Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

ON COMPARING LOAD INDICES USING ORACLE SIMULATION

Sayed A. Banawan

Department of Computer Science
University of Houston
Houston, Texas 77204

ABSTRACT

Load sharing has been the focus of a great deal of research
as a means of enhancing the performance of distributed systems.
To insure its success, a load sharing policy must use some metric
to compare the load at different nodes in the system. The result
of the comparison is used to make decisions regarding the assign-
ment of jobs to nodes. The goal is to optimize some performance
measure such as the time to completion for individual jobs or the
mean response time of all jobs.

In this paper, we use oracle simulation to compare differ-
ent load measures in their impact on the performance of load
balancing policies. During oracle simulation, the system is simu-
lated and the performance measure of interest is evaluated in the
future for each possible decision in the current state. By com-
paring the value of the performance measure in the future, the
optimal decision for the current state can be reached. our re-
sults show that the obvious load measures can be classified into
two sets. The first set includes the instantaneous queue length,
average queue length, utilization, response ratio and total unfin-
ished work. Any of these measures can greatly improve system
performance. The other set includes arrival rate and throughput.
These measures have only a slight effect on performance. Finally,
the peformance of practical load balancing policies, that do not
use future information, support the same conclusion.

1. INTRODUCTION

Load sharing has been the focus of a great deal of research as
a means of enhancing the performance of distributed systems. It
can be seen as an instance of the problem of resource allocation
and scheduling. The goal is to make efficient and judicious use of
the replicated resources available to improve system performance.

Traditionally, load sharing has been approached from two
different views: task allocation and job scheduling. They differ
in the nature of workload to be shared. Task allocation is con-
cerned with the assignment of modules that belong to a single
computational task to available nodes so that some performance
measure, typically the task completion time, is optimized [Efe
1982; Stankovic and Sidhu 1984; Lo 1988].

Job scheduling, on the other hand, attempts to improve the
overall performance by transferring jobs between nodes to make
use of concurrently idle or lightly loaded resources in the system.
In this case, the overall mean response time is the performance
measure of interest. It differs from task allocation in that it
deals with streams of jobs, each of which usually consists of a
single module. Jobs arrive at arbitrary times, perhaps according
to some stochastic process. Furthermore, their computation de-
mands may not be known a priori. Livny and Melman [Livny
and Melman 1982] demonstrated the potential benefits of trans-
ferring jobs for the purpose of load sharing. They analytically
derived an expression for the probability that a distributed sys-
tem reaches a state in which a job is waiting for service while at

851

John Zahorjan

Department of Computer Science
and Engineering
University of Washington
Seattle, Washington 98105

the same time one or more idle nodes are available. Under fairly
reasonable assumptions, this probability approaches 1 over the
entire range of system utilization. In other words, almost all the
time one node is idle while another experiences congestion.

Job scheduling can further be classified as static or dynamic.
A scheduling policy whose decisions are independent of system
state is considered static [Tantawi and Towsley 1985]. A static
policy determines the branching probabilities according to which
jobs are assigned to nodes. Although static policies are simple,
easy to implement, and have a minimal runtime overhead, they
lack the flexibility of making scheduling decisions based on the
current state of the system. A dynamic policy, on the other hand,
can use such information to resolve any transient congestion in
the system [Wang and Morris 1985; Zhou 1987; Eager et al. 1986,
1988; Pulidas et al. 1988; Banawan 1989].

A key issue in the design of a dynamic load sharing pol-
icy is to select a metric to compare the load at different nodes.
Although a vast number of load sharing policies have been pro-
posed, only a few results are available regarding the most appro-
priate load measure for load sharing purposes [Ferrari and Zhou
1986]. In this paper, we compare several intuitive load measures
in their impact on the performance of load sharing.

The paper has the following organization. In §2 we present
our model of a distributed system. §3 defines different load mea-
sures that can potentially benefit dynamic load sharing. In §4
we describe how oracle simulation is used to compare these mea-
sures. The actual performance of (practical) load balancing is
reported in §5. Finally, §6 summarizes our conclusions.

