Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

CONCURRENT SIMULATION WITH ENTITY LIFE MODELING:
AN AIRPORT SIMULATOR USING ADA

Pen-Nan Lee
Ravinder R. Purumandla
William Nehman

Department of Computer Science
University of Houston
Houston, Texas 77204-3475

ABSTRACT

Most simulation problems are inherently concurrent, and
traditional approaches in trying to simulate concurrent problems by
serializing them result in inefficient and complicated solutions. This
paper presents the design and implementation of an Airport Simulator
based on the entity-life model, the use of which results in a clear and

intutive design. It is essential to choose a programming language
with concurrent features for concurrent simulation. The Airport
Simulator is implemented in Ada for its strong and effective tasking
features.

1. INTRODUCTION

The development of modern parallel languages, such as Ada,
Modula, Concurrent C, etc in recent years coupled with the advent of
low cost microprocessors has made concurrent solutions to
simulation problems more viable than ever. Such a concurrent
solution in the Ada programming language could lead to significant
improvements in the design, testing, run-time speed, code
reusability, and life-cycle maintenance of the simulators.

The entity-life model [Sanden 1989] provides an efficient
design principle that can be used to reduce a concurrent problem to a
set of sequential problems. The entity-life model suggests that each
independent thread of events in the real world be modeled as a task -
the Ada language construct to represent an independent,
asynchronous thread of events. In this article, the design and
implementation of an airport simulator, based on the entity-life model
is presented.

Most real world simulation problems can be naturally expressed
as a set of physical entities, each having its own thread of events and
interacting with the other entities in the problem environment when a
need arises. In traditional approaches to simulation much effort is
wasted in serializing a problem environment which is inherently
concurrent. Thus when the entities in the problem environment have
a strong time dimension, that is they often change state during the
course of their existence, it is more logical to express them as
software processes than as data. Prior to the development of
languages such as Ada, incorporating software processes into a
program meant that the programmer would have to write a language
extension to support concurrency or even if the language did support
a rudimentary form of concurrency he would have to use explicit
commands to control their activation, interaction, etc. The problems

with such approaches precluded the use of concurrent simulation
techniques to most situations. o
The Ada language on the other hand has concurrency 1ntrinsic
to the language and provides a logical, procedure-like interface
between tasks, known as the rendezvous. Thus an Ada oriented
design approach can simultaneously take advantage of tasking
features as well as other modern language features available in Ada.
These advances in language features combined with the new
techniques available for design of concurrent software present a
strong case for using concurrency in simulation, and also for using
Ada as the simulation language.))
While a few process oriented discrete event simulation
languages, or packages [Thesen et al. 1983], are ava;lable to the
programmer problems of documentation, time spent 1n learning a
new language etc. are inhibitive. Moreover, the internal design for

Il

the simulation languages is not well documented in most cases. Such
a situation combined with the fact that 90% of most simulation
languages consist of general purpose code and 10% of application
specific code written in the special purpose simulation language or a
vendor supplied subroutine package [Thesen 1987], presents a case
for writing simulators using general purpose languages as opposed to
special purpose simulation languages. Portability considerations may
also be taken into account while making a decision about the
language to use. The Ada language [Gehani 1988], contains many
unique language constructs and software engineering techniques such
as data and process abstraction, object oriented design, information
hiding, and has therefore been chosen for this simulation project.

2. SIMULATION MODELS
2.1 Classification

Simulation languages have been classified by the modeling
viewpoint that can best be expressed using that language. These fall
into the categories of Event, Transaction and Process-oriented.
These are modeling viewpoints as opposed to language viewpoints of
object-oriented modeling and data abstraction detailed in [Gomaa

1989]. In an event oriented view, the focus is on events, which alter
the state of the system. The modeler can visualize the system as
entities flowing through event sequences. Each type of event is
represented in the simulation model by a software routine.In a
transaction oriented view, the focus is on entity with attributes
(transaction) flowing through the system. The simulation model
describes all possible paths through the system, dealing with each
entity independent of others. This view is natural to the modeler. The
process oriented view focuses on the process, which is an event
sequence. As such, the process includes events and the time delays
between them. Each unique process is modelled by a process routine.
Processes must become active and passive to model the flow and
interactions of entities through the system. This view allows a natural
correspondence with the abstract model for both the modeler and the
programmer.

