Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIMSCRIPT II.5 AND MODSIM II: A BRIEF INTRODUCTION

Dr. Edward C. Russell

Russell Software Technology
1735 Stewart Street
Santa Monica, California 90404

ABSTRACT

The SIMSCRIPT I1.5 and MODSIM II programming
languages are described. SIMSCRIPT II.5 with its
integrated graphical interface, SIMGRAPHICS, sub-
stantially reduces time and effort in simulation model
development. Its English-like syntax improves read-
ability of the code and. substantially reduces the need
for documentation. MODSIM 1II is a modern object-
oriented language with built-in support for simulation
that also has an integrated graphical interface. It is a
compiled language which is available for most systems
including mainframes, work-stations and PC’s.The
built-in object-oriented constructs of MODSIM II in-
clude single and multiple inheritance, dynamic bind-
ing of objects, polymorphism, data abstraction and
information hiding.

1 INTRODUCTION TO SIMSCRIPT II.5

SIMSCRIPT I1.5 is a well established, standardized,
and widely used language with proven software sup-
port. It assists the analyst greatly in the formulation
and design of simulation models and gives the pro-
grammer and analyst a common language for describ-
ing the model. The benefits of using SIMSCRIPT I1.5
can be felt at all stages in the development of a model,
including;:

The powerful “world-view” consisting of Entities,
Attributes, and Sets provides a natural conceptual
framework in which to relate real objects to the
model.

The modern, free-form language contains struc-
tured programming constructs and all the built-in
facilities needed for model development. Model com-
ponents can be programmed so as to clearly reflect
the organization and logic of the modeled system.

A well-designed package of program testing facili-
ties is provided. Tools are available to detect errors
in a complex computer program without resorting to

62

memory dumps and other archaic means.

The SIMSCRIPT program structure allows the
model to evolve easily and naturally from simple to
detailed formulation as more information becomes
available. Many modifications, such as choices of
set disciplines and performance measurements are
simply specified in the program preamble in a non-
procedural manner. Animation and presentation
graphics can even be changed without program mod-
ification.

The powerful English-like language allows for mod-
ular implementation. Because each model compo-
nent is readable and self-contained, the model listing
can be understood by the end-user who may not be
at all familiar with programming. Because the de-
tailed model documentation is the program listing, it
is never obsolete or inaccurate.

1.1 Overview

The purpose of a simulation must be clearly articu-
lated before embarking on model development. Many
modelling efforts have been doomed to failure, be-
cause a clear goal was never determined. The natural
tendency is to model in great detail that part of the
system which is well understood and “sweep under
the rug” or over-simplify those parts which are not
understood. The detailed model of the well under-
stood parts yields many lines of model code and gives
the illusion of great progress, when in fact, a much
smaller model of the entire system may actually be
of much greater value. In general, a model is an ab-
straction of the real system under study. It is not
necessary or even desirable to include all of the de-
tails of the actual system. Deciding which details are
essential and which may be omitted for the purposes
of the study is perhaps the most difficult task which
the modeler faces.

Without its world-view, SIMSCRIPT II.5 would
be just another programming language, albeit a very
powerful one. But with its world-view, the modeler



SIMSCRIPT I1.5 and MODSIM II

is guided in the formulation of a complete specifi-
cation of the problem. The objects in the real world
map very naturally into the SIMSCRIPT I1.5 objects,
which break down into classes termed TEMPORARY
ENTITIES, PROCESSES, and RESOURCES. (All
capitalized words are part of the SIMSCRIPT II.5
vocabulary.)

Any entity may have ATTRIBUTES which give it
individual characteristic values. While all instances
of a particular entity class have the same named at-
tributes, each instance has its own values for the
attributes. In addition, entities may be organized
into SETS in order to represent any type of ordered
list with various ordering disciplines (FIFO, LIFO, or
RANKED by any combination of attribute values).

After the static structure of the model has been de-
scribed, the dynamic aspects are described in terms
of process routines. Each process routine corresponds
to a declared process entity. Very natural commands
are employed for manipulating objects in the pro-
cess routines. Processes may WORK or WAIT for
a period of simulated time. They may be FILEd
in sets or REMOVEd from them They may ACTI-
VATE, INTERRUPT or RESUME one another. Pro-
cesses may REQUEST or RELINQUISH resources,
automatically waiting for those which are unavailable
when requested and automatically starting other pro-
cesses when relinquishing unneeded resources.