2. THE MODEL

Our model of a distributed system consists of nodes that
communicate over a local area network. Furthermore, the fol-
lowing assumptions regarding the system are made:

- It is a medium size system. The number of nodes may
range from few to a few hundreds.

- It is a homogeneous system. All nodes are functionally
equivalent. Thus, a job can be executed by any node.

It has a broadcast capability. All nodes can listen to the
information transmitted over the communication network.

Job transfer can occur only at the job’s arrival time. Once
a job has been assigned to a node, it continues to run there
until completion, i.e., process migration is not allowed.

There are several implications of these assumptions. First,
the broadcast capability makes it possible for each node to be
aware of the “state” of other nodes. Second, there is a uniform
distance between any pair of nodes in the system. Thus, it takes
the same amount of time to send a message from any node to any
other node. This time may be negligible provided that the com-
munication network has a high bandwidth. Third, the execution

S.A. Banawan and J. Zahorjan

time on a remote node is equal to the execution time on the
local node. Finally, the overhead of collecting state information
is relatively small. (The experimental results of Korry [Korry
1986] and Zhou and Ferrari [Zhou and Ferrari 1987 suggest that
the overhead of load sharing in locally distributed systems is
negligible.)

Although the model is simple, even for this model the opti-
mal dynamic load sharing policy is not yet known. An intuitively
appealing approach is to attempt to balance the load among all
nodes as follows. Let [;(t) denote the load of node : at time ¢,
thus l(t) reflects the current level of congestion at that node.
The system-wide load information at time ¢ is then given by
the vector L(t) = [li(t), Lo(t),. .., la(t)] where n is the number of
nodes in the system. To quantify the system balance (or more
accurately the system imbalance), we will use the variance of the
load vector L, defined by:

oo = = 000~)P

where [(t) = Y, Li(t)/n, the average node load. A system is
perfectly balanced if az(t) = 0, which implies all nodes have ex-
actly the same load. From a practical point of view, however,
Uf,(,) changes over time. A load balancing policy should react by

assigning jobs to nodes so as to minimize it.
3. LOAD MEASURES

In the previous section, a measure of system balance was
defined assuming that the load at each node can be determined.
There are several apparent choices for the load measure [;(t). For
example, it may reflect the instantaneous state of node 7 at time
t. Alternatively, it can reflect the changes in the node state over
a time interval T that ends at time ¢, i.e., the interval (¢ — T, t).
The beginning of the interval may be coincident with a change
in the system state, e.g., the time of the last arrival.

The following load measures are considered:

1. Number of arrivals: the load at node i at time t is equal
to the number of jobs that arrived at that node during the
interval T. That is:

L(t) = At — T,t)

2. Number of departures: similar to 1, but the number of de-
partures instead of arrivals is used. Thus, we have:

L) = Dt~ Tt)
3. Instantaneous queue length:
L(t) = qi(t)
where g, is the length of the ready queue at node 1.

4. Average queue length: the load at node ¢ at time ¢t is the
average queue length during the last interval T. That is:

L(t) = a(t - T)t) = %/liTq‘(u)du

5. Mean response time: the load at node : depends on the
average response times of jobs that departed from ¢ during
the interval T. To account for the case of no departures we
use the following expression for I(t):

a(t —T,OT
L(t) = { ‘(_(—%D. iy D(t-T.T)>0

@(t—T,)T Dt -T,T)=0

852

6. Mean stretch factor: Let t; and t; be the endpoints of a
time interval. Then, the stretch factor of j during that
interval is defined as follows:

ity —
service time received by j in (i, t2)

Sj(tlytZ) =

If ¢, is the job arrival time and ¢, is the job departure
time then S; becomes identical to the process response ratio
defined by Krueger and Finkel [Krueger and Finkel 1984],
i.e., the ratio of the job response time to its service time.
The stretch factor has a minimum value of 1.0 when the
job does not experience any congestion. A load measure
1;(t) may be defined by averaging the stretch factors of all
jobs that were fully or partially executed during the time
interval (¢ — T,t). In other words,

2 Sj(t — T,t)

jeJ

L(t) = ﬁ

where J is the set of jobs that received service during the
interval (¢t — T, t).

