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ABSTRACT

The purpose of this paper is to review
methods for analyzing data produced by simulations.
The review discusses the objectives of output
analysis and examines the need to apply statistical
methods. Methods for estimating parameters from
terminating and steady-state simulations are
presented. For steady-state simulations, methods for
computing estimates of the mean, as well as
proportions and  percentiles, are presented.
Multivariate estimation techniques are discussed,
and some practical advice is provided concerning
output analysis in practice.

1 OBJECTIVES OF DATA ANALYSIS AND
THE NEED TO COMPUTE CONFIDENCE
INTERVALS

Simulations are run in order to gain an
understanding of the behavior of the system under
study. This understanding of the behavior is an
important input to decisionmaking concerning the
system. Frequently, the system’s behavior is
summarized by the values of one or more parameters
such as mean waiting time, mean utilization of a
resource, mean cost per unit time, proportion of
items that are delayed longer than a specified time,
or a specified percentile of the distribution of a
system variable. Consider the following examples:
In an analysis of the design of a planned
manufacturing facility, the designers are interested in
selecting the combination of machines, buffer
capacities and plant layout that will minimize the
mean time from the start of production until the
finished product is shipped (mean waiting time). In
a hospital, the administration is interested in
maximizing the proportion of time that a very
expensive CAT scanner is used (utilization of a
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resource). The management of a transportation
system which incurs costs related to personnel,
vehicle usage, downtime and repair, and ridership
wishes to determine the routes, schedules and
maintenance plan that will minimize the mean cost
of operation. In a transportation/distribution model
for perishable produce from South America, the
managers are concerned about the proportion of
produce that cannot be delivered to market within 6
days of shipment. In a warehouse inventory model
for major appliances, managers wish to determine
the warehouse capacity such that 98-percent of the
time, the warehouse capacity is sufficient to handle
the inventory (98t percentile of inventory level).
Since these quantities cannot be measured directly,
data generated by the simulation must be used to
infer their values. The objective of output analysis
is to estimate the value(s) of one or more unknown
parameters by applying appropriate statistical
techniques to the data collected from the simulation.

Unfortunately, many simulations are run
without applying statistical analysis to the output.
That is, after many months and tens of thousands of
dollars or more of development cost, the simulation
is run once for each scenario to be analyzed, a single
value such as the average cost is computed, and this
number is treated as if it is the correct parameter
value. For example, average tardiness for jobs in a
manufacturing system is to be evaluated under two
dispatching rules. After completing 1000 jobs under
each scenario, average tardiness is computed to be
1.2 days under rule 1 and 2.3 days under rule 2. If
all of the “inputs” to the simulation (job arrival and
processing times, etc.) were deterministic, the
outputs would be deterministic and one could say
with absolute certainty that rule 1 produces smaller
average tardiness than rule 2. However, virtually all
simulations are run with at least some random
“inputs,” so the “outputs” are random. Under this
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circumstance, one can say that for the particular set
of jobs presented to the two systems, rule 1 provided
superior performance, but a more general statement
cannot be made without additional data analysis.
This additional data analysis is needed to assess the
variability of the sample results. Variability is
usually expressed through a confidence interval, such
as “The mean tardiness for jobs under rule 1 is 1.2
+ 0.6 days,” or through a probability statement,
such as “The probability that mean tardiness under
rule 1 is less than mean tardiness under rule 2 is
0.994.” Without a confidence interval or a
probability satement, one cannot know whether the
sample results are representative or not.

This tutorial is a republication of the same
tutorial that was presented at the 1990 Winter
Simulation Conference (Seila, 1990).  Section 2
discusses the types of data that can be produced by
simulations. Techniques for analyzing data from
terminating simulations are presented in Section 3.
Section 4 presents several methods for estimating the
stationary mean from simulation data. Sections 5
and 5 discuss problems with estimating proportions
and percentiles. Sequential methods for computing a
fixed-width confidence interval for the stationary
mean are discussed in section 8, and section 9
presents some practical ideas concerning output
analysis in practice. Finally, section 10 introduces
variance reduction techniques. There are several
excellent textbooks (Kleijnen 1974, 1975; Fishman
1978b; Law and Kelton 1982a; Rubinstein 1981;
Bratley, Fox and Schrage 1983; Lewis and Orav
1989) and surveys (Kleijnen 1982; Law 1983; Welch
1983) of output analysis methods for simulation.
There is not enough room to present all of the
methods in detail in this paper. The reader is
referred to these references for the details of each
method.

