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ABSTRACT

This paper describes a technique for performing parallel
simulation of a trace of address references for the purposes of
evaluating different cache structures. An obvious way to
achieve fast parallel simulation is to simulate the individual in-
dependent sets of a cache concurrently on different computers,
but we show this technique is not efficient in a statistical sense
because of a high correlation of the activity between different
sets. Only a small fraction of the sets should actually be simu-
lated. To put parallelism to effective use, we show that a trace
of the sets to be simulated can be partitioned into disjoint time
intervals, and each interval can be simulated concurrently. Be-
cause the contents of the cache are unknown at the start of the
time intervals, this parallel simulation does not produce the cor-
rect counts of cache hits and misses. However, after simulating
the trace in parallel, a small amount of resimulation can produce
the correct counts. The resimulation effort required is propor-
tional to the size of the cache simulated and is not proportional
to the length of the trace.

1. INTRODUCTION

Caches are small high-speed buffer memories that play a
major role in the performance of high-speed computer systems.
Consequently, as part of the design of a new computer, many
different cache architectures are evaluated and compared under
realistic operating conditions in order to assure that a cache de-
sign is both effective in attaining high-performance and is effi-
cient in terms of its cost. Such analysis is generally performed
by trace-driven simulation from address-reference traces of re-
alistic workloads. Introductions to cache architectures and
analy]sis techniques can be found in [Stone 1987] and [Smith
1982].

The problem of speeding up the process of cache simulation
has been widely studied because the number of design variations
to be considered is relatively large, and the length of cache
traces required for high accuracy may run to hundreds of
millions of references. In spite of research advances in this area,
cache analysis is still very costly, and it becomes worthwhile to
consider parallel methods for cache simulation in order to reduce
the simulation time. An algorithm for parallel simulation is the
subject of this paper.

Several authors have contributed techniques for reducing
the complexity of cache analysis using conventional serial pro-
grams. The stack processing algorithm of Mattson et al. [1970]
allows the simultaneous determination of cache hit-ratios for
multiple caches of different sizes during a single pass simulation
of the trace. The algorithm works for a certain class of cache
replacement algorithms including LRU (Least Recently Used),
which is the most commonly implemented replacement algo-
rithm. The stack processing algorithm takes advantage of the
fact that, under this class of replacement algorithms, the con-
tents of a smaller cache are contained within the contents of a
larger cache. This type of structure has also been exploited by
Puzak [1985] who reduces the length of the trace by passing it
through a simulation of a small cache. Essentially, only the
misses to the small cache are recorded and subsequently used
as input to simulations of a variety of larger caches. Hill and
Smith [1989] introduce extensions of this idea that permit dif-
ferent cache structures to be simulated on a single pass of a
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trace. Thompson and Smith [1989] describe a simulation means
for capturing traffic generated by writes as well as miss ratios,
and are able to do both operations simultaneously for multiple
cache designs during a single pass of a trace.

Efficient techniques for generating traces have been studied
by Stunkel and Fuchs [1989] and Dwarkadas et al. [1989], while
an efficient technique for storing traces (i.e., trace compaction)
has been described by Samples [1989].

However, there has been little work on parallelizing trace-
driven cache simulations. Lin et al. [1989] describe a technique
for parallel simulation of a cache-coherent multiprocessor sys-
tem. This technique uses one processor for each simulated
cache. Simulations of all caches can run concurrently, but must
synchronize at points where an intercache reference occurs.
This involves inserting all intercache references into the refer-
ence trace of each individual cache. To obtain correct simu-
lation data, it is sufficient to synchronize at every intercache
reference, but it is possible to reduce the number of synchroni-
zations for certain cache-coherence protocols. The parallel
simulation algorithm has the property that the maximum
speedup is limited to the number of caches being simulated. In
particular, no speedup is obtained when simulating the cache of
a uniprocessor. In addition, if each simulated cache contains at
least n references, then the run length of the algorithm is Q(n).

In this paper we investigate the problem of performing the
analysis of a cache trace on a parallel processor system. The
method we use is to break a long trace into several shorter
traces, and to process the shorter traces in parallel on inde-
pendent processors. No synchronizations are required during
the parallel simulation. At the end of the simulation, it may be
necessary to have a single synchronization in order to determine
when all simulations have completed.