7. Utilization: B(t—T,1)

L(t) = =—=—"

(0 =20
where B(t — T') is the total time the node was busy during
the interval (¢t — T, t).

8. Unfinished work: the load at node 7 at time t depends on
the total amount of work yet to be done. That is:

L) = > W)
1<5<qi(t)
where W;(t) is the remaining service time of job j running
on node ¢ and g;(t) is the node’s queue length.

Since the above measures are different, they may not be
equally useful for load balancing. For example, the number of
arrivals or departures captures less information about the node
state than other measures since they do not take into account
the initial state of the node or jobs’ service demands. Utilization
tells us how much work has been done, while the unfinished work
indicates the amount of work that is yet to be done. Both the
mean response time and the mean stretch factor convey some
information about the congestion and the service demands of
jobs at the node. On the other hand, the queue length and the
average queue length contain information about the congestion
experienced by the node but nothing about how much work has
been or is yet to be performed.

4. IDEAL BALANCING USING ORACLE SIMULA-
TION

To determine which load measure is most useful, we compare
the performance of load balancing policies. Except for the load
measure used, all policies attempt to maintain system balance as
much as possible so that each new job finds the system in the
most balanced state. The most balanced state is such that the
variance of the load vector, o}, is minimum.

The comparison is based on simulation. Figure 1 shows a
flowchart of our simulator. We call it oracle simulation because
the simulator looks ahead in the future to determine the conse-
quences of an action taken at the present time. It runs as follows.
Whenever a new job arrives, say at time ¢, it is assigned to some

On Comparing Load Indices Using Oracle Simulation

node and the system is simulated until the time of the next ar-
rival, t+ 7. At time ¢+ T’ the system balance is evaluated using
o%. The simulator then backtracks and tries assigning the same
job to all other nodes, one at a time. For each assignment it eval-
uates o7 at time t + T". The job is then permanently assigned to
the node that yields a minimal value for 6% at ¢ + 7. If there are
more than one such assignment, one is selected at random. The
simulation continues with the next arrival at time ¢ + T'. Note
that the scheduling decision at time t is made to minimize the
system balance measure o} at time t+7". Later, we will consider
the practical case in which the goal is to minimize the current
value of the system balance measure o instead of its future value
at time ¢t + T".

Because of the time complexity of oracle simulation, O(NJ)
where N is the number of nodes and J is the number of jobs, our
examples use a system with a moderate number of nodes. This
allows us to simulate a large number of jobs J, which is necessary
to obtain valid results from the simulation.

In the simulation, each node is modeled as a single service
center. Each job is assumed to be monolithic, i.e., it has no sub-
tasks. The local scheduling discipline at each node is assumed to
be processor Sharing (PS), which is an approximation of Round-
Robin (RR) scheduling when the quantum is small [Coffman and
Denning 1973]. Both the service time and the interarrival time
are exponentially distributed. The time unit is set equal to the
average job service time, thus the service rate at each node, g,
is 1 job/unit time. The overall arrival rate A can be calculated
from the desired utilization p using the formula A = npu, where
n is the number of nodes in the system. The cost of job transfer
is assumed negligible.

Two values of system utilization are considered: 50% and

—-| generate a new job j at time d

l

[checkpoint & set n toj
assign j to node n

I simulate until time of next arrival,t + T’ I

compute Bn(t + T"

reset state to checkpoint
condition

<3E%EE§55555>~15:__~______
lno

find p such that Bp(t + T') <
Bilt+T')Vi

|

[assign j permanently to p J

Oracle Simulation

Figure 1.