2.2 The Entity-Life Model

Various design strategies have been suggested for modeling a
system as a set of concurrent processes, and most of these originate
in the domain of Real time systems. The entity-life modeling
approach suggested by [Sanden 1989], seems to be more applicable
to problems outside the domain of real-time systems. Moreover, the
other modeling theories tend to address function decomposition first,
and then deal with task decomposition. The entity-life model on the
other hand has task decomposition as its first objective, resulting in a
clear and intuitive design which is isomorphic with respect to entities
in the real world system that is being modelled.

Advantages of the entity-life model:

1. It results in a design which is isomorphic with the entities
in the real world.

2. Each concurrent process becomes an information hiding
unit, thereby encapsulating not only data structures
representing the real world entities but also their current

P.N. Lee, R.R. Purumandla, and W. Nehman

state. Thus the model is inherently information hiding and
we donot need to devote efforts to make the model
information hiding.

3.If more than one instance of a particular kind of entity
exists in the system it may be represented by a task type,
with one instantiation of the task for each of the entities.

Melde and Gage [1989] suggest the following three phases for
the entity-life model:

1. Identifying the entities in the real world model and
mapping these onto tasks and other data structures.

2. The packaging phase deals with defining the modules and
he interface between them. Also, further decomposition
into packages takes place at this stage.

3. The implementation phase deals with the detailed
elaboration of the modules defined in the previous stages.

The single most important feature of the Ada language is the
tasking facility which allows the programmer to express concurrency
and nondeterminism. These are the most important issues in
modeling real world situations, and these have not been addressed
previously. Hence, our approach in this simulation effort is to model
the simulation in an entity-life model and to signify that the most
important and rapidly changing objects in our simulation are active
processes as opposed to passive data.

Such a model has the advantages of simplicity of design,
increased run-time speed, portability and ease of development and
testing effort over traditional methods of simulation which require
serialization of concurrent activities, complicating the design and
making the simulation slower.

According to the entity-life model, all physical entities, those
that are existing in the real world and can manipulate their own state
should be implemented as active elements of the language, i.e tasks.

This is sometimes very important in a simulation because if the object
can manipulate itself the simulation should be able to see its effects as
soon as possible and any central control over it results in delaying
that effect. For example if the active entity is an airplane, the airplane
has to change its position continuously and display its position on a
screen.

These tasks should manipulate themselves completely and
should interact with other tasks only when absolutely necessary. This
decreases global information in the system to a large extent. Each
task should be able to do primitive tasks of input and output, on its
own. This should be recognized, since if there are many concurrent
tasks writing to the same screen at the same time the screen may
become messy.

3. THE ADA LANGUAGE

3.1 Language Features

The following is a brief description of some of the important
and unique language features of Ada used in this simulation.
(a) Tasks: Parallel processes in Ada are called tasks. A task executes
independently and asynchronously, communicating with other tasks
through message passing, using the ACCEPT and ENTRY
statements. A task may call another task at it's ENTRY, and they can
participate in bidirectional communication (termed rendezvous) after
the called task accepts the entry call. A task is defined into two parts,
task specification , and task body. The task specification presents the
external interface to the task, and the body describes the actions
performed by the task.

Features of the tasking Model

1. Provides a simple mechanism for communication without
the need for explicit synchronization statements.

2. Provides for simultaneous bidirectional communication.

912

3. Instructions are executed by the called task on behalf of
both the participating tasks.

4. The calling task must know the name of the called task.

S. A calling task can call only one other task and can only be
in one entry queue of tasks waiting for a callto be
accepted. A called task on the other hand can wait for
any of many different types of calls and can have many
queues of callers (one for each entry) waiting for its
attention. The tasking model allows for the called task to
have greater control over the rendezvous.

(b) Packages: Packages are information hiding units. They are
defined in two parts, package specification and package body.
Logically related entities and the operations that can be performed on
them may be grouped into a package specification and the
implementation details in the package body, thus presenting a high-
level interface to users of the package while hiding the
implementation details.

(c) Conditional rendezvous : The three kinds of select statements,
Selective wait, conditional entry call, and timed entry call, facilitate
conditional rendezvous between tasks in various situations.

(d) Access Types: Access types permit dynamic creation of objects of
a predefined type, at runtime. When this delaration is used with a
task type, it facilitates creation of any number of tasks of the
predefined type at run-time.

(e) Termination: Ada provides for the terminate statement to ensure
orderly and cooperative termination of tasks.

