Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

GPSS/H IN THE 1990s

Daniel T. Brunner
Robert C. Crain

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003

ABSTRACT

The 1980s were a decade of change in the discrete
event simulation software industry. Simulation
languages have been joined by animators, by “packages,”
and by “simulators” in the simulationist’s bag of tricks.
The expanding array of available tools reflects
recognition by the marketplace that the simulation “user”
may be an executive, an operations manager, a project
engineer, a simulation engineer, a programmer, Or a
CAD operator. Each individual brings a different set of
skills and expectations to the table. In this paper, we
distinguish the “simulation end user” from the
“simulationist,” recognizing that these may sometimes
be the same individual.

For a language product such as GPSS/H, this new
environment presents challenges. However, the use of
discrete event simulation languages has continued and
has probably increased, even while the non-language
tools have flourished. Many applications seem better
suited for the language approach. In this paper, we
describe the history of GPSS/H and the role of GPSS/H
in the 1990s environment. We detail several near-and
medium-term enhancements to GPSS/H that will
strengthen this popular language during the coming
years.

1 SIMULATION SOFTWARE IN THE 1980s

1.1 Languages

The decade of the 1980s began with four major
languages having 1960s roots—SIMSCRIPT, GPSS,
SLAM (descended from GASP), and SIMULA—and no
other commercial discrete simulation software to speak
of. However, by the end of the 1980s, there had been a
tremendous flowering of products. Among simulation
languages, GPSS had splintered into at least five separate
implementations, supported by as many vendors.
SIMAN had grown from birth to a major language.

81

Thanks in part to animation, simulation languages
were at least as widely used in 1990 as they were in
1980. In some fields, such as manufacturing, the use of
simulation languages mushroomed. Although languages
are not directly useful to some simulation end users
(executives and operations managers), there are plenty of
engineers and analysts who prefer the language approach.
1.2 Animation
The news of the 1980s, however, lay not with the
languages but with other simulation software.
Beginning with SEE WHY, AutoMod, and GPSS/PC,
and continuing with PC Model, Cinema, and TESS,
there were at least six animation programs commercially
available by the end of 1985. Purists (including, we
must say, Wolverine) scoffed at the idea that pretty
pictures (in some cases not so pretty) could add anything
meaningful to the statistical science of simulation. But
the purists were wrong, and now are few and far between.
Animation has heightened interest in simulation among
managers, has made simulationists more effective
promoters of their ideas, and has even, in our opinion,
become a significant tool for model verification and
validation. With Wolverine’s release of Proof
Animation in 1991, every major discrete event
simulation software vendor offers animation.

1.3 Packages

The other revolution in the 1980s was the birth of
the “package” genre. We contrast the term “package”
with the term “simulator,” preferring to use the latter
term to describe simulation tools that are tied to a
particular narrow application, perhaps even to a single
application or project (see below).

The packages are characterized by software interfaces
that hide the underlying language (if there is one), and by
promotional claims that “no programming is required.”
The intent seems to be to involve the busy manager or

82

the harried project engineer directly in simulation
without the time commitment necessary in the past.
Some packages try to help the simulation end user to
become the simulationist, while others are engineering
tools intended only to save a simulationist’s time.

The real package revolution is still underway,
having begun in the latter half of the 1980s. Some
packages were built from scratch, but most derive either
their concepts or their underlying engine from previous
efforts. Packages introduced during the 1980s include
XCELL, Witness, AutoMod II, SIMFACTORY, and
ProModel. (We do not use the term “package” for tools
that are really just graphical program editors in which
individual statements are depicted as boxes on the screen.
Some level of conceptual aggregation is necessary in
order to have a “package.”)

The pitfalls of packages are well known. They
include added difficulty in programming complex
constructs due to the trading of flexibility for ease of use;
hidden assumptions that can render models invalid
without suspicion by the user; and difficulty in
validation due to lack of debugging tools. Still, it is
safe to say that packages will continue to gain popularity
assuming that vendors strive address these concemns.