853

Table 1. Ideal Load Balancing

Policy p=05 p=08

Bal. Queue Length 1.019 +£ 0.018 | 1.273 £ 0.058
Bal. Ave. Que. Len. [1.00240.017 | 1.259 £ 0.057
Bal. Resp. Time 1.003 £0.017 | 1.258 £ 0.060
Bal. Str. Factor 1.007 £ 0.017 | 1.267 + 0.062
Max. System Util. 1.007 £ 0.017 | 1.318 + 0.080
Bal. Unfinished Work | 1.074 + 0.019 | 1.283 £ 0.070
Cyclic 1.296 + 0.039 | 2.880 £ 0.313
Max. Departures 1.838 £ 0.075 | 4.888 £ 0.699
Bal. Departures 1.987 £ 0.073 | 3.552 £ 0.251
No Load Sharing 2.001 £ 0.101 | 4.796 + 0.486

80%. Outside this range, the distinction between different load
measures would be harder to draw accurately since most nodes
are either lightly loaded or heavily loaded. In both cases, load
balancing has only a minor effect on system performance. Ta-
ble 1 shows the results of the oracle simulation for a system
with 10 nodes. Each row corresponds to a different load mea-
sure that was used to evaluate the system balance. Each en-
try contains the overall mean response time and its 95% confi-
dence interval. For comparing the results, the last row in the
table gives the mean response time if no load balancing is per-
formed during simulation. Some comments about the results
presented in Table 1 are in order. First, the variance of the
load vector was used as the measure of the system balance ex-
cept when the load measure is based on node utilization. With
utilization, keeping only a single node busy yields a minimum

variance as the vector (1,0,0,0,0,0,0,0,0,0] has a lower vari-
ance than [1,1,0,0,0,0,0,0,0,0]. However, this is exactly the
opposite of what we would like to achieve. (In fact, it may cause
the system to saturate since the queue at the busy node grows
unbounded.) To overcome this problem, we chose to maximize
the overall system utilization instead of balancing the utilization
of individual nodes. The overall system utilization is the sum of
the utilizations of all nodes in the system. Second, it was found
that balancing the system using the number of departures as
load measure does not exhibit an improvement on system perfor-
mance. Another policy that was investigated is to maximize the
total number of departures. Unfortunately, the new policy that
attempts to maximize the system throughput does not improve
performance either as shown in Table 1. Finally, balancing the
arrival rates does not require backtracking during simulation. It
suffices to assign jobs to nodes in a round-robin fashion. This
scheduling policy is called cyclic scheduling [Wang and Morris
1985).

The results in Table 1 suggest that load measures can be
grouped in two sets. The first set includes instantaneous queue
length, mean queue length, mean response time, mean stretch
factor, utilization and unfinished work. Any of these measures
exhibits a very good performance compared to the case of no load
balancing. The other set includes balancing arrival rates, bal-
ancing the number of departures from different nodes and max-
imizing the total number of departures from the whole system.
They exhibit far inferior performance compared to the measures
in the first set. The measures in the second set, as we pointed
out earlier, neither take into account the initial state of a node,
nor consider job service demands. We conclude that any of the
load measures in the first set has a potential to yield a substan-

S.A. Banawan and J. Zahorjan

tial improvement in the performance of a distributed system and
they are more or less equivalent in their impact on system per-
formance. The other set should be ruled out.

Heterogeneous Jobs

The results in Table 1 assume that the job service time dis-
tribution is exponential. This distribution genereates jobs that
are considered “homogeneous”. Leland and Ott [Leland and Ott
1986], having examined the behavior of an extremely large num-
ber of processes, found that the actual distribution of service time
may not fit the exponential distribution very well. Furthermore,
they observed that most processes are short. Only a minute frac-
tion of all processes are very long.

To check whether the results in Table 1 are sensitive to
the workload characteristics, the service time distribution was
changed from exponential to 2-stage hyper-exponential with the
probability density function:

P(z) = ape™® 4+ (1 — a) pe™°

The above distribution is the merge of two exponential distri-
butions whose average values are 1/, and 1/p;. By choosing
p#1 = 100,42 = 1/10 and a = 900/999 the distribution tries to
capture the effect of very long jobs since “‘—2 = 1000%‘ This distri-
bution has the same mean as that of the exponential distribution
P(z) = e used to generate previous results, so we may com-
pare the results directly. The variance of the hyper-exponential
distribution, however, is much higher. In particular, the CV?
(the variance divided by the square of the mean) is 18.82 while
it is 1 for the exponential distribution. According to the hyper-
exponential distribution, most jobs are short. In fact, 98% of