The working of the three kinds of select statements, the access
type declaration and the terminate statement, are described in more
detail in section 4.2.1, where they are used in the implementation of
the airport simulator.

3.2 Ada and Other Languages

The most important strengths of Ada lie in concurrency but
calling Ada a language suited only to real-time applications is far
from the truth. It is a true general purpose language with all the
traditional language features. It is portable like C, supports object-
oriented programming principles like C ++ and has concurrent
facilities like MODULA.

It is different from other languages because features to support
concurrency are intrinsic to the language, i.e. it does not have any
explicit task activation, suspend, resume or synchronization
primitives such as message passing.

In addition to the language features mentioned in section 1,
features such as strong typing , rigorous syntax checking, separate
compilation, etc., save development costs. This will be the biggest
criterion in future projects, as a result of the reverse trends of
increasing software costs and decreasing hardware costs.

The Ada run time environment is responsible for run time
scheduling of the tasks therefore, it can take advantage of as many
processors as are available to the simulator, thus enabling porting of
the simulator from a development system to an operating system
which might have a different no. of processors.

4. THE AIRPORT SIMULATOR

4.1 Problem Description

The following is a short description of the airport which we
wish to simulate.

(a) Airplane: There are two classes of airplane that visit the airport
distinguished by their weight, light and heavy. Each airplane can be
identified by a unique flight number and has a particular amount of
fuel that keeps decreasing with respect to time while waiting to land,
the rate of decrease being determined by its weight class.

Concurrent Simulation with Entity Life Modeling: An Airport Simulator Using Ada

(b) Airport: The airport has two runways, Heavy_Runway which
can service planes of any weight class and Light_runway which can
service light planes only. Each of the runways can be used for either
takeoff or landing, but in case of emergency the landing airplane is
given a higher priority. There are two runway controllers in the
airport, one for controlling each of the runways. The job of the
runway controller is to take the flight number of the requesting
airplane from a queue and engage the airplane in a two-way
conversation in order to provide the airplane with relevant weather,
runway information, etc. and to guiae its landing or takeoff.

Each of the runway controllers has associated with it a queue
of planes waiting to use the particular runway. The Air Traffic
Controller(ATC) queues the requests into one of these two queues
and the runway controllers dequeue each waiting plane and guide its
use of the runway.

(c) Operation: Any airplane wishing to use one of the runways
issues a land_request or takeoff_request to the ATC. The ATC then
checks the queues associated with each of the runways and decides if
the request can be serviced without a conflict with any of the planes
that have already been accepted. If it can be accepted, it is put in one
of the queues, else the airplane is informed that it has been rejected.
The entity structure for the plane can be represented by an entity
diagram as shown in figure 1.

4.2 Analysis, Design and Implementation.

The entity-life model vastly simplifies the design of the
simulator, and makes the design easy to understand.

4.2.1 The Modeling Phase

The modeling phase begins with the identification of the major
real world entities and mapping them into tasks and other data
structures. A context diagram is a high level functional representation
of the various entities involved in the system. Figure 2 shows the

context diagram of the Airport simulator. The modeling phase
identifies concurrency within the airport simulator.

Step 1: The following entities can be identified in the airplane
simulator model.

1. Airplanes
2. Airport consisting of
(a) Air Traffic Controller (ATC).
(b) Runways (2) Heavy Runway and Light Runway,
(c) Runway controllers (2),Light Runway
Controller(LRC) and Heavy Runway Controller(HRC).
3. Terminal to receive instructions from and display results to.

These entities and their interactions can be represented by a
further refined context diagram. Notice that all entities that have a
time dimension should be modelled as tasks and are represented by
shaded circles in figure 3.

Step 2: The next step is to further refine the design by
identifying concurrency within each module. This process is done
repeatedly until we cannot find further concurrency within each
module.
These steps result in further splitting the airport task into the

three tasks ,

1. Air Traffic Controller.

2. Light Runway Controller.

3. Heavy Runway Controller.

Step 3: At this stage we have to make decisions on abstract
entities which have a time dimension. This step results in one more
task, the Random request Generator to randomly generate flights for
the simulator to process. Statistics task collects statistics on all planes
and analyses them. Dynamic Queues may also be represented by
tasks since they have a definite time dimension.