Animation in SIMSCRIPT II.5 is a very natural
extension of the established world-view. Entities may
be declared to be GRAPHIC in order to participate
in animated displays. The actual form of the display
(the so-called “icon”) is described through the use of
an editor and may be changed independently of the
model.

1.2 SIMSCRIPT II.5 Language Features

SIMSCRIPT II.5 is a complete programming lan-
guage. In addition to its simulation modelling ca-
pabilities, it has a full range of input/output capabil-
ities including the ability to specify either formatted
or freeform input, screen-oriented output (including
cursor placement). generalized reports which may
expand to multi-page width as well as length. The
TEXT mode of variable declaration permits very gen-
eral text manipulation of character strings of arbi-
trary length, including operations such as concatena-
tion, substring search and replace, case change, etc.
The entity/attribute/set structure mentioned
above is an extension of a very powerful underlying
data structure. Arraysin SIMSCRIPT II.5 may be of
any dimension whatever, without limit. The alloca-
tion of storage for the arrays occurs during execution

63

and arrays may be deallocated and reallocated with
different dimensions.

The support of the representation of statistical
phenomena is extensive. Generators exist for ran-
dom numbers distributed according to uniform, in-
teger uniform, normal, lognormal, exponential, beta,
gamma, Erlang, Poisson, binomial, triangular, and
Weibull distributions. If these are not sufficient, an
arbitrary numerical distribution is available to de-
scribe any distribution as a table of values versus
probability (individual or cumulative).

The collection of data in the form of statistical per-
formance measures is supported by three very power-
ful statements: ACCUMULATE, TALLY, and COM-
PUTE. ACCUMULATE and TALLY update statis-
tical counters as the variable of observation changes
values. Then only when the results are needed are the
final statistical calculations performed. The measures
available include number of samples, sum, average,
maximum, minimum, standard deviation, variance,
sum of squares and mean square. ACCUMULATE
performs these calculations on a time-dependent ba-
sis, while TALLY performs them on a sample-basis.

Part of the ongoing development effort of SIM-
SCRIPT IL.5 is to make the interface between user
and model easier to understand. Models can be de-
veloped in which the parameters can be easily rep-
resented as presentation graphics such as pie charts,
strip charts, dials level meters, bar graphs, etc. These
so-called smart icons are updated on the screen as the
simulation proceeds. In addition, animation capabil-
ities have been developed to display moving objects
against a static background in order to give further
insight into the complex interactions which take place
within a system.

The preparation of the presentation graphics as
well as the icons for animation is accomplished
through the use of editors. The icons are stored with
the program but may be modified without having to
modify the program or clutter it with non-system re-
lated code.

2 INTRODUCTION TO MODSIM II

MODSIM 1II was specifically designed to support
large programming projects. It is a compiled, mod-
ular, object-oriented language with multiple inheri-
tance. To protect the user’s investment in applica-
tions, MODSIM can be moved to new computer sys-
tems as they become available. Its syntax is based
on that of Modula-2. Modularity in MODSIM II im-
proves reliability and code reusability. Objects and
routines performing related functions can be grouped
into modules. These can be put into libraries for reuse



64

by other programs. The simulation constructs are
based on those used in SIMSCRIPT II.5. The porta-
bility of MODSIM 1I derives from the fact that its
compiler emits C code which is compiled, in turn, by
each computer’s C compiler.

Finally, the integrated dynamic graphics of MOD-
SIM II substantially reduces the time and effort
needed to display results with animation and presen-
tation graphics. It only takes a few statements to
make dynamic icons, histograms, clocks and meters
appear and change as the simulation runs. MOD-
SIM 1II is a complete, general purpose programming
language which is ideal for large software engineering
projects.

2.1 Objects

An object is essentially an encapsulation of data and
code. The data describes the object’s current status.
The code describes what the object does. As an ex-
ample of an object in MODSIM II, consider things
that move around, such as trucks and airplanes. This
is the type definition of a moving object:

TYPE

MovingObj =

OBJECT
position : LocTyp;
course : Lo .. 359 ];
speed : INTEGER;
TELL METHOD GoTo(IN dest : LocTyp,

IN spd : INTEGER);

ASK METHOD Stop;
END OBJECT;

