Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

DEVELOPING A SIMULATOR FOR THE USC ORTHOGONAL MULTIPROCESSOR

Sharad Mehrotra

Department of EE-Systems
University of Southern California
Los Angeles, California 90089-1115

ABSTRACT

This paper describes the development of a CSIM-based sim-
ulator during the RISC-based design of a prototype multiproces-
sor, the Orthogonal Multiprocessor (OMP). The prototype ma-
chine is to be built with Intel :860 microprocessors and parallel
memory modules that are 2-D interleaved and orthogonally ac-
cessed using custom-designed spanning buses. Initial application
areas for the machine are image processing, computer vision and
neural network simulation. After briefly describing the machine
architecture and the simulator, we discuss the interplay between
simulation and design, and show specific cases where simulation
results have impacted the design. The simulator has been used
to project machine performance and evaluate design choices.

1. INTRODUCTION

The advent of RISC processors and the increasing use of par-
allel processing software [Hwang and DeGroot 1989] have created
asignificant impact on the computer industry. This paper reports
the interplay between design and simulation during the develop-
ment of an Orthogonal Multiprocessor (OMP) system using state-
of-the-art 64-bit RISC microprocessors, a conflict-free memory
organization, and multi-dimensional spanning buses. This OMP
architecture was developed at the University of Southern Califor-
nia [Hwang et al. 1989] during the past four years. The detailed
design of a 16-processor OMP prototype is currently underway
using Intel 1860 CPU chips and funding from the US National
Science Foundation.

We have developed a C-language based OMP simulator [Meh-
rotra 1990, Cheng 1990], using the CSIM simulation language
(CSIM has been copyrighted by the Microelectronics and Com-
puter Technology Corporation) developed at MCC [Schwetman
1986]. The simulator has been used to investigate architectural
design choices. It is also being used to develop and evaluate
the performance of parallel algorithms for the OMP. Simulated
performance results for matrix multiplication, orthogonal sort-
ing, and 2-D FFT on an OMP with 16 RISC processors were
reported in (Mehrotra et al. 1990].

The rest of this paper is organized as follows. In Section 2 we
introduce the architecture of the Orthogonal Multiprocessor. In
Section 3 we provide a brief description of the design of the OMP
simulator. In the next two sections, we describe how simulation
results have validated the design, and how we are constantly re-
fining the simulator to produce more accurate performance data.

Finally, in Section 6 we summarize the current status of the sim-
ulator and outline future tasks.

857

2. THE OMP ARCHITECTURE

The global OMP architecture is briefly discussed in this sec-
tion. Further details can be found in [Hwang et al. 1990]. As
illustrated in Fig. 1, the prototype OMP will consist of 16 1860
processors and 256 partially shared memory modules, that are in-
terconnected by a mesh of spanning buses. Each processor uses a
dedicated pair of spanning buses to access a row of 16 interleaved
memory modules, called a row access, or to access a column of
16 interleaved memory modules, called a column access. The two
access modes are mutually exclusive so that at any given time
the orthogonal memory is accessed by rows or by columns, but
not in a mixed access mode. Each memory module, M;;(¢ #), is
shared by two processors, P; and P;, but only one of the two pro-
cessors can access the memory module at a time. The collection
of all 256 memory modules is called orthogonal access memory
(OAM).

The OMP architecture efficiently supports the Single Pro-
gram, Multiple Data (SPMD) programming style (Karp 1987]
using partially shared memory. SPMD operations imply that a
large program is partitioned into multiple subprograms for par-
allel execution by the 1860 processors. The divided subprograms
may require synchronization at certain points of time, but they
do not have to be executed in lock step at the instruction level
as in an SIMD machine. Instead, SPMD can be considered as a
special class of MIMD operation.

Figure 2 illustrates the memory hierarchy and access laten-
cies viewed from each processor, P; fori =0, 1, 2,..., 15. Each
processor sees four different levels of memory; namely the inter-
nal cache (8K bytes of data and 4K bytes of instruction), local
memory, the Vector Register Windows (VRWs), and a subspace
of the OAM, involving 31 modules on 7 memory boards. It should
be noted that the diagonal memory module, My;, is only accessed
by processor P; as a private memory and participates in both
row and column accesses. Eight spanning buses, HB; and V B;,
for i=0, 1, 2, 3 are built on the memory backplane forming the
spanning bus network shown in the center of Fig. 1 and Fig. 2.
The access latencies of the four memory levels are labelled as ¢,
tq, t3, t4 in Fig. 2. The local memory is used to hold programs,
scalar data sets, and local variables. The hierarchy, t; < t4, forms
a 2-level path to access the orthogonal memory, which holds vec-
tor data sets either by rows or by columns. Thus, the OAM
supported by the VRWs acts as a form of vector memory. Fur-
ther details of the memory hierarchy and its management may
be found in [Panda and Hwang 1990].