2 TYPES OF DATA PRODUCED BY
SIMULATIONS

Simulations can be classified into two
categories: terminating and nonterminating (Law
1980, 1983). Terminating simulations are run only
until some stopping criterion is met. The stopping
criterion depends upon the nature of the system and
the purpose of the analysis. Some systems, such as a
bank lobby or a retail store, start each day in the
same state (usually empty and idle), operate for a
specified period of time (10 hours, say), and
terminate. Other systems, such as a manufacturing
system, can operate indefinitely, but one might be
interested only in the behavior of the system up to
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the time when the 100*? item is produced or when a
particular parts buffer becomes 75-percent full.
When this is the case, the simulation is considered to
terminate when the special event occurs, and the
parameter to be estimated depends only upon the
data collected up to that event, such as the mean
time until the event occurs, or the mean cost per
unit time prior to the terminating event.

Nonterminating simulations can
conceptually run indefinitely. These systems are
“balanced” so that they ultimately reach a steady-
state, or stationary, pattern of behavior. The term
“steady-state” does not mean that the system settles
into some sort of equilibrium or deterministic
behavior, but rather that the intital conditions that
existed at the start of the simulation no longer
influence the system’s behavior. For example, in a
manufacturing system, after the system has operated
for several days, it will behave the same whether it
initially had no work-in-process or it had 20 items
being produced initially. Moreover, when a system
is stationary, the behavior of observations does not
depend upon when they are collected. Stated more
precisely, if Xl’ X2, cen ch is a sequence of
observations from the simulation, it has the same
distribution as Xh+ 1 Xh+2’ ceny Xh+lc for any h
= 1,2,.... Whether and when this steady-state
behavior is reached depends upon the characteristics
of the system and the length of time the simulation
has been running.

The simulation can produce either discrete
or continuous observations. Discrete observations
are recorded as a sequence of values Xl’ X2, cen Xk'
These can be produced by recording a measurement
on each entity as it encounters a particular event in
the simulation. For example, one might record the
waiting time in the queue for each customer in a
queueing simulation when the customer encounters
the event that starts service, or one might record the
delay from entry of an order until the order is
shipped for each order in a manufacturing system.
Discrete observations can also be produced by
sampling a variable in the system. For example, one
might sample the number of parts in a parts buffer
every 10 minutes or every time a new part arrives.
Continuous observations are produced by recording
the level, or value, of a system variable over time.
For example, Q(t) might represent the number of
customers in a queue at time t, or P(¢) might
represent the number of parts in a production system
at time ¢. In discrete event simulations the values of
system variables change only when an event occurs,
so the value of a continuously observed process such
as Q(t) or P(t) is constant except for jumps at times
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when relevant events occur. This makes recording a
process easy since one only needs to record, for each
event that occurs that affects the process, the time of
the event and the new value of the process. This
also makes computing time averages easy because
the time average can be expressed as:

T
a=4]aw at
0

n(T)
=1| X040+ v T - v |

where n(7T) is the number of events up to time 7.

3 DATA ANALYSIS FOR TERMINATING
SIMULATIONS

The parameters that are estimated from
terminating simulations explicitly depend upon the
initial state of the system. For example, in a
simulation of a bank lobby, one might wish to
estimate the teller utilization, which is the
proportion of time a particular teller is busy. This
proportion would depend upon the initial number of
customers in the bank. If the simulation started
with 10 customers waiting for service, the teller
utilization would be higher than if the simulation
started with no customers waiting. Since the value
of the parameter depends upon the initial conditions,
data must be generated by independently replicating
the simulation run using the same initial conditions
to start each replication. If the run is replicated n
times, with each replication producing a single
observation, X, the data will consist of n
observations Xl’ X2, ...y Xp. If the runs are made
using independent random number seeds, the
observations will be independent and identically
distributed, and the techniques that are normally
applied to i.i.d. data can be applied here. A
100(1 — ) percent confidence interval for the mean
is given by

>
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where Sy = \J—Sﬁ—, s2 is the sample variance of Xl’ X9,
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and t; _ a2 —1 is the 100(1 — c>z/2)th percentile of
the Student’s t-distribution with n—1 degrees of

freedom.

