Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

SYSTEM PERFORMANCE ANALYSIS WITH AN ADA PROCESS MODEL DEVELOPMENT

Joseph A. Viceroy

TRW Systems Integration Group
Redondo Beach, California

ABSTRACT

Most ADPE performance models are used to support systems en-
gineering analysis in proposals or the early phases of projects. These
models verify performance requirements at a high level to validate
system designs. Use of some of these models has continued through the
life of a project analyzing the performance of the system as the design
evolves.

The Command Center Processing and Display System-Replace-
ment (CCPDS-R) Performance Model has enjoyed an expanded role
on the CCPDS-R project. The performance model has not only
influenced the system design, but system allocations of resources as
well. CCPDS-R performance analysis and requirements compliance
insight have been substantially enhanced over the early phase of
development. This paper will reflect on the benefits of this approach
drawing on real world experience gained to date on CCPDS-R.

1. PROJECT BACKGROUND

The Command Center Processing and Display System Replace-
ment (CCPDS-R) program is a command and control system that
provides missile warning information to various end users. The soft-
ware for this project is being developed in Ada using a demonstration
based, incremental development approach—the Ada Process Model.
To capitalize on this new process, traditional software engineering
activities have had to adapt. The system performance estimation
activity was no exception. The performance model interacted with this
new approach in a unique fashion. This uniqueness is not as a result of
new modeling techniques, but because the Ada Process Model pro-
vides complementary information to the performance model as an
indirect result of its approach. This gives the performance model
something that prior projects have not had until after CDR, empirical
software performance data.

2. THE Ada PROCESS MODEL

Figure 1 is an overview of a generic definition of an incremental
development derived from experience on CCPDS-R [Royce 1990].
This figure shows how incremental development feeds the demonstra-
tion milestones and other project areas. Royce describes in his paper
how code is developed early, through partial implementation of
software functions. This provides early insight into the functionality of
the design. The main objective of the Ada Process Model (APM) is
early implementation of software. This concept is exemplified by the
fact that of the five software builds on CCPDS-R, four are completed
prior to System CDR.

3. CCPDS-R PERFORMANCE MODEL DEVELOPMENT
The CCPDS-R Performance Model (CPM) is exceptional in its

use in concert with the APM and its interaction with the software
testbed.

846

The purpose of the CPM is to: (1) investigate system design issues
in advance of software implementation, (2) establish performance
allocations to the CSCls, (3) provide performance predictions for the
operational system configuration as the design evolves, (4) provide a
measure to evaluate the performance of capability demonstrations,
and (5) provide insight for design tradeoffs and proposed system
upgrades.

Figure 2 shows the relationship of the system performance model
to a performance database. The performance database centrally houses
performance information describing the system design. Contributions
to this database include software engineering inputs, prototyping
results, commercial or off-the-shelf (COTS) hardware and software
performance data, operational performance data and testbed perform-
ance results.

3.1 Relationship of CPM to Program Testbeds

The CCPDS-R Performance Prediction/Measurement Process
uses three performance sources: (1) the CPM simulating CCPDS-R
hardware and software architecture, (2) a prototype system testbed
(Host or target based), and (3) the operational system testbed, running
on the target hardware environment.

The CPM is a simulation based upon a collection of transaction
flow descriptions and a data base of performance characteristics of the
processing performed by each transaction flow and the underlying
hardware. (A transaction flow is the sequence of processing that occurs
in response to some system stimulus such as an incoming sensor
message Or an operator input.)

The prototype testbed is a model of the processing that uses some
stubbed versions of the CCPDS-R to top level tasks. These tasks
perform the same message routing logic as their counterparts in the real
system without necessarily performing the same computations. In-
stead, they may contain simple central processing unit (CPU) resource
burning procedures that correspond to the current estimates of the
resource requirements in the real system as defined by the software
designers.

The operational system testbed contains the turned over software
that is used to verify the functional and performance requirements at
the Functional Qualification Test (FQT) milestone.

The CPM and the prototypes use a common data base of estimates
of software resource requirements. They are updated with new design
information as it becomes available. Consequently, both the fidelity
and accuracy of these techniques increase throughout the system
development process.

The estimation methods complement each other. The CPM pro-
vides early visibility into the performance of the design. The prototype
testbed provides a target environment for executing prototyped soft-
ware. This testbed can then be used to provide data for the CPM to
refine the model’s fidelity. The target environment also provides

empirical system data to the model (e.g., Operating System Overhead
Factors).