3. THE OMP SIMULATOR

The OMP simulator is process-oriented and algorithm-driven.
In a process-oriented simulator, the programmer defines processes

S. Mehrotra

VME Bus S T —
T | ~ T Synchronization Bus
Host CPU VME/SCSI
and
Memory Adapter Floating |
Poin
_I i Mullipllier
C
Display I—a;gm PB
Console PBy PB, PB, PBy| °*** 15
Frame
| Grabber |
=
s | —
SCSI Interface Local Memory Vector Register
Bus Boards Windows
- (4M Bytes) (512K Bytes)
Frontend Host and /O —'-J
, o Ly L s 22 Flat cables g
To| | I [Po| P1{P2 [Ps Py Ps Pg Py Py Py PPy Pia Py3 Py | Py
L1 1 1 S T | 1 1 1
ACB | SBO | SB1 | sz | | SB3
! VBO VB1 VB2 VB3 4
Control
OO o o o | O) [o
OO HH O CHO{OOH OO OH
O] [[} [} [} OO O CH{O{CHOH
ooy i CECF O CE: i [
MBO,O MBO.l MB0,2 MBO 3
HB1 I I T | y
Orhogonal | STl SEE] EEEm e
Memory O it} o] [} [} Ho{H A HOHHH
(on 16 dual-ported THO{ OO ooy HoH OO HO{ |
me?gry b_oa.rds oo Focok Ot O
ia§4 ac:_ruas;,ngfa B2 MBj o / MB, MBy 5 MBy 5
16 memory modules | 7 _ [] | |
=%] — T " e m
shown as squares) GC!-E}E} 2 lfl-\j-lj-li}- : il o e
CHOHOH 4 o) i} [T] [u [} [} HO{ OO
o [o o} o} iy o] S
EE e e e EEmE
HB3 l MBZ,O I MBZ] | MB2)2 l]\/[]32’3
el | oaeE | [ooeEl | Eaam
R S EEE e I
o) [i} [) [) H{OHOH [} [} [[}
o odok GO (e
MB3 0 MBj | MBj , MBj 3

Figure 1. Board Level Design of the Orthogonal Multiprocessor with Sixteen i860 Processors and 256 Memory
Modules Interconnected by 8 Spanning Buses (PB;: Processor Boards, MB; ; Memory Boards, SBi:
Switch Boards, ACB: Access Control Board, HBi: Horizontal Bus, VBi: Vertical Bus)

858

Developing a Simulator for the USC Orthogonal Multiprocessor

Dual-processor
Processor Board
with Local Memory

P;
(i860)

RISC integer core
and floating-pt units

]

1 | | [}
Instr Cache Data Cache
(4K Bytes) (8K Bytes)

L

t3

ty

Local Memory Vector Register

Windows

Spanning Bus Network

16 Memory
Modules on
4 Memory
Boards for
Row Access

233T07TTTLTRRLTTILNALL

5
N
0
v

dynamic interaction between the backend machine and the host
occurs when program and data are transferred between the two
machines. Since this interaction is infrequent we don’t capture it
in the simulator.

Figure 3 depicts the design of the OMP simulator. The sim-
ulator consists of three modules: the user developed algorithm,
an OMP architecture specification file, and the CSIM simulation
kernel. The architecture specification file defines components
of OMP in terms of CSIM facilities, events and C data struc-
tures. Facility definitions include the VME Bus, the processors
(i860s), the orthogonal memory modules, and the spanning bus
network. Event definitions include row-access and column-access
flags for each processor, and some other definitions for house-
keeping. Certain operating system features that will be available
on the machine are also modeled in the simulator. These in-
clude data structures and CSIM event declarations for achieving
synchronization between processes (parallel program segments).