1. Random Request Generator -- Randomly generates flights.

2. Statistics

PLANE

/

T~

Rejected_by_ATC

Cleared_by_ATC

/

T~

Waiting_to_takeoff

Waiting_to_land

\/

Cleared_by controller

o

o~

Landed

Takenoff

Figure 1. Entity Structure for PLane

913

P.N. Lee, R.R. Purumandla, and W. Nehman

Random
Request
Generator

User
Input

Figure 2.

Airport
Simulation
System

Context diagram for an Airport simulator

Display

ATIRPORT
SIMULATOR
SYSTEM

Process
Virtual
Screen

Process
Virtual
Screen -

Process
Virtual
Screen

Process
Virtual
Screen

Random
Request
Generator

Display
and
Statistics

ontrollers

Runway'i

M~ Runway 2

Figure 3.

Context diagram for Airport Simulator.
Shaded Objects represent real world entities.
Unshaded objects represent abstract entities.

914

Concurrent Simulation with Entity Life Modeling: An Airport Simulator Using Ada

- Collects statistics on all planes.
3. H_Queue

- Queue for the heavy controller.
4.L_Queue

- Queue for the light controller.
S. H_Stat

- Buffer task to record status of H_queue
6. L_Stat

- Buffer task to record status of L_queue

Step 4: The next step is to identify tasks to handle specific /O
devices. This results in two tasks

1. User Input task.
2. Display Task.

At this stage, some of the tasks may be combined to simplify
the design.

We combine the display task with the statistics task, to yield
a simpler design.

4.2.2 The Packaging Phase

The packaging phase consists of defining the way tasks,
packages, subroutines and functions are grouped together so that the
resulting model is logical and follows the objectives of information
hiding and data abstraction.

This phase follows three steps.
1. Determine interfaces for communicating units, such as
tasks and packages.
(a). Define entry points for each task.
(b). Determine parameters and in/out modes for each
rendezvous.
(c). Specify exceptions raised and Handled.
2. Package global data types and constants.
3. Package hardware dependent features for each device.
This phase results in four packages for the Airport simulator,

Air_Facilities, Ground_Facilities, Random_Requestor
Support_Package.
Package Air_Facilities
- specification and implementation of the
entity Airplane.
Package Ground_Facilities)
- specification and implementation of the
remaining entities, of the simulator.
Package Random_Requestor
- the task Generator which on request from the
user randomly generates flights to be
processed by the simulator.
Package Support_Facilities] o
-- packages that help in building Air_Facilities
and Ground-Facilities, such as screen
management features, Math functions,
Random no. generation functions etc.

Specification of package GROUND_FACILITIES.
package GROUND_FACILITIES is
task ATC is
entry start_atc(P:in INTEGER);
entry LAND_REQUEST(A:in out
PLANE_REC;ADDR:in T_ID);
entry TKOFF._ REQUEST(A:in out
PLANE_REC;ADDR:in T_ID);

and

end ATC;
task H_QUEUE is)
entry START_H_QUEUE(P,D1,D2,D3:in
INTEGER);)
entry ADD_TO_Q(A:in out PLANE_REC;ADDR:in
T_ID;Q:in INTEGER);
entry NEXT_JOB(ADDR:out T_ID;HI:out
fly_time;h2:out
FLY_TIME;R_STATUS:out STATUS);
end H_QUEUE;
task H_STAT is

915

entry CLEARED(H1:in FLY_TIME;H2:in
FLY_TIME);
entry READ_STATUS(w1:out fly_time;w2:out
fly_time;T:out FLY_TIME);
end H_STAT;
task HRC is
entry START_HRC(P:in INTEGER);
entry wakeup;
entry FINISHED;
end HRC;
task L_QUEUE is
entry START_L_QUEUE(P1,D1,D2,D3:in
INTEGER);
entry ADD_TO_Q(A:in out PLANE_REC;ADDR:in
T_ID;Q:in INTEGER);
entry NEXT_JOB(ADDR:out T_ID;L1:out fly_time;
L2:out
FLY_TIME;R_STATUS:out STATUS);
end L_QUEUE;
task L_STAT is
entry CLEARED(L1:in FLY_TIME;L2:in
FLY_TIME);
entry READ_STATUS(w1:out fly_time;w2:out
fly_time;T:out FLY_TIME);
end L_STAT;
task LRC is
entry START_LRC(P:in INTEGER);
entry wakeup;
entry FINISHED;
end LRC;
task DISPLAY is
entry START_DISP(d:IN int_array);
entry CLEARED_BY_CONTROLLER(A:in
PLANE_REC;N:in INTEGER);
entry CLEARED_BY_ATC(A:in PLANE_REC;S:in
INTEGER;N:out INTEGER);
end DISPLAY;

task USER_INPUT is
entry START_INPUT(P:in integer);
end USER_INPUT;
end GROUND_FACILITIES;