J.A. Viceroy

Project Risk Management Plan
Building _ Critieal _, Non-Critical
Blocks Structure = Threads = Threads == Product Completeness
Foundation
Prototypes
and
Refinements
{nformel sAs Integrate and Verify Foundation Component Design > SDR
Prototypes Demo
[
v . . SSR
Formal Informal C":"" Integrate and Verify Structural/Interface Design > Demo 1
Prototypes SRSs ¥
SAS d
Enh s R qon E
R
M
N PDR
Formsl informal | Gomponent | Integrate and Verify Critical Threads > Demo | B
Prototypes SDDs i
Critical and A
Component | Refinements T
Enhancements E
Formal Informal CDR
Baseline Bescline | Component INTEGRATE Demo | P
Prototypes R
Test and and o
Maintenance Component | o o ments D
Enh
u
Formal Informal [b
‘orme. nforma ther T
Beseline Baseline Component Demos
Prototypes
Test and c and E
. t
Maintenance A :’mP‘"‘"' Refinements v
o
L
Formsl |, . .| Informal u
Bascline Bascline T
Test and (l)
Ma
eintenance Enhancements N
Formal I
Bescline
Test and
Maintenance
Test and Test and
Maintenance Maintenance
A Software
Software Product Baselines Praducts
Basclines
Figure 1. Incremental Development Under The Ada Process Model

The operational CCPDS-R (having built-in performance moni-
toring and report generation capabilities) supplements the two per-
formance estimation methods. In the latter phases of the CCPDS-R
development cycle, the operational testbed becomes the primary
source of definition of CCPDS-R performance characteristics.

3.2 Model Results

The CPM produces results typical of most ADPE performance
models. CPU utilization percentages, system responsiveness, queue
statistics, message load statistics, and system specific measures are all
provided as outputs of the CPM. The CCPDS-R program conducts
monthly reviews for software and all systems engineering. The per-
formance modeling group has an opportunity at each of these monthly
reviews to discuss results of the CPM or issues concerning the design.
This has proven to be an excellent method for communicating model
results and raising issues. Formal reviews are also used to communi-
cate model results to the customer. Each review milestone (SSR,
IPDR, PDR, CDR) has required a presentation on the performance
modeling analysis and results.

847

4. PROCESS MODEL IMPACTS ON
PERFORMANCE PREDICTION

Most conventional development models predict requirement sat-
isfaction as shown in Figure 3. Estimates of needs increase as the
design matures. When the software is actually built and integrated at
FQT, the software performance typically is significantly higher than
the requirement. Use of the APM results in a different trend [Royce
1990]. Software development begins early in the project. If non-
compliance with requirements is a significant risk it is indicated at a
point in the project where analysis and optimization is more efficient
[Boehm 1981 and Boehm 1985]. As shown in the figure, there are
peaks and valleys in the graph. The peaks relate to demonstrations
(e.g., PDR Demo). As a capability demonstration is integrated and
prepared for review, performance optimization is a lower priority than
working functionality. After the demonstrations the integration team
then analyzes the code and resolves performance bottlenecks and
inefficiencies. Subsequent adjustments cause the valleys. The use of
capability demonstrations trades early functionality for performance
immaturity. This is a desirable approach since performance enhance-
ments are simpler and cheaper to make early in the design.

System Performance Analysis with an Ada Process Model Development

REQUIREMENTS ANALYSIS/SYSTEM DESIGN PROCESS

TRANSAOTION sorTWARS onITIOAL agsNaRIO
ruow mMopuLD ALQORITHM OHARACTBA.
DIAGRAMS aope oBrINITION 137103

»30unOm

BITIMATDS

SOFTWARB
MODULE
BENCHMARKS

nB3ULTS

Q073 3w

PRODUOTS

PBRPOAMANCE
Ta

ccoTsuw

nr sysTam
. CHARACTBRIATICS

PBRFORMANCE

y—

SYSTEM
PERFORMANCE
MODEL

PROTOTYPE

SYSTEM TESTBED

PERFOR-
MANCE
DATA
BASE

5OFTWARS
MODULD

ADPB RBIOURCE
RBQUIRBMBNTS

S0PTWARD
MopuLe

OPERATION
TESTBED

(INT/TEST
FACILITY)

PERFORMANCE OPBRATIONAL

3vsTOM .