Table 2. Ideal Load Balancing-Heterogeneous Jobs

Policy p=05 p=08
Bal. Queue Length 1.043 £0.072 | 1.390 £ 0.215
Bal. Ave. Que. Len. 1.036 - 0.072 | 1.392 + 0.203
Bal. Resp. Time 1.047 £ 0.076 | 1.388 £ 0.202
Bal. Str. Factor 1.039 £ 0.073 | 1.384 + 0.203
Max. System Util. 1.040 £ 0.074 | 1.534 £ 0.259
Bal. Unfinished Work | 1.050 + 0.074 | 1.355 £ 0.217
Cyclic 2.016 £ 0.310 | 5.481 + 1.358
Max. Departures 2.092 + 0.268 | 5.881 £ 1.150
Bal. Departures 2.125 4+ 0.293 | 6.299 + 1.264
[No Load Sharing 2.112 £ 0.274 | 4.559 + 0.826

all jobs consume less than half the total processing time, which
agrees with the measurements of Leland and Ott. The remain-
ing 2% of jobs consume more than half the total processing time.
The two types of jobs, which differ greatly in their demands, make
the job stream “heterogeneous” as opposed to the homogeneous
job stream generated from the exponential distribution. Table 2
shows the results of oracle simulation when the service time has
the above hyper-exponential distribution. The table shows that,
even when the service time has a hyper-exponential distribution,
the classification of load measures according to their usefulness
for load balancing purposes into two sets is still valid. Any of the
measures in the first set yields a substantial improvement in the
overall mean response time and they remain equivalent in their
potential. On the other hand, the table confirms our conclusion
that the load measures in the other set should be ruled out as

854

a basis for load balancing. Even balancing arrival rates, which
exhibited some improvement previously, loses its advantage when
the service time distribution becomes hyper-exponential. As the
arrival rates to different nodes remain the same long jobs, while
there are only a few of them, would have an adverse effect on
short jobs that form the majority of the workload.

5. PRACTICAL LOAD BALANCING

In the previous section oracle simulation allowed us to com-
pare several load measures in their potential for improving sys-
tem performance under load balancing. The oracle technique was
used so that the decision regarding the assignment of each job
guarantees that the system will reach the most balanced state at
the arrival time of the following job. This time must be known
by the scheduler.

In practice, however, no future information is usually avail-
able to the scheduler and the consequences of a decision taken
now is not yet known. Thus, a practical load balancing policy
should have a slightly different goal, namely to reduce the present
system imbalance. This can be achieved by assigning each new
job to the least loaded node.

In this section we compare the performance of practical load
balancing based on those load measures that proved useful under
ideal load balancing. For some of them, the formula used to
evaluate the node load may have to be modified since no future
information is available. In particular, the mean response time
and the mean stretch factor are computed slightly differently. Let
R, be the mean response time of all jobs that departed from node
i during the last interarrival time period. R; is used to estimate
the load at node ¢ if the new job is assigned to it as follows:

() = {

where ¢;(t) is the instantaneous queue length at node 7. The new
job which arrives at time t is then assigned to node k such that:

le(t) = min((2), b (2), . -, (1))

Note that if ¢,(t) = 0, node : is already idle and the new job
can immediately be assigned to it. A similar formula is also used
when the load measure is based on the mean stretch factor.

As for the total unfinished work as a load measure, there
are two possible versions. In the first version it is assumed that
the total service time of each job is known in advance. At any
instant we can determine exactly the remaining service time of
a job by subtracting the service time already used from the job
total service time. In the second version the total service time
of a job is not available. To determine the remaining service
time we use an estimate Bryant and Finkel [Bryant and Finkel
1981] suggested that a good estimate of the remaining service
time is the amount of time already used. In other words, each
job is assumed to be half processed. The sum of the estimates of
remaining service times for all jobs running on a particular node
is used as a load measure. The first version is called the “Min.
Unfinished Work” policy while the second version is called the
“Min. Finished Work” policy.