MovingObj is an object type. It has three data
fields which hold information about its location,
course and speed. In addition it has two methods.
Methods are an object’s procedures or routines which
define its behavior. GoTo makes the object go to the
specified destination from its current position. Stop
is used to set the object’s speed to zero. Note that
the above object type declaration simply describes
the state and methods of MovingObj and serves as
an interface to the object. The actual code for the
methods is supplied separately in the object declara-
tion block. For example:

OBJECT MovingObj;

TELL METHOD GoTo(IN dest : LocTyp,
IN spd : INTEGER);
VAR
travelTime : REAL;
BEGIN
travelTime := ... { compute time }

Russell

course := ...{ some trig calculation }
speed := spd;
WAIT DURATION travelTime
{ simulation time elapses here }
END WAIT;
speed := 0;
position.x := dest.x; { update }
position.y := dest.y; { position }
END METHOD;
ASK METHOD Stop;
BEGIN
speed := 0;
END METHOD;
END OBJECT;

ASK methods are instantaneous with respect to sim-
ulation time. When an ASK method is invoked, the
caller pauses and control passes to the invoked ASK
method. When the invoked method completes, the
caller resumes. ASK methods behave like a procedure
call but have direct access to all fields and methods
of that object. No simulation time can pass in an ASK
method.

TELL methods are asynchronous. When the TELL
method is invoked, it is simply scheduled for execu-
tion, and the caller immediately continues execution
without waiting for the TELL method to start. Simu-
lation time can elapse in a TELL method.

A TELL method starts execution under control of
the built-in simulation timing routine. The data fields
of an object instance are visible to all other parts of
a program and may be read using an ASK statement.
However an object’s fields may be changed only by
the object itself. To use an object, we create an in-
stance of that object type and send it messages using
ASK or TELL when we want it to do something.

2.2 Information Hiding

As we’ve seen, the fields of an object can be changed
only by the object itself. This is one level of informa-
tion hiding. However it is still normally possible for
any program code to “read” the value of an object’s
fields using an ASK statement. We can achieve a
higher level of information hiding by declaring some
of the fields to be private. Private fields cannot be
seen except by the object itself. Methods can be
PRIVATE, too. Methods which are private can be in-
voked only by other methods of the object.

2.3 Inheritance

MODSIM II supports inheritance. With inheritance,
new object types can be defined in terms of existing
object definitions. While most languages only allow



SIMSCRIPT IL.5 and MODSIM II

inheritance from one existing object type, MODSIM
II supports multiple inheritance.

Here is a VehicleObj type definition created from
a MovingObj:

VehicleObj = OBJECT(MovingObj)
payload : REAL;
TELL METHOD Load(IN amount : REAL);
TELL METHOD Unload(IN amount : REAL);
END OBJECT;

VehicleObj inherits all of the fields and methods
of a Moving0bj. In addition it adds a payload field
and methods for loading and unloading the vehicle.

If an inherited method is no longer appropriate for
the newly defined object, it can be overridden and
replaced by a new one of the same name. The old
method can be invoked by the replacement method
as part of its behavior if desired.

Different object types can adapt methods to fit
their own particular behavior. This important and
versatile object- oriented capability is known as
polymorphism—multiple behaviors invoked with the
same method name.

2.4 Discrete Event Simulation and Processes

Simulation is supported directly, as in SIMSCRIPT
IL.5, by built-in language constructs. The WAIT state-
ment is used to make simulated time pass. Here is an
example using the Load method of VehicleObj.

TELL METHOD Load (IN amount :
CONST
rate = 0.25; { seconds per passenger }
VAR
loadingTime: REAL;
BEGIN
loadingTime := amount / rate;
WAIT DURATION loadingTime
OUTPUT("Loading completed");
ON INTERRUPT
OUTPUT("Loading NOT completed");
END WAIT;
END METHOD { Load };

REAL);

The WAIT DURATION statement causes the method
to suspend execution for the indicated amount of sim-
ulation time. Once the wait is started, control returns
to the scheduler which then starts execution of the
next most imminent process. When the WAIT is com-
plete, control returns to this method at the statement
after the WAIT. Any of the methods of an object which
are waiting for completion can be interrupted. If the
method receives an interrupt command, it executes
the part of the WAIT statement after ON INTERRUPT.

65

Two other forms of the WAIT statement let methods
synchronize themselves.

WAIT FOR Flight217 TO Load(324.0);

END WAIT;

This statement schedules the Load method of
Flight217 but does not allow the invoking code to
proceed with execution until the Load method has
completed. Note that this is different from a normal
TELL invocation which proceeds without waiting.