REPORT PBRFORMANGE |
Ta

GENERATION

Figure 2. CCPDS-R Performance Prediction/Measurement Process

The CPM helps this process by providing a benchmark for
evaluation of the code. Without this benchmark, there would be little
basis for where performance enhancement and analysis should begin
and when performance optimization should stop.

The CPM also gives information on the performance of code that
is missing from the demonstrations. The CPM provides the expecta-
tons against which the real software performance is judged.

5. REAL WORLD EXPERIENCE

The CPM has guided the CCPDS-R design in a number of areas.
Resolution of identified issues are incorporated into the CPM and
assessed for impact to the system performance. This relationship has
been instrumental in early risk identification and mitigation.

Demonstration success criteria
Inter-Task communication performance
Display performance

Alarm processing performance

Design parameter determination

NH W -

5.1 Functional and Performance Demonstrations

The CCPDS-R testbed is used to build demonstrations for govern-
ment reviews. The CPM is used to establish pass/fail criteria on the
performance of demonstrations. Typical criteria for these demonstra-
tions include process CPU utilization percentages taken as output from
the CPM. Failure to watch these percentages, within a tolerance,
generates an action item to explain the discrepancy update the model
and/or identify a design issue for resolution. At the CCPDS-R System
PDR Capability Demonstration, the CPM identified fourteen pass/fail
criteria. Of the fourteen criteria, twelve failed. Most of the failed
criteria has resulted in modifications to the design. Some issues
required updates to the CPM as well (e.g., display processing estimates

848

RESOURCE

SCHEDULE SLIP
UTILIZATION

REQUIREMENT
CONVENTIONAL MODEL
Ads PROCESS MOOEL

n 4 4
1 1 I
FQT

Figure 3. Software Development Progress

and data recording estimates). A plot of the performance of the
processor utilization during the PDR demo versus the predicted
utilization from the CPM is shown in Figure 4. The CDR capability
demonstration results are shown in Figure 5. The results reflect the
performance of the processor without benefit of any analysis to
improve the performance. There is a significant difference between the
CPM and the demonstration. As with the PDR demonstration, action
items have been generated to resolve discrepancies between the CPM
and the demonstration results.

The role of the CPM in the process model approach is to reap the
benefits of early capability demonstration results. The performance
data from these demonstrations combined with designer’s estimates
provides a prediction tool that estimates performance trends prior to
completion of all the software components.

5.2 ITC Performance

One of the major components of CCPDS-R is the Network Archi-
tecture Services (NAS) software. Contained in this software are the
components that provide the Inter-Task Communication (ITC) func-
tions. This software provides the features of Ada involved with
tasking. Consistent with the Ada process model, this software was
developed early in the program to minimize risk and to allow its use by
the application software. Due to the use of this software by all other
components in the system, ITC performance has been the focus of a
great deal of analysis from the beginning of the program until present.
There are three levels of ITC. Level 1 ITC involves communication
between two tasks within one VAX/VMS process. Level 2 ITC
interfaces two task in different processes. Level 3 ITC permits commu-
nication between tasks in different processors within the same subsys-
tem (network). For each of the three ITC levels, the communication
can be buffered or unbuffered. A more detailed description of the
functionality of this software is well documented in [Royce 1989]. The
significant factor in the process model approach for development of
this software was that the functions provided by ITC were required as
a basis for use by all other software development areas. Further, these
areas were able to use this software in the development, and improve
on the performance and functionality through System CDR. This area
of software development best exemplifies the benefits of the Ada
process model.

As the project progressed, increased functionality was required of
the ITC software. The performance impacts of these changes were cap-
tured in standalone throughput testing. This testing provided a measure
of the number of messages/second achieved by each level of ITC. This
information is reflected in Table 1. Each sample reflects a measure-

J.A. Viceroy

100 Legend
90 Requirement: o_a o
8 - Demoostrated: «——s
CPM: e 0 o
70 A
£
397
A R
- .®
g“o |
30 e e . ® -
.t .0‘?0.’3 .
2 - Tel el o *e, - .

. ée0 oe. . X
]01. °,° LX) teze
0 T T T T T T T

0 5 10 15 20 25 30 35 40
Demonstrated Minute

Figure 4. PDR Demonstration Processor Utilization versus the
CPM Prediction

ment of the performance of the software. The CPM incorporated this
information and provided feedback on the impact to the system for the
given changes/improvements. The results of the CPM would then
provide a measure to indicate if performance optimizations were
adequate or if further improvements were required to meets the system
performance requirements. The results of this process were reflected
in allocations to each ITC level in terms of number of messages/second
required by the software.