Specification of package AIR_FACILITIES:

with PLN_TYPS; use PLN_TYPS;
FIFO;use FIFO;

with QUEUES; use QUEUES

with SMG; use SMG;

Together , these packages define the objects airplane and Priority
Queues, and with operations that can be performed on them such as
adding a plane to a queue, deleting from a queue.The SMG package
defines screen management functions.

package AIR_FACILITIES is
type AIRPLANE;
type T_ID is access AIRPLANE;
task type AIRPLANE is
entry INITIALIZE(A:in PLANE_REC; ADDR:in
T_ID);
entry REQUEST_GRANTED(S:out INTEGER);
entry REQ_REJECTED;
end AIRPLANE;
NEW_AIRPLANE,ANOTHER_AIRPLANE:T_ID;
end AIR_FACILITIES;

4.2.3 The Implementation Phase

This phase involves expansion of task, package, subroutine
and function bodies. The following three pages contain a concise
description of the package body GROUND_FACILITIES.

P.N. Lee, R.R. Purumandla, and W. Nehman

task ATC: This task is responsible for inial communication with
Airplanes, and to decide whether they are accepted or rejected and if
accepted, the request is put in the appropriate queue. It is called
through the entry points Land_Request and Tkoff_Request.

Loop
Select
accept LAND_REQUEST(B: in out PLANE_REC;
ADDR: in TASK_ADDR);
- Check status of Queues and put the flight in one of
- the queues if the request can be serviced, else notify
- flight.If it is a heavy plane, only H_Queue needs to
- be checked.
or
accept TKOFF_REQUEST(B: in out PLANE_REC;
ADDR: in TASK_ADDR);
- Add plane to appropriate queue if possible.
or
terminate;
end select;
End loop;
End ATC;

task H_QUEUE: This is the dynamic queue for the Heavy
Runway Controller(HRC). It acts as a buffer between the HRC and
ATC. ATC adds to the queue and HRC removes flights for
processing. It is accessed by ATC through the entry point
ADD_TO_Q, and by the HRC through the entry point NEXT_JOB.
Implementing this dynamic queue as a task serves three purposes:

1. Ensures that the queue is accessible at all times.

2. Ensures mutual exclusion among the tasks accessing the data.

3. The guards used in the select statements also ensure priority access
for the runway controller, as it is the prime resource in the system,
and is to be kept busy all times.

loop

select

accept NEXT_JOB(ADDR:out T_ID;H1:out

FLY_TIME;H2:0utFLY_TIME;R_STATUS:out
STATUS) do

if (ANY_PLANE(HRC_Q) = TRUE) then
- IF H_QUEUE is not empty , return next flight to be
- serviced by the controller
end if;

end NEXT_JOB;

- Update number of planes accepted ,landed and takenoff.

or

when H_gueue is not full =>
accept ADD_TO_Q(A:in out PLANE_REC; ADDR:in
T_ID;Q :in INTEGER) do

- accept another plane from ATC and add to Queue.
- if Queue status has changed from empty wakeup HRC.

ADD(HRC_Q,P1,B);

- Add to the queue, with priority specified by ATC.
end ADD_TO_Q;

- Update number of planes accepted for take off and no. of
- planes accepted for landin Update the virtual screen of the
- process.

H_screen_update;
or
terminate;
end select;
End_loop;

916

end H_QUEUE;

tasks HRC and LRC: These are the two runway controllers, that
control the two runways. These two tasks control the runways which
are the most important resources of the airport and hence should
never be kept idle. The controller calls the airplane to signal it to start
landing, and also guides it during the takeoff - landing process.

loop
Select
when AWAKE = NO =>
accept wakeup do

- wakeup

end wakeup;
- While queue is not empty get next flight no. in queue
- call the plane. Wait until it responds by issuing an entry
- finish entry.
- If there are no more planes in the queue, i.
- when AWAKE= NO,
- wait until a wakeup call is given by H_QUEUE.
- This prevents HRC from accessing an empty queue.

loop
- Get next job from H_Queue.

h_queue.next_job(baddr,hwaitl,hwait2,awake);

If AWAKE =NO then
- Que is empty, wait for wakeup call.
exit;

else
- Call the flight and get its screen ID.

