,
data transfer rate, etc. To create new object defi-
nitions, or modify existing definitions, the user may
edit the definitions file with any text editor. Utiltiy
software is provided with MOGUL to assist the user
with this process.

5.2 Defining New Protocols

If a protocol to be added is a variation of an exist-
ing protocol (i.e., it differs from an existing proto-
col merely by a difference in parameter values), it
may be added to the prtocol list by editing the def-
initions file. If the protocol logic itself is new, then
code must also be added. By modifying the defini-
tions file and following the coding interface rules, the
user may completely integrate new protocols into the

MOGUL repertoire.

Simulation with MOGUL and REGAL

5.3 Extending the Language

The syntax for each statement type, or verb, is con-
tained in the definitions file. New statement types
may be added to the repertoire by editing the file
and following the definition format. An entry speci-
fies an operation code, the minimum and maximum
number of operands, default operand values, expres-
sion types permitted for each operand, and text for
on-line help.

6 REGAL

REGAL may be used to examine the statistics from
a simulation run. REGAL parses the GPSS/H out-
put file and generates a set of structures contain-
ing the major statistical information. The user may
view resource utilizations, queue statistics, various
model variables (i.e., GPSS savevalues), and table
data. This process allows one to quickly peruse the
results in a convenient screen format, rather than the
wrap-around line printer format. REGAL can also
produce coarse distribution graphs of response time
or transit time data.

6.1 Snapshots

REGAL can produce a graph of a model variable over
time by taking the value from a series of snapshop
statistical reports produced during a run of a model.

6.2 Multiple Run Graphs

REGAL can produce a graph of a model variable as a
function of the simulation run. For example, assume
a series of simulation runs of a model is made. With
each run, the processing load on the modeled system
is increased. The simulation outputs are saved in
filel, file2,..., etc. REGAL can then pick a model
variable value from filel, file2, etc., and graph it. The
result is the variable value as a function of processing

load.

7 ANIMATION

Animation is a powerful tool for analyzing simulation
results. Each change of state of a system may be
observed, if desired. The primary applications are
1) debugging and verifying the model, 2) gaining a
better understanding of the system behavior, and 3)
demonstrations and presentations.

Several standard system configurations are avail-
able for automatic display. The real power of the an-
imation feature, however, is the ability of the user
to draw the system diagram using PROOF. Some

89

objects which may be animated are processors, pe-
ripheral devices, communication links, queues, and
response times. The user selects the objects to be
animated, and MOGUL automatically displays rele-
vant information according to the class of object (i.e.,
processor, communication link, etc.).

8 CONCLUSION

MOGUL and REGAL, in conjunction with GPSS/H
and PROOF, provide a powerful and productive en-
vironment for simulating computer systems and net-
works.

REFERENCE

Bornhorst, E, and P.L. Haigh. 1986. A user friendly
environment for simulating computer systems. In:
Modeling and Simulation on Microcomputers, ed.
C.C. Barnett. 1986 Society for Computer Simula-
tion Multiconference.

AUTHOR BIOGRAPHY

PETER L. HAIGH is founder and president of
High Performance Software. He has been active in
the simulation community for many years and has
authored papers on simulation and computer system
performance topics. He was General Chairman of the
1988 Winter Simulation Conference.