The output counts of cache hits and misses obtained at the
end of the simulation are inaccurate because no processor has
the correct initial cache state at the beginning of its simulation.
We show that by resimulating a small number of references, the
correct counts can be obtained. Hence, the parallel simulation
achieves a speedup that is nearly proportional to the number of
processors with the overhead limited to the initial partitioning
of the input data and to the resimulation phase. Thus a large
number of processors can be applied to a single long trace.

Practical implementations of caches avoid costly searches
of cache memory by partitioning the address space into disjoint
regions. Each region of the address space is assigned to a small
set of lines of cache memory, thereby reducing the search effort
in the cache. An obvious alternative way to parallelize the sim-
ulation is to take advantage of the set structure of caches, and
have a different processor simulate each set. Since references
to different sets never affect each other, simulation of different
sets can be done totally independently of one another. We show
in this paper that set partitioning is not statistically efficient, and
that parallel simulation by time partitioning is a satisfactory way
to achieve useful speedup.

Our general approach bears some resemblance to the
Space-Time parallel simulation approach of Chandy and
Sherman [1989]. However, we describe a concrete, efficient
(and important) example of parallel simulation by time parti-
tioning, whereas the discussion in [Chandy and Sherman 1989)
provides no guidelines for the efficient application of Space-
Time to real problems. The approach of Greenberg et al.
[1990], which was developed independently of our work, for
solving (i.e., simulating) certain queueing recurrence relations
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using parallel prefix and “iterative folding”, is also somewhat
similar in spirit to our approach in that both techniques involve
additional simulation passes to correct earlier tentative simu-
lations.

The remainder of the paper is organized as follows. In
Section 2, we review cache structures, and formulate a
stochastic model for comparing the efficiency of set and time
partitioning. In Section 3, we describe the basic parallel-time
partitioning algorithm for uniprocessor caches. In Section 4, we
summarize the results and indicate some generalizations.

2. A STOCHASTIC MODEL OF CACHE HIT-RATIOS

In this section we review the structure of a cache memory
to remind the reader that it is composed of independent sets,
each of which operates on a disjoint part of the address space.
The independence leads to a natural parallel method for cache
simulation. We complete the section by showing that the natural
parallel method is not a statistically efficient technique for per-
forming cache analysis because the data for the independent sets
are highly correlated.

2.1 Cache Structure

Each access to cache memory causes the cache to be
searched for the presence of a given address. If the address is
present, the memory request is honored by the cache. If the
address is not present, the memory request is honored by a re-
mote memory, but with a higher delay.

For practical reasons, the search is conducted over a small
number of items in cache memory rather than over the full
memory. The collection of items actually searched is called a set
and the cache is said to be set associative. The memory address
space of a system is partitioned into m disjoint address spaces,
typically by selecting log, m bits of an address by letting these
bits designate the set of addresses in one of the m disjoint sets
of the partition. A cache for this address space is also organized
into m sets, and each cache set contains a fixed number of cache
lines, k. We say the cache is k-way set associative in this case.
Typically, k= 1, 2, or 4. Each cache line contains multiple
words and an address tag that indicates the corresponding ad-
dress in main memory of that cache line.

During a cache memory access, log, m bits of the memory
address identify the set of the cache to access. When the set is
accessed, the cache reports all & lines in the set together with the
address tags stored with those lines. All address tags are com-
pared with the access address simultaneously, and if one of them
matches the access address, we say that a hir has occurred. The
data from the corresponding line are the data requested. If no
match occurs, the data must be obtained from a remote memory.
In this case we say that a miss occurred.

On a read miss, a line is selected for replacement and the
referenced line from a remote memory replaces the line selected.
On a write miss, one possible action is to retrieve the full cache
line from a remote memory, replace the LRU line in the set with
this line, and update the word or bytes in the line that are altered
by the write. Some cache designs treat writes differently, but
the differences do not affect the results reported in this paper.
The goal of a cache simulation is to determine the hit ratio, the
fraction of all references that are hits.