The OMP simulator is deterministic. All system delays in-
cluded in the simulator are explicit values used in the actual
hardware design and have been calculated from the 40MHz i860
data sheet and vendor parts catalogs. Table 1 shows some of
the parameters used in the simulator. It is impossible to model

Table 1. Hardware Timings for 40MHz i860-based Orthogonal Multi-

processor

” Time

150 nsec
825 nsec
300 nsec

| Description 1

Local memory access time

OAM vector access latency

Time to access successive vector elements from
OAM, after the initial element has been fetched

Aesesesaassaas

N

S

16 Memory
Modules on
4 Memory
Boards for
Column Access .’ = M5,

Orthogonal
Memory
with latency t4

i

Figure 2. Memory Hierarchy and Access Latencies from each Processor

P; for i=0,1,..,15 in the Prototype Design

that use the modeled system’s resources. A process represents a
complete computing activity that is scheduled for execution on
the simulation engine. During the simulation run, interacting
processes communicate and synchronize with each other as they
use system resources [MacDougall 1976]. In an algorithm-driven
simulator, programs are used to drive the simulation, and per-
formance measures are gathered during the program run. Users
of the OMP simulator write parallel algorithms in terms of pro-
cesses by using the C programming language augmented with
simulation direclives from the CSIM simulation kernel [Schwet-
man 1989]. The design of our simulator has been influenced by
the ASPOL-based simulator for the ETA'® supercomputer [ETA
Systems 1986] and the SPAWN simulator [Dubois et al. 1986).
One of our goals has been to retain the advantages of algorithm-
driven simulation, while modeling the machine design as accu-
rately as possible. The simulator models the backend machine
shown in Fig. 1. We do not simulate the frontend host. The only

859

275 nsec
665 nsec

Synchronization bus access time

Time to read and modify memory location across
Synchronization bus

Time to broadcast data on Synchronization bus
1860 RISC operation time

Time to access an element in VRW

240 nsec
30 nsec
75 nsec

all the hardware accurately in a process-oriented multiprocessor
simulator. Judicious approximations have to made in developing
the model so that the results are meaningful. We have identified
important OMP parameters and calculated their values.

The simulation directives in the OMP simulator are grouped
into two sets: one set is supported by the OMP-C compiler as a
set of language eztensions, while the other is used only for simula-
tion. Table 2 shows some of the directives. Language extensions
are needed to simplify the management of OMP hardware, to
efficiently allocate data structures in the orthogonal memory, to
synchronize parallel program segments, and to facilitate commu-
nication between the host and the backend machine. All direc-
tives are implemented as parameterized macros of CSIM state-
ments. By encapsulating CSIM statements in macros we have
provided the user with an abstraction that eases simulator pro-
gram development.

The OMP simulator time slices the execution of parallel code
segments on a sequential workstation. Since the prototype OMP
is being constructed with 7860 chips, we need to estimate the
execution time of each code segment on an 1860 processor, and
appropriately advance simulation time for the CSIM process rep-
resenting that segment. We use an instruction counting technique
[Weinberger 1984] to estimate the i860 cycles being simulated.

S. Mehrotra

User-developed Algorithm

H Initialization Code

' /

Par Code Segment
(process)

Par Code Segment

Par Code Segment
) (process)

(process)

4 "
; Termination Code /:

tatistics Generation

CSIM process
scheduler

Resource

OMP
Architecture
Specification

Processors

(facilities)

Spanning Bus

OAM modules {facility)
(facilities)

/ Simulated Performance Data "}'

Figure 3. Organization of the Algorithm-Driven Orthogonal Multiprocessor Simulator

First, a user developed program is compiled to SPARC assem-
bly language using the C compiler on a SUN-4 machine (SPARC
and SUN-4 are trademarks of Sun Microsystems, Inc.). This as-
sembly code is analyzed and the number of instructions in each
basic-block of code is counted. We assume that there is a one-to-
one correspondence between the SPARC assembly code and 860
assembly code. The cumulative instruction count for each basié-
block is then inserted back to the source program as a call to the
CSIM hold subroutine [Schwetman 1989] to expend the correct
amount of simulated time. The modified source program is then
recompiled with the CSIM library for building an executable im-
age. An error would be introduced in the instruction count if the
extra code generated by the simulation directives was included.
This is because simulation directives representing language ex-
tensions will actually be translated into a much smaller number
of instructions by the OMP-C compiler than the count derived
from a translation of the CSIM macro. Simulation specific direc-
tives will not be translated at alll To avoid this inaccuracy, all
CSIM directives are enclosed with markers so that instruction
counting is not performed for the assembler stream in between
the “clock off” and the “clock_on” markers. Directives repre-
senting language extensions have been analyzed ahead of time
and instruction counts assigned to them. Whenever any of these
directives is invoked, the instruction count for that processor is
incremented by a fixed amount. Thus, the final instruction count
for a processor at the end of the simulation run is proportional
to its actual computational activity.