1.4 Simulators
1.4.1 Tailoring the Model

When a simulationist develops a model and turns it
over to the model end user for experimentation, he or she
has delivered a simulator. Although it is a goal of most
packages to “be” the completed model right out of the
package, some development work is nearly always
necessary in order to tailor the model for the situation at
hand. It is impossible for a simulation software vendor
to anticipate all possible scenarios. For a typical
application, development work is necessary to create a
simulator using either a language or a package.

The simulationist will have to do the work of
tailoring the specific model. This raises several
questions about how difficult it is to tailor the package
or language. Must one (one should also ask, can one)
program in FORTRAN? In a simulation language? By
dragging boxes with a mouse? Is it even possible at all
to tailor the model in the necessary ways? The answers
depend on the simulation software.

1.4.2 Tailoring the End User Interface

Another component to a simulator is the interface
presented to the model end user. Some software tools
use the same interface for the simulationist and for the
end user. This means that the end user has access to

Brunner and Crain

simulation primitives that may be confusing, no matter
how “easy” the package is to use.

In all likelihood, the simulator end user only wants
to change some data, or toggle among operational
algorithms that have been pre-defined by the software
vendor or by the simulationist (as described above).
(Unless the end user is also the simulationist, it is not
reasonable to expect the end user to create new
algorithms. Algorithm description is programming, no
matter how you do it or what you call it.)

If we restrict the end user to changing data or
toggling among pre-defined algorithms, then most
simulation tools can be used as simulators, given
sufficient model development resources. We have seen
various GPSS/H-based simulators that operate in any
one of four modes:

(1) The end user edits a data file

(2) The model automatically queries a data file that
has been updated in another context (this
technique is used with models that are used for
“day-to-day” operational decision making)

(3) The end user supplies data and parameters
through a question-and-answer interface

(4) The end user supplies data and parameters
through a forms-like user interface, which may
or may not be mouse-driven

Case (4) is what many packages aspire to be “out of
the box” for a particular application area. (Whether they
succeed depends on the package and on the application.)
Some of the slickest simulation applications we have
seen use a forms-like interface to let a non-simulationist
operator run a sophisticated language-based model of a
particular system. Model development time is still an
issue, which restricts the scope of potential applications
somewhat. Software vendors must continue to strive to
make building complex models—and the user interfaces
that control them—a faster process.

1.5 All of the Above

The 1990s will see a blurring of the lines among
languages, animators, packages, and simulators. Every
vendor will push in the direction of providing quality
implementations of all four capabilities. However, it is
not easy to be all things to anyone. One has only to
look at the limited success of the so-called “integrated”
business applications (word processor, spreadsheet,
database, etc., all rolled up into one program).

Multitasking, interapplication communication, and
dynamic data exchange have begun to assert themselves
in he IBM PC-compatible world. Soon it will be much
easier to create a complete end user simulation

GPSS/H in the 1990s

application in which multiple, interoperable tools are
brought to bear on the model-building, end user interface,
animation, and simulation engine parts of the problem.

2 GPSS/H IN THE 1980s

A history of GPSS/H in the 1980s is also a history
of Wolverine. GPSS/H and Wolverine began the 1980s
as a one-person operation. The first commercial version
of GPSS/H was licensed (to General Motors) in 1977,
and word of mouth brought a trickle and later a small
stream of mainframe GPSS users who were hungry for
the efficient execution offered by GPSS/H. By the end
of the 1980s, GPSS/H was a major language in its own
right, and Wolverine was a major vendor.

2.1 Platforms

GPSS/H milestones in the 1980s were largely
platform-based. Wolverine hired its second employee in
1981, and also acquired a VAX computer. Thanks to the
trend toward departmental computing, the VAX was
expected to play a significant role in analytical
computing, which it eventually did.