2.2 Analyzing Concurrent Simulations of Cache Sets

Because the address space is divided into m disjoint sub-
spaces, we can simulate the activity in each of the spaces inde-
pendently and in parallel. Hence, we can obtain up to an m-fol}i
speedup rather trivially by a parallel simulation. However, this
is somewhat misleading. Although we can do the computation
m times faster by using parallelism, the data obtained by the
parallel simulation are not much more accurate than the data
obtained by simulating only a few of the disjoint subspaces.
Hence, the simulation is not efficient in a statistical sense, and
we are wasting much of the computational effort.
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To see why this is true, let T = {4(k), kK > 1} be the trace
of address references to two sets (or groups of sets). We view
the trace as being very long, in effect of infinite length. This
trace can be partitioned into two subtraces of references to each
of the individual sets. Denote the subtraces by
T, = {Ai(k), k > 1},i =1, 2. Let N(n) be the number of refer-
ences to set i in the first n references of T and let H,(n) be the
number of hits to set i in the first n references of T. Let
H(n) = H\(n) + H,(n) and define the hit ratios

H(n) = H(n)/n , Hn) = H(n)/N(n) .

Notice that Hi(n) is the hit ratio to set i in the first Ny(n) refer-
ences in subtrace T..

We now assume that the behavior of the cache and the ad-
dress traces can be modeled by stochastic processes sufficiently
well behaved so that the cache hit ratios obey strong laws and
central limit theorems. Specifically we assume that the sets are
stochastically identical in the sense that

Jim Hy(n) = h a.s. (almost surely)
for some constant 4 (the steady-state hit ratio),
n].i_imw N(n)/n=05a.s.

and

(VM) B = b,/ Nyw) (F(m) — 1)) 5 NOA) (1)

as n -» o where = denotes convergence in distribution, and
N(0,A) denotes a bivariate normally distributed random vector
with means zero and covariance matrix A. We further assume
that A|| = Azz =o¢? and A12 = Az] = paz. By multiplyiﬂg
Equation 1 by

(VM®/n VNm)/m )

summing the two components, and applying standard weak
convergence arguments, we obtain

Vn (H(n) - k) = N0, o*(1 + p)).

Thus a simulation of r references of T results in a variance of
approximately ¢2(1 + p)/r, whereas from Equation (1), a simu-
lation of r references of subtrace T; results in a variance of ap-
proximately ¢2/r. As a first order approximation, it takes equal
effort to simulate r references to the full trace T or r references
to the set i subtrace T,, However, if p > 0, the simulation of
just T, produces a smaller variance than the simulation of ad-
dresses from both sets. The intuition behind this is that the r
references of T; run over a longer period of time than do the r
references from the full address space. There is more informa-
tion obtained by running a single set for a longer time than there
is in examining a collection of highly correlated references
produced over a shorter period of time.

Thus the single set simulation is statistically more efficient
provided p > 0. In general, p is greater than 0, and has been
observed to be fairly high. In other words, when one set expe-
riences a high rate of misses, say at a context swap, all sets are
likely to experience a high rate of misses. This argument also
formalizes the notion of set sampling as described in [Puzak
1985]. Although he did not directly measure the correlation,
Puzak found that he could obtain highly accurate estimates by
simulating only about 10% of the sets.

Turning now to the parallel processing implications of this
result, suppose it takes one unit of time for a processor to simu-
late a reference. Then it takes r units of time for Processor 1 to
simulate r references of T, and for Processor 2 to simulate r
references of T, concurrently, since the simulations can proceed
independently of one another. The resulting variance from this
simulation is 62(1 + p)/(2r). Next suppose that in r time units,
two processors can simulate 2ar references of subtrace T, using
the time partitioning algorithm. We expect a < 1 since there is
a certain amount of overhead. The variance from this simulation
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is 02/ (2ar), so time partitioning is more efficient than set parti-
tioning provided (1/a) < (1 + p). Since the time partitioning
algorithm is very efficient for long traces, a~1, and since
p > 0, time partitioning will usually be more efficient than set
partitioning.

To achieve the benefits of both time and set partitioning,
we recommend that the simulation be limited to a small number
of sets, as per the findings of Puzak [1985], and that the trace
of these addresses be partitioned in time and simulated in par-
allel as described in the next section.