860

To keep simulation times acceptable, we have made several
simplifying assumptions in our simulator model for the proces-
sors used in the OMP. First, we assume that each processor can
issue an instruction every clock cycle. This assumption has been
made based on the 4K byte size of the instruction cache, its
read-through organization, and an assumed hit rate of over 95%.
Second, when floating-point operations are used, it is assumed
that they can be overlapped with integer operations inside the
1860. Third, it is assumed that the 1860 data cache always holds
all the local data. It has been our experience up to now that typi-
cal OMP programs manipulate large vector instead of scalar data
sets. Vector data is stored in the orthogonal memory, accesses
to which bypass the i860’s internal data cache. Each processor
will allow execution of multiple threads of code that will be man-
aged by the operating system. This overhead has not yet been
factored into the simulator.

4. DESIGN VALIDATION

The simulator has been used to verify our hardware design

decisions. As mentioned earlier, system hardware has been mod-
eled as accurately as possible. For example, the interface between

the processor board and the OAM is the spanning bus network.
This backplane includes logic for switching and buffering address
and data information. Consequently, it contributes to the latency
t4 depicted in Fig. 2. Also included in ¢, are cable delays in con-
necting processor boards and the memory backplane. Other sys-
tem delays have been calculated in the same way and recorded in

Developing a Simulator for the USC Orthogonal Multiprocessor

Table 2. Sample Simulation Directives used in the Orthogonal Multiprocessor Simulator

" Directive | Remarks
TSETCNT(str-idx,N,pid) [Initialize synch count for process pid to N if no other process has
done so (using counter indexed by str-idx)
SYNCH(str-idx,pid) Wait at synch point (using counter indexed by str-idx) until all
processes are there
SET_ROWACC(pid) Process pid declares it is in row-access mode
CLR_COL(pid) Process pid declares it is leaving col-access mode
Language | PIPE_IN(pid) Process pid to fetch interleaved row or column of data from OAM
Extension || PIPE_OUT(pid) Process pid to write interleaved row or column of data to OAM
BROADCAST(pid) Process pid to write scalar data item in pipelined
mode to row or column of OAM
CRT_TSK(tsk-nam) Create code thread tsk-nam on processor
END_TSK(pid) Terminate code thread pid
ACC_BUF(pid) Indicate vector register window access by process pid
Simulation || _ACC_LM(pid) Indicate local memory access by process pid
Specific SIM_INIT(mname) Initiate simulation with model name mname
PROC_STATS(pid) Report statistics for process pid
_SIM_END End simulation

the OMP architecture specification file. Examples include local-
memory access time, vector-register-window access time, and the
VME-bus access time. Care has been taken to account for cases
where multiple accesses are made to the orthogonal memory, such
as in pipelined read and pipelined write accesses.

As of this writing, there have been at least two major de-
sign decisions that have been changed due to simulation results.
These are the structure of the interprocessor bus, and the data
buffering strategy for accessing the OAM. The initial design of
the machine used a single bus for interprocessor communication
and synchronization. Code threads running on the multiple pro-
cessors were synchronized by a barrier synchronization. Simula-
tion runs have revealed however, that this method is extremely
costly if synchronization is done frequently. In the worst case, a
processor arriving at the barrier has to wait for all other proces-
sors before it can execute code beyond the barrier. The overhead
for synchronization can therefore become unacceptable. With
the insight derived from simulation, a design decision has been
made to implement a hardwired synchronization mechanism to
augment the barrier technique [Hwang et al. 1990].