4 ESTIMATING THE MEAN FOR STEADY-
STATE SIMULATIONS

As opposed to terminating simulations,
steady-state simulations eventually produce data
that does not depend upon the initial state of the
system. Performance measures that one is interested
in are defined in terms of the steady-state behavior
of the system. A great deal of effort has gone into
developing estimators for the mean of a stationary
output process. For example, one might be
interested in estimating the steady-state mean
waiting time for a customer in a queue or item in a
production system. The interpretation of this can be
thought of in two ways. Let Wy, Wy, ..., W, be
the waiting times observed from n customers while
the system is operating in steady-state. The mean
waiting time is

: 1
o m, 2 Wi

This is the average waiting time for a very large
number of customers. Another interpretation of the
steady-state mean waiting time is to consider an
arbitrary customer who enters the system without
knowledge of the system state. His waiting time is a
random variable that has some (unknown)
distribution. The steady-state mean waiting time is
the mean of this distribution.

If observations are defined to have the value
1 if a given event is observed and 0 otherwise, the
mean of these observations is the probability that
the event is observed. For example, let X ;= 1if
the i"" customer in a queueing system waits more
than 2 minutes, and X; = 0 otherwise. Then, the
expected value of X i is the probability that a
randomly selected customer must wait more than 2
minutes, or the proportion of customers in a very
long run who must wait more than 2 minutes. Since
proportions, or probabilities, are means of
appropriately defined observations, methods for
estimating means can also be applied to estimate
probabilities.

When analyzing data generated by a
stationary simulation, one must deal with two
problems: (1) the presence of an initial transient
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portion  (the startup problem), and (2)
autocorrelation in the observations. The initial
transient portion is usually deleted from the data
prior to the application of estimation methods. The
problem one faces, however, is to determine where
one should truncate the data to remove the initial
transient portion. This is a very difficult problem
for which several solution methods have been
proposed, but also one for which none has proved
uniformly satisfactory (Schruben 1982; Schruben,
Singh and Tierney 1983; Kelton and Law 1983;
Welch 1981; Wilson and Pritsker 1978a, b). Other
research has been concerned with how the initial
state of the system should be chosen so that the
initial transient portion will be minimized (Kelton
1989 and references therein).

The effect of having autocorrelation among
the data is to make it difficult to estimate the
variation in the sample mean. In many cases the
observations are positively autocorrelated.  The
effect of positive autocorrelation is to cause the usual
sample standard error to be a biased estimator of the
standard error of the mean. If ¢ is the variance of
each X, and p, is the autocorrelation between
observations separated by j lags, i.e., p. = Corr(X i
X it j)’ the variance of X is given approximately

j=1

%2(1+2°z° pj) @)

o)
Thus, the term ), p j causes the sample standard
i=1

error, s/\7, which is an estimator of o/\7, to be
biased downward. A confidence interval computed
without accounting for autocorrelation will be too
short and have a true confidence coefficient which is
smaller than the nominal value used to compute the
interval. That is, a confidence interval which is
computed to have a confidence coefficient of 95-
percent may have a true confidence coefficient of
only 50-percent.

4.1 Independent Replications Method with Initial
Transient Deletion

The simplest way to deal with
autocorrelation among the data is to independently
replicate the simulation run. On each replication,
the initial transient portion is deleted and the
sample mean of the stationary observations is
computed. Let m represent the number of
replications_and X, be the sample mean computed

from the Kth replication. Then 71, ?2, - Ym is a
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sample of i.i.d. observations, and the confidence
interval for the mean can be computed from this
data using the usual methods for independent
observations (1).