3. THE ALGORITHM

We assume that the input trace contains references to just
the collection of sets that are to be simulated. We also assume
that the cache replacement policy is LRU within a set.

Assume the input trace consists of N entries and that there
are P processors. The input trace is partitioned into P sequential
subtraces, the first consisting of the first N/ P references of the
original trace, the next consisting of the next N/ P references of
the original trace, etc. If N is not a multiple of P, the subtraces
should be as equal as possible in length. Each trace is analyzed
on a separate processor. Each processor initializes its cache
contents to an illegal tag value. There are two types of illegal
tags: +w and —e. The +e tag is used to initialize the contents
of the cache at the beginning of the first subtrace. This tag is
used because the cache contents at the beginning of the trace
are unknown (and can never be known). All other processors
initialize their caches to the —c tag. This tag is used because the
cache contents at the beginning of the first pass through the
subtrace are unknown. However, in subsequent passes, the
—oo’s may be replaced by valid addresses. Each processor sim-
ulates its input subtrace with the initial cache contents and
produces a count of the number of misses. This involves main-
taining a list of most recently used (MRU) to LRU lines within
each set. On a miss, the LRU line is discarded, and the address
causing the miss is put in the MRU spot in the list. If a reference
is not in the cache, then it is counted as a miss. In addition to
counts, whenever the simulation removes a value of — o from
the cache on a miss, the processor also records the address that
experienced the miss. We call this sequence of addresses the
resimulation subtrace. Notice that if there are k lines in the set,
then the resimulation subtrace for the set contains at most k
entries.

At the end of the simulation, each processor has a count of
the number of misses. The sum of these misses is actually an
upper bound on the true number of misses, but is too high. Each
of the P simulations produces misses at the beginning of its
subtrace that may, in fact, be hits on a continuous sequential
simulation of the trace. The reason that they are recorded er-
roneously as misses is that the true contents of the cache are
unknown at the beginning of the subtrace, and thus, the initial
references to the cache produce misses. Note that a lower
bound on the misses can also be computed by assuming that a
reference that replaces a —eo was actually a hit. In order to ob-
tain the correct counts, we need to determine which of these
references should have produced hits.

To determine the correct counts, a resimulation phase is re-
quired. In practice, if the upper and lower bounds are tight
enough then resimulation can be omitted. Processor i (i > 2)
initializes its cache to be the final cache contents from processor
(i — 1)’s simulation. The processor then simulates the refer-
ences in its resimulation subtrace in the order they were re-
corded. These references are precisely the set of addresses that
gave misses that might otherwise be hits. The cache state for
recognizing whether these addresses should be hits is exactly the
cache state of Processor (i — 1) at the end of its simulation.
When these addresses are presented in sequence to the cache
of Processor i, for each hit observed, Processor i reduces its miss
count by 1. In addition, because the replacement algorithm is
LRU, we know exactly which line to replace on a miss: one
simply uses LRU replacement again. For example, consider
simulation of a single set and suppose the set size k = 4, the re-
simulation subtrace is < By, B,, Bs, B, > and the contents of the
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cache at the beginning of resimulation are (in MRU to LRU or-
der) < A,, A,, A5, A, > . (For the purpose of this discussion we
assume that each line contains exactly one word.) Assume that
B, # A, for any a and b so that none of the references in
Processor i’s resimulation subtrace are in the final cache con-
tents from Processor (i — 1)’s simulation. In the resimulation,
after the first reference the cache contents are
< By, Ay, A,, A, > while after the second reference the cache
contents are < B,, By, A;, A; > . After the third and fourth ref-
erences the contents  are < B3, B;, B}, A, > and
< B,, B,, B,, B, >, respectively, although the order of the B)’s
is not necessarily MRU to LRU. However, the fact that we lose
the MRU to LRU order in the resimulation is now irrelevant.
To see the effect of hits in the resimulation, suppose now that
B, = A,, but that the rest of the B,’s are misses. The cache
contents on subsequent references in the resimulation are now
< By, Ay, Ay, A3 >, < By, By, A1, A2 >, < By, By, By, 41 >, and
< Bs, B3, B,, B, > . The Appendix contains a pseudo code de-
scription of the algorithm.