By 1983, VAX GPSS/H was shipping. Soon
thereafter, Wolverine turned its attention to the new
engineering workstations. Another simulation software
vendor wanted to use GPSS/H as the engine for a
workstation-based product. By 1986, GPSS/H was
available for Silicon Graphics, Sun-3 and Apollo
workstations, and for Integrated Solutions and NCR
multiuser Unix-based microcomputers. All of these
boxes used Motorola 68000 family processors.

But in 1986 and 1987, potential customers were
only rarely asking for workstation simulation software.
They wanted products to run on the IBM PC. So, in
1988, Wolverine introduced Personal GPSS/H. Limited
by the 640K DOS memory ceiling, Personal GPSS/H
gained momentum steadily but slowly. In 1989
Wolverine introduced Student GPSS/H, a full-speed, full-
featured, limited-size modification of Personal GPSS/H,
which is now available with either of two tutorial books.

Thanks to the emergence of “DOS Extender”
technology, Wolverine in 1990 introduced a large-
memory 32-bit version GPSS/H running under MS-DOS
on 80386, 80386SX, and 80486 computers. GPSS/H
386 has quickly become very popular. We are very
pleased to have permanently avoided 16-bit OS/2 1.x.

2.2 Features
When mainframe GPSS/H reached the 1.0 release

designation in 1981, it contained the following basic
enhancements over GPSS V:

83

* Built-in File and Screen I/O

+ Use of any arithmetic expression as a Block
operand

* Interactive debugger

+ Improved External Routine Interface

» Dramatically faster execution

+ Expanded Control Statement Language

* Ampervariables

GPSS/H Release 2.0, which appeared on various
machines between 1986 and 1989, added several key
enhancements:

» Floating Point Clock

« Built-in Math Functions

* Built-in Random Variate Generators

* Indexed Lehmer Random Number Generator

3 GPSS/H IN THE 1990s

As we move into the early *90s, GPSS/H is ready
for more enhancements.

3.1 Language Features

Two key language features top users’ lists: More
Functional Assembly Sets, and Modifiable Function
Definitions.

3.1.1 Assembly Set Extensions

GPSS has long offered Assembly Sets for managing
grouped or batched transaction entities. If two or more
transactions are part of the same Assembly Set, they can
be automatically gathered (using GATHER) at a single
point for simultaneous release (e.g. in a case palletizing
system), or automatically consolidated into a single
Transaction (using ASSEMBLE) (e.g. printed circuit
boards being batched for transport). Two “siblings” can
also wait at different points in the model for each other
using a MATCH Block (e.g. in a communication system
model).

Unfortunately, there is only one way for GPSS/H
Transactions to become members of an Assembly Set,
and that is through a SPLIT Block. A SPLIT Block
creates one or more “children” that are in the same
Assembly Set as their “parent.” This means that two or
more Transactions that come from any GENERATE
Block can never be “siblings.” Assembly Set
membership cannot be changed after the SPLIT
operation. This lack of flexibility has apparently caused
many users to avoid the built-in Assembly Set
capabilities of GPSS/H in favor of a “roll-your-own”
approach.

84

Relief, in the form of more flexible GPSS/H
Assembly Sets, is on the way. At this writing, three
proposals are on the table. One is to have a special
MATCH, GATHER, and ASSEMBLE based on Group
membership. Another is to allow direct modification of
the Assembly Set number of a Transaction. Finally, it
might be possible to MATCH, GATHER, or
ASSEMBLE based on a Transaction Parameter.

3.1.2 Function Re-definition

GPSS/H provides a well-known method for
specifying discrete or continuous-valued (interpolated)
user-defined Functions. Given an expression (often a
random number sample) to use as the argument, and a
list of X-Y pairs, GPSS/H will return the appropriate Y
value (interpolated, in the case of a continuous Function)
each time the Function is used in the model.