There are several potential difficulties with
using independent replications with initial transient
deletion. First, it is critical that the number of
observations to be deleted be chosen correctly. If too
few are deleted, every replication will contain
transient observations which will bias every sample
mean. If too many are deleted, data will be wasted
and the confidence interval will be wider than
necessary. Secondly, this method uses data
inefficiently. For example, if every replication
consists of 1000 transient observations and 1000
stationary observations, this method will discard half
of the data generated. Finally, one must intervene
in the simulation by stopping the run, collecting the
data and reinitializing the system at the end of each
replication. These seem like substantial problems,
and they can be burdensome, but the method of
independent replications has the advantages that the
sample means computed are “guaranteed” to be
mutually independent, and one is not confronted
with decisions associated with the other methods
that will be discussed below. The independent
replications method is recommended for those
situations where one is reasonably sure that the
system reaches steady-state quickly and run lengths
may be limited.

4.2 Batch Means Method

It seems that once the system reaches
steady-state and data are being collected, one should
just continue collecting data from the steady-state
and somehow use data from one long run, rather
than a number of short independent runs, to
estimate the mean. This is the essence of the batch
means method (Conway 1963; Mechanic and McKay
1966; Law 1977; Fishman 1978; Schriber and
Andrews 1979; Schmeiser 1982). Data from the
stationary portion of the run are grouped into
batches and the sample mean is computed for each
batch. Under some mild technical conditions, it is
known that if the batch size is large enough, the
batch means will be approximately uncorrelated. If
this is the case, the batch means can be treated as a
sequence of independent, identically distributed
observations of the sample mean and the usual
method can be used to compute a confidence interval
for the mean (1).

The difficulty with the batch means method
is that the user must decide how large the batches
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should be, and consequently, if the number of
observations in the run is fixed, the number of
batches to use. If the batch size is too small, the
batch means will not be uncorrelated and the
confidence interval will often be too narrow and have
an erroneous coverage probability. If the batch size
is too large, the confidence interval will be
unnecessarily large because the number of batches
will be too few. A number of methods to determine
the batch size have been proposed (Fishman 1978;
Law and Carson 1979).

The advantage of the batch means method
is that it uses the data more efficiently than many
alternatives. By deleting the initial transient only
once, the amount of data that is discarded in the run
is minimized. If the length of the initial transient is
misjudged too large, this error is not multiplied by
the number of replications as in the independent
replications method, and if it is misjudged too small,
this error may cause the first batch mean to be
biased but is not likely to affect other batch means.
A study comparing several methods (Law and
Kelton 1984) has shown that the batch means
method is competetive with all of the other methods
that have been proposed and is generally superior to
them in terms of producing the smallest, most
accurate confidence intervals.

4.3 Regenerative Method

Some systems have the property that at
random points in time the system “regenerates”
itself in the sense that future behavior is independent
of the past and the patterns of development after
these points are identical (Ross 1985). An example
of such a system is a simple queueing system where
interarrival times are identically distributed, service
times are identically distributed, and all interarrival
and service times are mutually independent. The
regeneration points are those times when a customer
arrives to find the system empty and idle. When
this occurs the arrivals and departures of customers
in the future will be independent of arrivals and
departures in the past (since interarrival times and
service times are mutually independent), and they
will be an identical replica of those after any other
empty and idle state, in a probabilistic sense (since
interarrival times are identically distributed and
service times are identically distributed). The empty
and idle state for this system is a regeneration state.
Indeed, to determine if a state is a regeneration
state, one can ask whether, when the system enters
the state, it can proceed from this point without any
knowledge of the history of the system prior to
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entering the state. If the answer is “yes,” the state
is a regeneration state.

If a system is regenerative and is started in a
regeneration state, its run can be characterized by a
sequence of “cycles” of data. Each cycle consists of
observations collected between entrances to a
regeneration state. These cycles of data will consist
of random numbers of observations, but statistics
computed from distinct cycles are independent since
observations from distinct cycles are independent.
An initial transient period does not have to be
considered since the run consists of a sequence of
independent cycles of data.

It is known for regenerative processes that
the mean of the data is equal to the ratio of the
mean of the sum of the observations over a cycle
divided by the mean number of observations in the
cycle.  This fact has been used to develop a
confidence interval for the mean (Fishman 1973,
1974; Crane and Iglehart 1974, 1975; Crane and
Lemoine 1977). The confidence interval is only
marginally more difficult to compute than the
procedures in the batch means and independent
replications methods. One would expect that since
the regenerative method makes use of the special
properties of the data that it would produce more
accurate confidence intervals, but this has generally
not been observed to be the case (Law 1984). In
many cases the batch means method performed as
well as or better than the regenerative method.