Initially it was decided to expand the i860 processor’s inter-
nal instruction and data cache with ezternal cache. The idea
was that this external cache would buffer accesses to data from
local memory and OAM. There was no need for maintaining
cache-coherence amongst the multiple processors because each
processor was operating on a physically ezclusive region of OAM
in either of its access modes. However, cache flushing was still
required when processors switched from row-access to column-
access mode or vice versa. Simulation proved cache flushing to be
a major overhead. The new design uses vector register windows
for buffering OAM data [Panda and Hwang 1990], and disables
the internal caches during vector accesses. The 860’s internal
caches are activated when accessing local memory.

5. SIMULATOR REFINEMENT
The first version of the simulator declared the OAM as an ar-

ray of CSIM facilities [Schwetman 1989], representing the OAM

as a set of rows and columns without distinguishing amongst

861

memory modules in a row or column. During execution there-
fore, statistics were only collected for accessing the entire row or
column. After analyzing some preliminary data, it was decided to
refine the description of the OAM down to the individual mem-
ory module. Accordingly, the OAM was redefined as an array of
N x N CSIM facilities, where NV is the number of processors in the
system. Once this change was implemented it became possible to
evaluate access patterns to single modules. With this change, it
was seen that non-uniform OAM module accesses were proving
to be a big penalty, so a decision was made to limit OAM ac-
cesses to only vector reads and writes. The original architectural
specification had intended OAM access to be restricted as such,
but the issue was reopened for discussion during the detailed de-
sign. With simulation results at hand, the designers were able to
concentrate on optimizing the vector access mode.

After the external cache idea for the processor board was
dropped, it was decided to offer a data buffer board to hide the
access latency of OAM data. Initially we did not have a firm idea
about how to structure such a buffer, except that it would have to
be optimized for fast data accesses from the processor. The ini-
tial simulation model of the buffer therefore was simply as a fast
on-board buffer. As the design has progressed, the on-board data
buffer idea has been refined to the vector register windows con-
cept. Although vector register windows are still composed of the
same data buffers that were modeled earlier, they are enhanced
by on-the-fly data permutation capabilities, and supported by
an index memory for storing predefined data manipulation tem-
plates [Panda and Hwang 1990]. We are planning to modify our
simplistic data buffer model to reflect the new design.

In modeling the spanning bus network for the initial release
of the simulator, we took a worst case modeling approach. It was
assumed that any OAM request passing thru the spanning bus
network would experience its worst case delay. This delay calcu-
lation included the electrical delays in traversing the backplane
and associated cables, as well as contention for the buses, H B;
and V B;,i=0, 1, 2, 3. Bus contention occurs because each of the
horizontal and vertical buses is shared by up to four processors.
With the design firming up, a more detailed description of the
backplane has emerged, so we are updating the simulation model.

S. Mehrotra

Our new model will declare the spanning bus network as a col-
lection of eight CSIM facilities. Since each bus will actually be
time-sliced amongst the competing processors by a round-robin
scheduling algorithm, the CSIM facility representing each bus
will also be managed using round-robin scheduling. With this
refinement we will be able to measure the bus contention as it
really occurs for application algorithms.

The current timing model in the simulator assumes that one
1860 instruction is equivalent to one SPARC instruction. This
is only a first step to get us going. Our laboratory now has an
Intel :860 development system that contains an 860 processor
and a software simulator for the processor. We plan to bench-
mark program execution times on the development system and
compare them against the running times derived from the sim-
ulator for the single CPU case. Any resulting discrepancy will
be reduced by scaling the simulator results to correspond to the
development system data. The scaled times will then be used to
estimate execution times for multiprocessor runs.

6. CONCLUSIONS

We have reported our experiences in developing a multipro-
cessor simulator during the design of OMP. Using the simulator,
we have been able to validate some critical design parameters,
such as the local memory and OAM access latencies, the inter-
processor synchronization overhead allowed, and the VRWs con-
figuration. We have also been able to make some projections
about the effective processing rate of the OMP [Hwang et al.
1990].

Several extensions to the OMP simulator are planned. The
simulator produces a lot of information at run-time. Using an
MCC developed graphical tool we have been able to display some
of the collected statistics, but the tool needs to be enhanced. The
calibration of timing estimates produced by the simulator has to
be performed. In addition, we are looking at ways of speeding
up the simulation runs.