The comparison of practical load balancing policies is also
based on simulation. However, in this case, the simulation time
is monotonically increasing since no backtracking takes place. In

ROBIED) >0
%:(t) =0

On Comparing Load Indices Using Oracle Simulation

other words, a job is assinged only once. The decision cannot be
revoked. Table 3 shows the performance of practical load bal-
ancing. Again, the system is assumed to have 10 nodes and the
service time distribution is exponential. The table gives the mean
response time and the corresponding 95% confidence interval at
p = 50% and 80%. The results indicate that those measures that
proved to be useful under ideal load balancing do perform well
under practical load balancing. In fact, Table 1, which assumes
ideal balancing and Table 3 are very comparable save for a very
small increase in mean response times and their confidence in-
tervals under practical load balancing. This increase is due to
the fact that scheduling decisions under practical load balancing
aim at “fixing” the present system imbalance, while ideal load
balancing guarantees that each new job finds the system at the
most balanced state. Should the workload consist of heteroge-
neous jobs the same conclusion holds true. The simulation results
in this case are shown in Table 4. The service time has the same
hyper-exponential distribution used before. Indeed, the entries
in Table 4 are also very close to their counterparts in Table 2
under ideal balancing.

Notice that the simulation results of practical load balancing
show that the “Min. Finished Work” policy, which uses estimates
of remaining service times, does not perform as well as other
measures, particularly when the workload consists of heteroge-
neous jobs. Recall that the estimate is based on the assumption
that at any time instant each job is half processed. Clearly, this
approximation is not valid at the early and last stages of job exe-
cution. Since the hyper-exponential distribution generates some
jobs that have very long service times, these jobs can cause sig-
nificant errors in estimating the amount of unfinished work at
different nodes. The erroneous estimates are used more often to

Table 3. Practical Load Balancing

Policy p=05 p=038

Min. Queue Length 1.010 £ 0.018 | 1.331 £+ 0.069
Min. Ave. Que. Len. | 1.011+0.019 | 1.331 4 0.068
Min. Est. Resp. Time | 1.010 £ 0.018 | 1.330 + 0.071
Min. Est. Str. Factor | 1.0104 0.018 | 1.332 &+ 0.069
Min. Utilization 1.011 £ 0.019 | 1.445 4 0.101
Min. Unfinished Work | 1.000 £ 0.016 | 1.286 + 0.073
Min. Finished Work 1.022 £ 0.021 | 1.5697 £ 0.125
No Load Sharing 2.001 £ 0.101 | 4.796 & 0.486

balance the system at higher utilizations since the arrival rate is
higher. This explains the high mean response time of the “Min.
Finished Work” policy at p =80%. Although long jobs represent
a small fraction of all jobs their impact on the performance of
“Min. Finished Work” policy is evident since they stay in the
system for long periods of time. Among all load measures that
were compared in Tables 3 and 4 the queue length is perhaps the
simplest. Nevertheless, both tables suggest that it is as effective
as other measures in its potential to improve the system per-
formance through load balancing. According to this policy each
new job is assigned to run on the node that has the least number
of jobs at the job arrival time. While other measures sometimes
perform better, the difference is not significant and may not jus-
tify using complex load measures, e.g., the mean stretch factor.
This conclusion was verified by comparing the load measures over
a wide range of system utilization. Figure 2 shows the results of
simulating a system with 10 nodes. The service time has an ex-

Table 4. Practical Load Balancing-Heterogeneous Jobs

Policy p=10.5 p=08

Min. Queue Length 1.037 £ 0.073 | 1.420 £ 0.225
Min. Ave. Que. Len. | 1.04140.072 | 1.398 £ 0.202
Min. Est. Resp. Time | 1.039 + 0.075 | 1.411 4+ 0.195
Min. Est. Str. Factor | 1.039 + 0.075 | 1.413 + 0.208
Min. Utilization 1.043 £ 0.078 | 1.297 £ 0.246
Min. Unfinished Work | 1.030 & 0.072 | 1.339 £ 0.217
Min. Finished Work 1.051 £ 0.078 | 1.649 + 0.229
No Load Sharing 2.112 4+ 0.274 | 4.559 + 0.826