One difficulty with the regenerative method
is that many systems either do not possess
regeneration states or it is very difficult to identify
states that are regeneration states. The process of
showing that a state is regenerative can be very
tedious mathematically and therefore beyond the
abilities of many simulation practitioners. On the
other hand, some systems have many regeneration
states and the user is faced with the decision about
which state to use.

4.4 Other Methods

Other methods have also been proposed for
estimating the mean of a stationary output process.
The spectral method (Duket and Pritsker 1978;
Fishman 1978; Heidelberger and Welch 1981a, b)
estimates the quantity (2) using known methods for
estimating the spectrum of a time series. The
concepts and calculations involved in applying this
method are more complex than those presented so
far, but it has been shown to perform well in a
number of cases, and software is available to
efficiently compute the spectrum. Other time series



Output Analysis

methods (Schriber and Andrews 1984) attempt to fit
the output data to an empirical model and use the
estimated parameters of the model to estimate the
quantity (2).

Recently, a new estimator, called an area
estimator, has been proposed as an alternative to
these techniques for estimating the standard error of
the mean (Schruben 1983). This estimator assumes
that the process has the @-mixing property, which
informally states that if the process runs for a
sufficiently long time, the distant past of the process
is approximately independent of the present. This is
a property which is easy to assume but for many
models is difficult to prove. If the process has the ¢-
mixing property, a suitably standardized version of
the sample mean process can be shown to converge
to a Brownian Bridge, and this property is used to
develop the area estimator for the variance of the
sample mean. The area estimator has been shown to
be less efficient in many cases than the batch means
and spectral estimators. A recent paper (Glynn and
Iglehart 1990) shows the relationships between batch
means and area estimators, and compares their
efficiencies for large sample sizes.

5 SPECIAL METHODS FOR PROPORTIONS

Empirical studies (Law 1983, 1984) have
shown that the actual confidence coefficient for
many of the methods is somewhat less than the
theoretical value.  Thus, in practice confidence
intervals are not as reliable as one would like. This
is a result of the fact that the methods for
computing confidence intervals are based upon the
asymptotic distribution of the sample statistics.
Thus, the confidence coefficient is accurate only in
the limit as the sample size approaches infinity.
Recently, Hoeffding’s inequality, which applies to
the sample mean for observations that are bounded,
has been used to develop conservative confidence
intervals for proportions (or probabilities) (Fishman
1986). These confidence intervals, which apply to
independent observations, require that an expression
involving the sample proportion be solved
numerically. The widths of the confidence intervals
are approximately 30-percent larger than those using
asymptotic normal theory, but they have the
desirable property that the confidence coefficient is
guaranteed to be at least as large as the nominal
value used to compute the confidence interval.

6 METHODS FOR ESTIMATING
PERCENTILES
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A p-percentile is a value such that a
specified proportion, p, of the observations are less
than the percentile. For example, the g0t
percentile of waiting time for customers in a
stationary queueing system is a value, 6, such that
the probability that the probability that an arbitrary
customer must wait less than 6 is .90. Percentiles
are useful parameters if the objective of the
simulation study is capacity planning.
Unfortunately, however, percentiles, especially
extreme percentiles (p close to 0 or 1), are much
more difficult to estimate than means.

Several methods have been proposed for
estimating percentiles when the data is generated by
a stationary simulation (Iglehart 1976; Moore 1980;
Seila 1982a, b; Heidelberger and Lewis 1984). These
methods all use the sample percentile as the point
estimate. The sample p-percentile, P, is computed
by sorting the data into ascending order and
selecting the observation such that p-percent of the
observations is less than P,, and (100 — p)-percent is
greater than P,,. The methods differ in the way that
the variance of P, is computed.

7 MULTIVARIATE ESTIMATION

Frequently, one wishes to use the same
simulation run to estimate two or more parameters
simultaneously. For example, in a manufacturing
system, one may wish to estimate the mean
processing time for items along with the utilization
of a particular critical machine. Normally, the mean
processing time, which one desires to minimize,
increases with machine utilization, which one desires
to maximize. Thus, there is a trade-off between
these two parameters.