Functions are commonly used to represent inverse
cumulative distribution functions for sampling from an
empirical (non-fitted) probability distribution. (The old
use of Functions to provide approximations for
continuous fitted distributions is obsolete for
distributions supported directly in GPSS/H.)

Unfortunately, Functions lose their luster if the
empirical distribution is changing over time. Many
users have requested the ability to change the list of X
values “on the fly” (this can already be achieved for the Y
values). Through “Function redefinition,” GPSS/H will
soon offer this capability. Using a new statement
(probably (B)REBUILD), it will be possible to specify
new X- and Y-lists (probably by giving the names of
Ampervariable arrays).

3.2 Operating Platform

As PC system software makes the step-by-step
transition from awkward 16-bit environments (MS-DOS,
0S/2 1.x, Windows 3.0) to workstation-like 32-bit,
large-memory systems (DOS Extenders, OS/2 2.0,
“Win32,” Unix, etc.), software developers must continue
to adapt. Each new event (the release of MS-DOS 5.0 is
an example) changes the ground rules for users of large
memory software.

A main concern is to make Personal GPSS/H and
GPSS/H 386 compatible with Windows—to the same
extent as other text-mode DOS applications are
compatible with Windows. This is not a problem for
Personal GPSS/H, but has presented challenges for
GPSS/H 386 because standards for managing conflicting
demands for extended memory have only just begun to
settle down. GPSS/H 386 needs to access this memory,
as does Windows 3.0 in 386 Enhanced Modc and also as
does MS-DOS 5.0.

Brunner and Crain

By publication time, GPSS/H should be able to run
under any Windows mode in conjunction with current
versions of MS-DOS. This will be a major boon for
GPSS/H users who are Windows devotees.

Soon we hope to allow GPSS/H 386 to share data
with Windows applications via the Windows clipboard.
We are particularly interested in allowing GPSS/H 386
to pass output data directly to Windows-based external
analysis and graphics programs such SIMSTAT.

Further into the future is a Windows-based GPSS/H
implementation with a redesigned debugger/monitor
interface including graphical display of system internals.

3.3 Data Handling

GPSS/H should soon offer more tools for input
modeling and output analysis.

3.3.1 Input Modeling

For those who like to fit raw data sets to closed-
form continuous distributions (e.g. Exponential,
Weibull, Gamma), third-party packages such as Unifit II
can help with the fitting operation. Once a closed-form
distribution has been identified, users seek the quickest
method for incorporating the distribution into a model.

GPSS/H has lagged in supporting a wide array of
closed-form distributions. However, we expect to offer
either direct or indirect support for nearly every
distribution in Unifit IT in the very near future.

3.3.2 Output Analysis

GPSS/H automatically collects a variety of standard
statistics, and can be made to gather just about any kind
of statistical observations. The problem with most
simulation languages is that with any model of
meaningful size, there are so many individual data points
that they must be aggregated while the simulation runs.

What does this aggregation mean? Consider
GPSS/H Queues and Storages. GPSS/H will report
(among other things) the total number of entries, the
average contents, and the average time per transaction.
However, these are summary statistics. GPSS/H Tables
Tables can place raw observations in “bins,” preserving
enough information to create a histogram with a fixed
format, and also reporting the mean and standard
deviation. Still, these are summary statistics.

For time-varying statistics such as the contents of
Queues, User Chains, or Storages, or for non-time-
dependent output random variables such as Time In
System, we need a way to preserve enough information
to do more exhaustive statistical analysis and graphing.
In short, we need to preserve each raw observation.

GPSS/H in the 1990s

One can do this now by placing raw observations of
a particular output variable into an array for later use, or
directly into a file using (B)PUTPIC. However, this
doesn’t allow much analysis flexibility after the model
has run. So, we are looking into ways to track
voluminous output observations so that they can be
easily exported, graphed, and analyzed during or after
model execution. With a powerful analysis and graphing
tool such as SIMSTAT running under Windows
alongside GPSS/H, such analysis features as instant
confidence interval calculation or quick autocorrelation
analysis will be only a mouse click away.