ACKNOWLEDGMENTS

We would like to thank the scientific input provided by in-
dividuals working in the project. We appreciate the interaction
with Viji Balan, Rama Chellappa, Chien-Ming Cheng, Michel
Dubois, Brian Finnerty, Navid Haddadi, Ellis Horowitz, Fon-Jein
Hsieh, Kai Hwang, Sugih Jamin, Kim Korner, Jin-Cheng Liu,
Mark Lytwyn, Weihua Mao, Hemraj Nair, D.K. Panda, Santosh
Rao, and Shisheng Shang during group meetings and technical
discussions. We appreciate the help from Herb Schwetman of
MCC, Mac MacDougall of Apple Computer, and Cliff Arnold of
Control Data Corporation. We acknowledge the financial sup-

port from NSF under grant No. MIP-89-04172 and from USC’s
School of Engineering in terms of cost sharing and laboratory

renovation.
REFERENCES

Cheng, C.M. (1990), *‘Programmer’s Guide to the USC Orthogonal
Multiprocessor Simulator,”’ Technical Report, Department of
EE-Systems, University of Southern California, Los Angeles,
CA.

Dubois, M., M. Balakrishnan, F.A. Briggs and I. Patil (1986),
‘“Trace-driven Simulations of Parallel and Distributed Algo-
rithms in Multiprocessors,”’ In Proceedings of the Internation-

862

al Conference on Parallel Processing, K. Hwang, S.M. Jacobs,
and E.E. Swartzlander, Eds. IEEE Computer Society Press, Los
Alamitos, CA, 909-917.

ETA Systems Inc. (1986), ETA-10 Multiprocessing Simulator Us-
er’s Guide, Publication 1076, ETA Systems Inc., MN.

Hwang, K., and D. DeGroot, Eds. (1989), Parallel Processing for
Supercomputers and Artificial Intelligence, McGraw Hill, New
York, NY.

Hwang, K., M. Dubois, D.K. Panda, S. Rao, S. Shang, A. Uresin,
W. Mao, H. Nair, M. Lytwyn, F. Hsieh, J. Liu, S. Mehrotra, and
C.M. Cheng (1990), ‘‘OMP: A RISC-based Multiprocessor us-
ing Orthogonal-Access Memories and Multiple Spanning Bus-
es,”” In Proceedings of the 1990 ACM International
Conference on Supercomputing, ACM Press, Baltimore, MD,
7-22.

Hwang, K., P.S. Tseng, and D. Kim (1989), ‘*An Orthogonal Mul-
tiprocessor for Parallel Scientific Computations,”’ [EEE
Transactions on Computers C-38,1,47-61.

Karp, A.H. (1987), ‘‘Programming for Parallelism,”” Computer 20,
5,43-57.

MacDougall, M.H. (1976), ‘‘System Level Simulation,’’ In Digital
System Design Automation: Languages, Simulation and Data
Base, M.A. Breuer, Ed. Computer Science Press, Rockville,
MD, 1-115.

Mehrotra, S. (1990), ‘*Simulator Manual for the USC Orthogonal
Multiprocessor,”’ Technical Report, Department of EE-Sys-
tems, University of Southern California, Los Angeles, CA.

Mehrotra, S., C.M. Cheng, M. Dubois, K. Hwang, and D.K. Panda
(1990), ‘“Algorithm Driven Simulation and Projected Perfor-
mance of the USC Orthogonal Multiprocessor,’” In Proceed-
ings of the International Conference on Parallel Processing,
IEEE Press, Los Alamitos, CA.

Panda, D.K. and K. Hwang (1990), ‘‘Reconfigurable Vector Regis-
ter Windows for Fast Matrix Computation on the Orthogonal
Multiprocessor,”’ In Proceedings of the International Confer-
ence on Application Specific Array Processors, IEEE Comput-
er Society Press, Los Alamitos, CA.

Schwetman, H.D. (1986), ‘‘CSIM: A C-based, Process-Oriented
Simulation Language,”’ In Proceedings of the 1986 Winter
Simulation Conference, J. Wilson, J. Henriksen, and S. Rob-
erts, Eds. SCSI, San Diego, CA, 387-396.

Schwetman, H.D. (1989), ‘‘CSIM Reference Manual (Revision
13),”" Technical Report ACA-ST-252-87, Microelectronics
and Computer Technology Corp., Austin, TX.

Weinberger, P.J. (1984), ‘‘Cheap Dynamic Instruction Counting,”’
AT&T Bell Laboratories Technical Journal 63, 8, 1815-1826.