BADDR.REQUEST_GRANTED(S);

- Paste its screen on the top of the screen.
MOVE_SCREEN(S,P_1,4,21);
- Inform H_STAT of the status of H_QUEUE.
H_STAT.CLEARED(HWAIT1 HWAIT2);

- Accept an acknowledgement from plane and
- get flight no. from H_Queue.
accept FINISHED;
end if;
end loop;
or
terminate;
end select;
end loop;
end HRC;

tasks H_STAT and L_STAT: These tasks are introduced to
remove the dependency among tasks that would otherwise result in
starvation or perhaps deadlock.

The ATC has to get information from the controller on the
status of the queues and runways, and the time it will take for the
controller to service the present takeoff - landing that it is handling.
In order to obtain this information the ATC would have to call the
Queues and the controllers to find out about their positions, each time
it receives a request from a plane. This could lead to a situation in
which the ATC is always waiting for one of the controllers and hence
cannot accept requests until it has received a response from both
controllers and both queues. The H_STAT task is always available to
the ATC, while the HRC is servicing the plane and therefore does
not delay the ATC.

loop
Select
accept CLEARED(H1:in FLY_TIME;H2: in FLY_TIME) do

- Get information on status of H_QUEUE and the

- time at which the last plane to be serviced by controller
- started to use the runway.

end CLEARED;

or

Concurrent Simulation with Entity Life Modeling: An Airport Simulator Using Ada

when CLEARED'COUNT =0 =>
- When Controller is not waiting for rendezvous with
- this task.

accept READ_STATUS(W1:out FLY_TIME;W2:out
FLY_TIME;T:out FLY_TIME) do

- Calculate wait time for the queue based on information
- provided by controller and time elapsed since then
- and return it to ATC.

end READ_STATUS;
or
terminate;
end select;
end loop;
end H_STAT;,

task USER_INPUT: This task is a low priority task and facilitates
user input. Since it is a simulation, the user should be able to give his
instructions to the system at all times, without stopping the system,
e.g. he should be able to create more requests, if he wishes to, while
the simulation is running.

loop
- Always looks for input from the keyboard.
- Gives the option to run simulations by time, or by no.
- of simulations,
- and calls the generator to generate planes.
end loop;

Package RANDOM_REQUESTOR
This package contains one task - Generator, which accepts input
from User_Input task.

task GENERATOR: This is a background task whose sole
purpose is to randomly generate requests for the simulator, on
demand by the user. It is important that this may not communicate
with the other tasks in any way than by producing requests, in order
that the nondeterminism and randomness of the simulation are
preserved.

loop
Select
Accept GENERATE(NO_OF_SIMS:in
INTEGER;inp_type:in INTEGER) do
- Each time it is called it loops for a random number
- oftimes to generate flight requests, and makes one
- task for each flight generated and initialises with
- random values of fuel, flight_no etc.
end GENERATE;
or
accept DONE do
- No more planes to generate.
exit;
end DONE;
end SELECT;
end loop;
end GENERATOR;

package body AIR_FACILITIES is
task body AIRPLANE is)

accept INITIALIZE(A:in PLANE_REC; ADDR:in T_ID) do
- Initializes the plane with values of fuel, request type
- weight class etc, generated by the Random no.
- generator.

end INITIALIZE;

- Creates a virtual screen for itself.

- Request ATC for landing or takeoff.

- Informs display task of its status.

Select
accept REQUEST_GRANTED(S:out INTEGER) DO

- If called by controller to use runway, inform
- display task.
end REQUEST_GRANTED;

- delay for time required for plane to land.
- Delete virtual Screen

- DO DEALLOCATION

- Reclaims the storage allocated for

- the task.

or
accept REQ_REJECTED do
- DO DEALLOCATION;
end REQ_REJECTED;

- Wipe virtual screen
- DO DEALLOCATION
end select;
begin
null;
end AIRPLANE;

end AIR_FACILITIES;

The hierarchy of packages results in an order of compilation as
shown in figure 4. The package PLN_TYPS implements the airplane
entity.