Table 1 shows throughput performance of ITC as design changes
and new functionality were added to the software. The measurement
in January, 1989 reflects a major change to the software. The next
measurement in May, 1989 reflects performance enhancements made
to overcome the performance degradation of the prior enhancements.
The last column in Table 1 reflects the throughput requirements
derived for each ITC level. These are the requirements that the
developers used to measure the performance enhancements against.
The values were derived from assessments of system performance
impacts of the measured software on the system performance require-
ments using the CPM. The CPM provided the feedback necessary to
indicate that further performance enhancements were not required.

100

Legend
90 - Requirement: oo o
80 Demonstrated: ——
20 - CPM: o » o
g
g 60 :
g . o
> 50 s .n a0 o o a0 a o'n a9 a oo o oo
gw | LT .
0 4 . P . Cee®ec®,
. ° °
*® . ., . LIS
4 e 0 . . .
20 [. o (]
° LTy . o,
10
0 T T T T T T T
0 5 10 15 20 25 30 35 40
Demonstrated Minute

Figure 5. CDR Demonstration Processor Utilization versus the
CPM Prediction

5.3 Display Performance

The display performance requirements for CCPDS-R are very
stringent. The system must produce a complex, graphic display within
one second of an operator request. In the early phases of the project
estimates to produce displays were made and incorporated into the
CPM. As the prototyping effort began to produce the display software,
display generation responsiveness was poor. All effort was then started
to determine the source of this discrepancy. Table 2 lists the display
generation responsiveness for a representative set of twelve displays
that were tracked from SSR to CDR. Each sample relates to a point in
time when measurements of display performance were taken. The first
sample (Sample 0) relates to the SSR milestone and the last sample is
CDR. A graph of the worst case display and the average display is
shown in Figure 6. An improvement of more than 90% was made for
the average display since SSR. The resultant times are within 10% of
the predicted times from the CPM.

Table 2. Display Generation Responsiveness Over Time

Table 1. ITC Performance

ngl Ungz;;g;:g/ 9/88 IZ?ggS ??géSecgr}gg Allocation

1 UnBuffered (2,078 |2,080 |1,702 |1,855 1,800
Buffered |8,861 (8,000 |6,172 |8,251 8,000

2 UnBuffered 495 459 485 409 350
Buffered |4,342 3,784 [3,223 |4,260 3,500

3 UnBuffered 250 267 282 376 300
Buffered |3,556 |3,429 |2,920 |3,520 3,000

849

Preformatted Display Generation (average seconds)

DISPLAY SAMPLE

NAME 0 1 2 3 4 5 6 7 8 9 |10 |11
Display 1 | 19.4 {12.1 |10.0 [6.5 {2.9 |1.7 |1.6 |1.4 |1.2 |0.9 |0.7 |0.7
Display 2 8.916.0]|5.1 (2.8 1.4 |1.2 |1.7 1.1 (1.1 [0.6 0.4]0.4
Display 3 2915 1.3 (0.9 0.9 |10.8 |1.5 {1.0 |1.0 (0.8 [0.6 |0.6
Display 4 3.3 1.6 1.3 (1.0 (0.8 0.7 (1.7 {1.2 {1.2 [0.7 (0.7 |O.7
Display 5 5.8 4.0 2.4 (1.3]1.01.0 (1.9 |1.5]0.9 |0.8 |0.4 |0.3
Display 6 | 10.1 | 5.7 | 4.8 (2.9 (1.8 (1.6 [2.5 |1.8 [1.4 |1.2 (1.1 |1.0
Display 7 8.3 6.0 5.0(3.9(3.1]|1.5|2.1 |1.8 |1.4 (1.2 0.7 |0.6
Display 8 | 16.0 [10.9 | 8.9 |4.9 (3.2 (1.6 (2.9 [2.2 [1.6 |1.1 |1.2 |1.6
Display 9 | 15.7 |10.5 | 8.6 4.9 |2.9 [1.5 |2.7 |2.1 [1.7 |1.4 |1.7 [2.0
Display 10| 14.9 | 7.0 | 6.2 {3.9 [1.9 |1.5 2.7 |2.2 |1.7 (1.1 |1.6 [2.2
Display 11| 9.0 | 6.4 | 4.9 (2.9 |[1.7 |1.5 |2.5 (1.8 |1.5 {0.7 |0.7 (0.7
Display 12| 9.0 | 6.4 | 4.9 [2.9 1.7 }1.4 |2.9 |2.7 |1.5 [0.6 |0.5 (0.5
Average 9.6 | 6.5 | 5.3 3.2 {1.9 {1.3 }2.2 (1.7 |1.4 {0.8 [0.9 {0.9