The other form of the WAIT statement uses the
built-in trigger object to synchronize methods.

WAIT FOR ControlTowerLight TO Fire;

END WAIT;

This statement makes Flight217 wait for a sig-
nal from the ControlTowerLight before it moves.
ControlTowerLight is a trigger object which has a
TELL method called Trigger.

TELL ControlTowerLight TO Trigger;

The Trigger method releases all waiting methods
when it is executed.

2.5 Development Environment

Transporting programs from one computer system to
another has often been a problem. Frequently pro-
grams have to be extensively rewritten to eliminate
machine dependencies. MODSIM II avoids this prob-
lem. It was designed for portability. MODSIM II
compiles its source code to C. The MODSIM II com-
pilation manager then compiles and links the C code
to a standalone executable.

MODSIM II’s compilation manager was designed
to facilitate project management of large computer
programs consisting of many separate modules and
libraries. It manages separate compilation of MOD-
SIM II programs consisting of multiple modules by
determining which modules have been edited since
the last compilation and then recompiling only those
edited modules and any modules which depend on
them. This process is accomplished automatically
without need for “make” or project files to describe
the process.

2.6 Dynamic Graphics

Graphically displaying results has typically been a
tedious programming task. Graphics programming
is made simpler through MODSIM’s interface to the
SIMGRAPHICS II graphics editor and environment.
SIMGRAPHICS II has three major capabilities:



66

e Animated graphics tied to objects in a program

e Dynamic or static graphs tied to variables and
statistics in a program

o Interactive input menus in a contemporary win-
dowed style

Animated icons, graphs and input menus are all
interactively edited using the SIMGRAPHICS II edi-
tor. These are then tied to existing objects and vari-
ables in the user’s program. This greatly simplifies
the task of creating a graphical user interface. The
amount of coding for graphics is drastically reduced.
An important side benefit of the editor is that the
appearance of objects can be edited without recom-
piling or changing code. This facilitates both design
and subsequent maintenance as well.

Figure 1 shows a screen from a communications
satellite model. The satellites are icons which move
around the earth. The line between two satellites
indicates that a message is being passed. At the top
left is a trace plot of message rate versus time. At
top right is a level meter showing the current mean
message rate. Finally, the clock at the bottom shows
that we are 31 seconds into the simulation.

PlatformModel

Nexn nessage rate

%
s
s
s A7
ot =]
1

8 88" 31

Figure 1: Satellite Communication Simulation

2.7 Benefits of MODSIM 11

Any high order language is designed to reduce the ef-
fort needed to program a set of problems. The object-
oriented and modular features of MODSIM II sub-
stantially reduce the time and effort needed to write
programs.

e Objects improve reliability because they encap-
sulate data fields and provide a disciplined inter-
face to these fields.

e Development time is reduced because code can
be put in libraries and reused.

Russell

e Modules permit step-wise development, partic-
ularly by separating the definition module from
the implementation module.

o Inheritance allows programmers to build on top
of previous effort instead of starting from scratch
each time.

e Integrated dynamic graphics substantially re-
duce the time and effort needed to build menus
and display results.

2.8 Conclusions

MODSIM 1II is a robust, general purpose program-
ming language with built-in graphics. Its features
substantially reduce the time and effort required to
write and validate computer programs.

2.9 Availability

SIMSCRIPT 1I1.5 and MODSIM II are proprietary
products of CACI Products Company. They are sold
on a free-trial basis. A special university program of
CACI supplies SIMSCRIPT I1.5 and MODSIM II to
educational institutions for the cost of distribution.

REFERENCES

CACI. 1988. SIMSCRIPT IL5 Programming Lan-
guage, CACI Products Company, La Jolla, CA.
Law, A.M. and C.S. Larmey. 1984. An Introduc-
tion to Simulation Using SIMSCRIPT I1.5, CACI

Products Company, La Jolla, CA.

Russell, E.C. 1989. Building Simulation Models with
SIMSCRIPT 1II.5, CACI Products Company, La
Jolla, CA.

Belanger, R., B. Donovan, K. Morse and D. Rock-
ower. 1990. MODSIM II Reference Manual CACI
Products Company, La Jolla, CA.

Belanger, R., and A. Mullarney. 1990. MODSIM II
Tutorial, CACI Products Company, La Jolla, CA.

AUTHOR BIOGRAPHY

Dr. Edward Russell has over twenty years experience

applying simulation to commercial and government
problems.