Some special techniques (Seila 1984) have
been developed for multivariate estimation in certain
special cases. More generally, however, Bonferroni’s
inequality can be used to compute a conservative
confidence coefficient for a set of simultaneous
confidence intervals. If k confidence intervals are
computed with confidence coefficients 1 — @, 1 — ay,
o 1—ay, then the probability that all k confidence
intervals simu’lctaneously include their parameters is

at least 1— 3 ;. Therefore, if one wants two

confidence ilitgrvals to have simultaneous confidence
coefficient .95, each can be computed to have an
individual confidence coefficient of .975. If each of
five confidence intervals has confidence coefficient
.98, the simultaneous confidence coefficient for all
five is no less than .90. This is a very general
technique and has been shown to be rather accurate
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(Schruben 1981).
8 SEQUENTIAL METHODS

It is frequently the case that the analyst
wishes to estimate the parameter with a specified
precision. For example, in a manufacturing
simulation, one might wish to estimate the mean
processing time for a product with precision plus-or-
‘minus 1 hour, or estimate the mean utilization of a
particular machine with precision plus-or-minus .05.
In this case, the precision determines the amount of
data needed to compute the confidence interval.
However, some measure of variance is needed in
order to compute the required sample size, and this
quantity is unknown. Sequential methods (Kabak
1968; Fishman 1977; Law and Kelton 1982b) solve
this problem by sequentially collecting data and
testing to determine if enough observations have
been collected to assure the desired precision of the
confidence interval. Many of the sequential methods
are based upon the results of Chow and Robbins
(1965) and Nadas (1969). The advantage of
sequential methods is that, if the technical
assumptions of the method apply, the precision of
the confidence interval is guaranteed; however, the
number of observations generated, and therefore, the
amount of computer time required for the simulation
is not predictable in advance. This opens the
possibility that the simulation run could require
more time than is available. A second difficulty
with sequential methods is that they must be built
into the simulation; i.e., one cannot just run the
simulation, store the output data on a file, and
analyze the data separately from the simulation run.
Instead, the test for the end of the run must be
made as the simulation is running. If these two
considerations do not pose a problem, sequential
methods are a preferable approach to computing
confidence intervals.

9 OUTPUT ANALYSIS IN PRACTICE

Many simulation languages and special-
purpose simulation software packages have built-in
report generators. These generators produce
averages and other statistics (“variances,” percentiles
and other quantities) for resource levels, queue
lengths, and other measurements generated by the
simulation. Generally, the reports produced in this
way should be viewed with great skepticism. If
standard statistical formulas are used to compute
the statistics, without dealing with the startup
problem or the autocorrelation among observations,
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the statistics computed will be inaccurate and
misleading. Before using these report generators,
one is well advised to read carefully the
documentation provided by the software vendor and
be sure that accepted methodology is implemented
in the data analysis module. If the documentation
does not describe fully or accurately exactly how
each value given on the report is calculated, the best
decision is to not use the report generator, but
instead, store the data generated by the simulation
on a separate file, and analyze this data using
methods that are known and accepted. Frequently,
this can be done using available statistical packages
such as SAS, SPSS, MINITAB and others without
having to write data analysis programs. Another
alternative is to use an electronic spreadsheet such as
LOTUS 123, Quattro PRO and others, to do the
data analysis calculation. The current generation of
spreadsheets has powerful capabilities for analyzing
data as well as graphing and presenting results.

10 VARIANCE REDUCTION TECHNIQUES

This paper has introduced the reader to
methods for analyzing output data from simulations,
especially discrete event simulations. Data analysis
is a small but important part of an overall
simulation analysis design. Techniques are available
for increasing the efficiency of simulations by
allowing parameter estimates to have smaller
variance or, equivalently, computing parameter
estimates with the same variance using fewer
observations. These techniques, which are called
variance reduction techniques, operate generally by
controlling the random number streams used to
drive the simulation (common random numbers,
anththetic variates), exploiting the relationship
between the output statistics of interest and other
statistics in the model (control variates), or
modifying the way the model is sampled
(importance sampling); See the survey by Wilson
(1984). Proper simulation output analysis cannot be
performed by itself, but must be planned in
conjunction with the overall design of the simulation
experiment in order to produce the most precise
estimates possible.
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