System Performance Analysis with an Ada Process Model Development

Average
Display 10 OO

°
o

16.0

140

12.0 o

=3
°
1

[Ja)

Response (Seconds)
P
o
L
e o0
e0
Lle]

~
°
1

[le]

]

T T T T T T T T
4 5 6
Sample

Figure 6. Display Generation Responsiveness Over Time

5.4 Alarm Processing

The CPM has also influenced the design in the area of the alarm
processing function. When this function was modelled, an alarm
overload became apparent. When first simulated, the alarm processing
and acknowledgment functions saturated one of the processors. The
assumption was that the CPM was in error. After closer examination,
it was deemed that the CPM was correct and the processing was
accurately modeled. it was apparent the operator could not possibly
acknowledge all the alarms individually nor did they provide useful
information after the first few were displayed. Since then, the CPM is
being used to quantify the impact of different alarm filtering tech-
niques on the operator as well as the ADPE. This effort also resulted
in a redesign incorporating a window acknowledgement scheme. The
redesign was implemented prior to CDR and evaluated by the cus-
tomer.

5.5 Design Parameters

One of the advantages of an ADPE performance simulation is the
early quantification of assumptions and identification of design weak-
nesses. During the CPM development, many assumptions were made
to provide a complete model of the CCPDS-R because the performance
model requires some form of data for all components modeled. The
simulation will run without this data; however, lack of data provides
easy identification of holes in the design. Initially, some of these were:

® Operator Interactions - How the operator interacted and
reacted to the system.

Subsystem to Subsystem Interface Loading - Definition of
how message exchange would be accomplished to exchange
the databases.

Display Scenario Definitions Keyed to the Processing Load
Scenario - Which displays are to be displayed as a function of
the scenario used.

Display Update Rates - Rates at which the displays would be
updated.

Task to Task Buffered Communication Parameters - Values
to be used to meet the performance requirements of the
system.

850

Approaches for Handling Off-Nominal Conditions - Paths
and functionality for handling conditions that occur during
non-critical periods of the scenario.

Due to the process model and the early identification of these
issues, the incorporation of the resolutions into the design could be
made at a less costly point in the development.

6. CUSTOMER USE OF THE CPM

As part of the performance modelling activities, the CPM is given
to the customer at regular intervals in the development. The CPM
provides detailed flows of information through the system in a graphi-
cal form. These flows also contain processing delay information for
given functions listed on the transaction flow. Customer use of the
CPM has provided a mechanism for understanding the detailed system
design early in the design process.

By manipulating the inputs to the CPM, the customer can then
play “what if” games using the latest design information. This gives the
customer the basis of the design needed to gather more specific
information from the developers.

7. SUMMARY AND CONCLUSIONS

The CCPDS-R program has maximized the use of an ADPE per-
formance model during all phases of a systems design. It also provided
an approach for its use in concert with the Ada Process Model. With
the effective use of the CPM and the Ada Process Model you can
maximize the efficiency of both efforts. The CPM is a complementary
tool in the Ada Process Model to build a computer system which meets
its requirements.

REFERENCES

Boechm, B.W. (1981), Software Engineering Economics, Prentice-
Hall, Englewood Cliffs, NJ.

Boehm, B.W. (1985), “The Spiral Mode! of Software Development
and Enhancement,” Proceedings of the International Workshop
on the Software Process and Software Environments, Coto de
Caza, CA.

Royce, W.E. (1989), “Reliable, Reusable Ada Components for Con-
structing Large, Distributed Multi-Task Networks: Network Archi-
tecture Services (NAS),” TRI-Ada Proceedings, Pittsburgh, PA.

Royce, W.E. (1990), “TRW’s Ada Process Model for Incremental
Development of Large Software Systems.” Submitted to 12th
International Conference on Engineering, Nice, France.