The Package FIFO uses the airplane entity described in
PLN_TYPS to implement a First-in First-out queue. Package
QUEUES uses packaage FIFO to provide a priority queue, and so
on. An arrow from the body of FIFO to the package QUEUES
signifies that the body of FIFO should be compiled before the
package QUEUES can be compiled.

Figure 5 gives a detailed description of the packages used and
their relationship. A rectangle represents a package, and encloses the
functions exported by the package.

5. PROBLEMS ENCOUNTERED

A major problem with the entity model is that each of the
concurrent processes requires much virtual memory. When the
number of real world entities is inhibitive, some real world entities
which do not change state frequently have to be modelled as data
instead of tasks. Moreover, as the number of active tasks increases
the speed of the system decreases.

With the introduction of concurrency the programmer has to
deal with issues peculiar to concurrency, such as circular wait.
Circular wait is a situation in which two or more tasks are waiting
for resources held by each other, and none of them will proceed
further until the resources are available to it. A simple analogy would
be one in which three persons, A, B and C are trying to call each
other. A is trying to call B, B is trying to call C and C is trying to call
A. In the process none of them is able to communicate with the other.

6. CONCLUSIONS

The concurrency features of Ada, combined with the design
principles of the entity-life model proved to be very appropriate to the
Airport simulation problem, which is inherently concurrent. The
tasks resulting from the design based on the entity-life model were
mostly isomorphic to the real world entities they represent and thus
helped make the design simpler in addition to capturing real world
concurrency which is so vital to many applications. The modern
language features of Ada, particularly its concurrency mechanisms,
and design principles such as entity-life modeling clearly demonstrate
the viability of Ada as a language for simulation.

REFERENCES

Gehani, N. (1988), Ada - An Advanced Introduction, Prentice Hall
Inc., Englewood Cliffs, N.J.

Gomaa, H. (1989), “*Structuring criteria for real time design,"/EEE
1 é th International conference on software engineering, 152-
164.

P.N. Lee, R.R. Purumandla, and W. Nehman

Spec Body

AIR FACILITIES

A

Spec I Body Spec Body

GROUND FACILITIES Request Generator

o~ T

Spec l Body
QUEUES Spec Body
\ Support Package
Spec I Body
FIFO
\
Spec | Body
PLN_TYPS

Figure 4. Airport Simulator System Dependency Graph

Melde, J. E. and P.G.Gage (1989), “*Ada Simulation Technology -

Methods and Metrics,"Proceedings of t he seventh Annual SHG Queues PLN_TYPS
Simulation Symposium. 11-26. Add_to_Q What_type
Nielsen K.W, and K.Shumate (1987), *Designing Large Real-Time g:i:i:'zgzz: Next_job fuel left
systems with Ada,"Communications of the ACM, 30, 8, Paste screen gsée;:;:;om_q icer to enaracter
695-715. Nipe_;creen = nteger_to_char
Powers, W.S. and T.Nute (1985), Implementing a simulator as a Mov_screen QUE_FuLL
set of Ada tasks,"Proceedings of the Eastern Simulation g;:‘e—keyb“‘d Fifo ——
Conference, March 85, Norfolk Virginia, 7-12. s
Sanden,B. (1989)," An Entity-life Modeling Approach to Design of Sread CREATE_FIFO o ens
Concurrent Software,"Communications of the ACM 32,3, Read_keystroke e ouir RANDREQ
330-343. - RAND_FL_NO
Sanderson, D.P. and L.L.Rose (1989), Object oriented Modeling RAND_WT_CLASS
using C++," Proceedings of the Annual Simulation

Symposium, 143 - 149,

Thesen A., Grant H., and D.W.Kelton (1983), A process-Oriented AIR_FACILITIES
SimulationPackage based on Modula-2,"Proceedings of the
1987 Winter Simulation Conference , Dec 14-16 1987, with PLN_TYPS
Atlanta, Georgia, 165-169.
Thesen A. (1987)," Writing simulations from scratch,”Proceedings pac“iiﬁiﬁzﬁ‘s‘ci’géﬁﬁigs AIRCRAFT
of the 1987 Winter Simulation Conference ,152-156. -- the definition of aeroplane
United States Department of Defense (1983), " Reference Manual for end AIR_FACILITIES;

the Ada Programming language” ANSI /MIL - STD-1815A-

1983, United States Department of Defense, Washington, package body RIRFACILITIES
D.C.

-- contains the implementation
-- of the body
end AIR_FACILITIES;

Figure 5. Packages

918