ponential distribution. The figure shows the mean response time
versus system utilization using different load measures to balance
the system. The two limiting cases: M/M/1 (no load sharing)
and M/M/10 (perfect load sharing) are also included. Figure
3 shows the simulation results when the service time distribu-
tion is changed from exponential to hyper-exponential. In both
cases it is hard to distinguish between the performance of policies
that use the queue length, the mean queue length, the estimated
mean response time, or the mean stretch factor. Though the
“Min. Unfinished Work” offers a slightly better performance, its
approximate version performs worse than other measures, par-
ticularly at high utilizations. This is due to the approximation
errors in estimating the total unfinished work as discussed earlier.
Note also that the “Min. Utilization” policy performs worse than
other measures except the approximate version of “Min. Unfin-
ished Work”, particularly at high utilizations. At these utiliza-
tions most nodes are fully utilized and jobs are assigned to nodes

30 [s]
DeA « Min. Est. Resp. Time :
: 97 L Min. Est. Str. Factor
R ’ o Min. Ave. Que. Len. - 4
e © Min. Unfin. Work © H
s 24 e Min. Fin. Work - 0¥
o * Min. Utili. E N
221 F+ Min Que. Len, -
e o M/M/1
T18 . M/M/10
i o
m .
e 1.5 | o

12 . LB

u--...-q--...--.-..-.-Q--““""'“*

09

0.6 [

03

0.0 | L ! 1 I I 1)

0.1 02 03 04 05 0.7

0.6 .8 .09
Overall system uti izatic?n

Figure 2. Practical Load Balancing-Homogeneous Jobs

arbitrarily since ties are broken randomly. In other words, this
policy does not distinguish between nodes with different number
of jobs or different amount of unfinished work as long as they
have been equally busy during the last interarrival time period.

6. CONCLUSIONS

Load balancing aims at improving system performance via
the judicious distribution of the workload among the constituents

855

S.A. Banawan and J. Zahorjan

C o
M 30 £ Min. Est. Resp. Time .
a <@ Min. Est. Str. Factor - .
;; 2T 6 Min. Ave. Que. Len. i
e o Min. Unfin. Work 0O
H 24 e Min. Fin. Work
o * Min. Utili. :
521 F+ Min Que Len
e o M/M/1
T18 . M/M/10
i o
m .
e 15 [o

1‘2 _"A‘..‘CI..

[TN NIy, IRTIIL. TUL.

09

06

03 |

0.0 1 Il 1 1 I 1 1 J

01 02 03 04 05 06 O .9

7 ?8 .0
Overall system utilizatio

Figure 3. Practical Load Balancing-Heterogeneous Jobs

nodes. Incorporating a load balancing strategy requires a load
measure to compare different nodes and a measure of the system
balance to be used in making allocation decisions. We chose the
variance of node loads as an appropriate measure of the system
balance. Several measures of load were proposed and compared
using oracle simulation. The oracle simulation guarantees that
each new job finds the system in the most balanced state. The
simulation results indicate that load measures can be grouped in
two sets. The first set includes the instantaneous queue length,
mean queue length, utilization, mean response time and mean
stretch factor. Balancing the load using any of these measures
yields a substantial improvement in system performance. The
other set of load measures failf to exhibit performance signifi-
cantly better than the no load sharing case. This result was
found to be true in the practical versions of load balancing poli-
cies that aim at reducing the current system imbalance and do
not use future information. The performance of practical policies
compares favorably with ideal policies. Among the load measures
that proved to be successful, the queue length is the simplest, yet
it is as effective as more complex measures in its potential to im-
prove the system performance. This result does not come as a
surprise. It agrees with the intuition that Join the Shortest Queue
is an excellent policy for load sharing in homogeneous systems.

Finally, we note that while we used oracle simulation for a
specific application, namely, to compare load sharing policies,
the technique can be used to optimize other decision processes
as well.