3.4 Other Language Enhancements

Another enhancement is a new technique for
declaring the number of Parameters in Transactions.
Instead of requiring users to specify this at every
GENERATE Block, it will be possible to change the
system default by using a REALLOCATE statement
such as REALLOCATE PH,4,PL.,8. This will make
GPSS/H not only easier to use but also easier to teach.

A new compiler directive, INCLUDE
FILE=filename, will allow source to be pulled in from
another file and included at compilation. This will be
useful for Macros (Proof ATF generators, code libraries,
etc.) and for externally generated probability
distributions, especially lengthy empirical C-Type
Functions, and probably for many other things that we
have not thought of yet.

A new Standard Numerical Attribute will expand the
already impressive built-in character handling capabilities
of GPSS/H. The CHR() SNA will convert any integer
from O through 255 to a Character data type.

4 SUMMARY

GPSS/H is a living language. Enhancements that
improve the tool are a constant goal. All simulation
software is moving inexorably in the direction of more
sophistication. Users will expect speed, flexibility,
animation, model building, and user interface building
capabilities in every tool. GPSS/H is well positioned,
through planned near- and medium-term improvements,
to maintain its role as a powerful, state-of-the-art
simulation tool in this environment.

REFERENCES

Banks, Jerry. 1991. Selecting Simulation Software. In
Proceedings of the 1991 Winter Simulation
Conference, eds. B.L. Nelson, W.D. Kelton, and
G.C. Clark. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

85

Banks, Jerry, J.S. Carson II, and J.N. Sy. 1989.
Getting Started With GPSS/H. Annandale,
Virginia: Wolverine Software Corporation.

Blaisdell, W. 1991. SIMSTAT for Windows 3.0 User's
Manual. Troy, New York: MC? Analysis
Systems.

Brunner, D.T., N.J. Earle, and J.O. Henriksen. 1991.
Proof Animation: The General Purpose Animator.
In Proceedings of the 1991 Winter Simulation
Conference, eds. B.L. Nelson, W.D. Kelton, and
G.C. Clark. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Crain, R.C. and D.T. Brunner. 1989. Extended
Features of GPSS/H. In Proceedings of the 1989
Winter Simulation Conference, eds. E.A. MacNair,
K.J. Musselman, and P. Heidelberger, 249-253.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Crain, R.C. and D.T. Brunner. 1990. Modeling
Efficiently With GPSS/H. In Proceedings of the
1990 Winter Simulation Conference, eds. O. Balci,
R.P. Sadowski, and R. Nance, 89-93. Institute of
Electrical and Electronics Engineers, Piscataway,
New Jersey.

Henriksen, J.O. and R.C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Annandale,
Virginia: Wolverine Software Corporation.

Schriber, T.J. 1991. An Introduction to Simulation
Using GPSS/H. New York: John Wiley & Sons.

AUTHOR BIOGRAPHIES

DANIEL T. BRUNNER received a B.S. in Electrical
Engineering from Purdue University in 1980, and an
M.B.A. from The University of Michigan in 1986. He
has been with Wolverine since 1986, where his
responsibilities include product marketing, product
development support, and simulation consulting. Mr.
Brunner served as Publicity Chair for the 1988 Winter
Simulation Conference and is Business Chair for the
1992 conference.

ROBERT C. CRAIN has been with Wolverine
Software Corporation since 1981. He received a B.S. in
Political Science from Arizona State University in 1971,
and an M.A. in Political Science from The Ohio State
University in 1975. Among his many Wolverine
responsibilities is that of lead software developer for all
PC and workstation implementations of GPSS/H. Mr.
Crain is a member of IEEE/CS, SIGSIM, and ACM.
He served as Business Chair of the 1988 Winter
Simulation Conference and is General Chair of the 1992
Winter Simulation Conference.