ACKNOWLEDGEMENT

This material is based on work supported by the National
Science Foundation (Grants DCR-8352098, CCR-8619663, and
CCR-8703049), the Naval Ocean Systems Center, US WEST
Advanced Technologies, and the Washington Technology Cen-
ter. Additional partial support was provided by Bell Communi-
cations Research, Boeing Computer Services, Digital Equipment
Corporation, Tektronix, Inc., the Xerox Corporation, and the
Weyerhauser Company.

856

REFERENCES

Banawan, S.A., and J. Zahorjan (1989),“Load Sharing in Hetero-
geneous Systems,” In Proceedings of the 1989 IEEE INFO-
COM Conference, IEEE, Washington, D.C., 731-739.

Bryant, R., and R.A. Finkel (1981), “A Stable Distributed Sched-
uling Algorithm,” In Proceedings of the 2nd International
Conference on Distributed Computing Systems, 314-323.

Coffman, E.G., and P.J. Denning (1973), Operating Systems The-
ory, Prentice-Hall, Englewood Cliffs, NJ.

Eager, D.L., E.D. Lazowska, and J. Zahorjan (1986), “A Com-
parison of Receiver-initiated and Sender-initiated Adaptive
Load Sharing,” Performance Evaluation 6, 1, 53-68.

Eager, D.L., E.D. Lazowska, and J. Zahorjan (1988), “The Lim-
ited Performance Benefits of Migrating Active Processes for
Load Sharing,” In Proceedings of the 1988 ACM SIGMET-
RICS Conference, 63-72.

Efe, K. (1982), “Heuristics Models of Task Assignment Schedul-
ing in Distributed Systems,” IEEE Computer 15, 6, 50-56.

Ferrari, D., and S. Zhou (1986), “A Load Index for Dynamic Load
Balancing,” In Proceedings of the 1986 Fall Joint Computer
Conference, 684-690.

Korry, R. (1986), “A Load Sharing Algorithm for a Worksta-
tion Environment,” M.S. Thesis, Department of Computer
Science, University of Washington, Seattle, WA.

Krueger, P., and R. Finkel (1984), “An Adaptive Load Bal-
ancing Algorithm for a Multicomputer,” Technical Report
#539, Computer Science Department, University of Wiscon-
sin, Madison, WI.

Leland, W., and T. Ott (1986), “Load Balancing Heuristics and

Process Behavior,” In Proceedings of PERFORMANCE’86
and ACM SIGMETRICS 1986, 54-69.

Livny, M., and M. Melman (1982), “Load Balancing in Homoge-
neous Broadcast Distributed Systems,” In Proceedings of the
1982 Computer Network Performance Symposium, 47-55.

Lo, V.M. (1988), “Heuristics Algorithms for Task Assignment
in Distributed Systems,” JEEE Transactions on Computers
C-87, 11, 1384-1397.

Pulidas, S, D. Towssley, and J. Stankovic (1988), “Imbedding
Gradient Estimators in Load Balancing Algorithms,” In Pro-
ceedings of the IEEE 8th International Conference on Dis-
tributed Computing Systems, 482-490.

Stankovic, J.A., and LS. Sidhu (1984), “An Adaptive Bidding
Algorithm for Processes, Clusters, and Distributed Groups,”
In Proceedings of the IEEE Jth International Conference on
Distributed Computing Systems, 49-59.

Tantawi, A.N., and D. Towsley (1985), “Optimal Static Load
Balancing,” Journal of the Association for Computing Ma-
chinery 27, 2, 323-337.

Wang, Y., and R.J.T. Morris (1985), “Load Sharing in Dis-
tributed Systems,” IEEE Transactions on Computers C-34,
3, 204-217.

Zhou, S. (1987), “Performance Studies of Dynamic Load Balanc-
ing in Distributed Systems,” Ph.D. Thesis, Department of
Computer Science, University of California, Berkeley, CA.

Zhou, S., and D. Ferrari (1987), “An Experimental Study of
Load Balancing Performance,” Technical Report UCB /CSD
87/336, Computer Science Department, University of Cali-
fornia, Berkeley, CA.