After resimulation, the sum of the misses observed is the
correct number of misses provided the cache is filled by each
subtrace. This can be determined by checking to see whether
there are any —oo tags in a cache at the beginning of the resim-
ulation. In this case additional resimulation phases are required
to produce the correct counts (although, again, this may not be
necessary if upper and lower bounds are tight enough).

The correctness of the algorithm depends on the following
observation concerning k-way set associative caches using LRU
replacement. Once a set experiences k distinct references, its
future cache behavior is completely independent of the cache
contents of that set, and of the reference pattern prior to the
first of these k distinct references. This observation has been
used by Laha et al. [1988] to develop an approximate cache
analysis technique based on sampling and simulating nonadja-
cent time intervals from a reference trace.

If an additional resimulation pass is required, the treatment
of — tags in a resimulation phase is exactly as before. The
processor needs to save the address of the reference causing a
— to be replaced. In the next resimulation pass, only the saved
references from the previous pass need to be processed. Even-
tually, the algorithm will terminate, since in pass i (i > 1) (i.e.,
resimulation pass number (i — 1)), processor i is guaranteed not
to have any —o tags in its initial cache contents.

For very long traces, each subtrace will fill its cache and the
total number of references simulated by each processor is (at
most) N/P + L where L = m x k is the total number of lines in
the cache, assuming we simulate m sets of a k-way set associa-
tive cache. Assume now that a first pass reference takes 1 unit
of time to process, while a resimulation reference takes c units
of time to process (we might expect ¢ > 1 to reflect processor
synchronization cost and other overheads). Then the speedup
is given by (at least)

S(P,N) = N/(N/P + cL) = P/(1 + PcL/N).
For modest values of P and ¢, and for L/N=0, S(P,N)~P and

Al,jm S(P,N) = P.
Even in the worst case that P passes are required, the total
processing time is at most N/P + (P — 1)cL in which case we
again have

Nlim S(P,N) = P.

Thus for very long traces we expect excellent speedup.

4. SUMMARY

In this paper we have described an approach to parallelizing
a trace-driven simulation of a uniprocessor’s cache memory. In
this approach, the trace is subdivided into nonoverlapping time
intervals. Each processor is assigned a different time interval for
simulation. However, since the contents of the cache are not
known at the beginning of a time interval, a short resimulation
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phase is required to produce the correct counts of hits and
misses. We also argued why we expect this time partitioning
approach to typically be more statistically efficient than a set
partitioning approach.

The algorithm can be generalized in a number of directions.
First, it can be easily combined with the stack processing algo-
rithm to generate hit ratios simultaneously for multiple sized
caches. More specifically, it can generate hit ratios for k-way
set associative caches (with m sets) for all values of
k=1,..., K. Similarly, it can be combined with Puzak’s trace
reduction technique. Finally, with some increase in complexity,
the time partitioning approach can be extended to the simulation
of cache-coherent multiprocessor systems. This extension will
be described in a subsequent paper.

APPENDIX. Parallel Simulation Pseudo Code

{ Processors execute the following operations in parallel. Ini-
tialize caches and counters, then simulate. If records remain
for resimulation, then copy cache state of predecessor as ini-
tial state for this processor, and resimulate. The variable I is
a processor index }

begin
if I = 1 then initialize cache[I] to 4o
else initialize cache[I] to —oo;
initialize all counts to 0;
initialize Input Trace[I] to a segment of input data;
initialize Output Trace[I] to empty;
Barrier Synch;
while any Input Trace[l] is nonempty do
begin

{ Processor I simulates cache[I] with Input trace[I], and
produces Output Trace [I] }

Simulate;
Barrier Synch;
if I > 1 then
begin
copy cache[l — 1] to cache[I];
copy Output Trace[I] to Input Trace[I];
end;
Barrier Synch;
end;
Combine counts;
Output results;
end { program }

{ Simulate a segment of the input data. Count all hits. Count
a miss only if cache set has no entries of -, otherwise save
the record for resimulation. This code counts misses during
the initialization transient as real misses. It can be modified
to ignore misses and hits until the +oo values are flushed from
the cache. }

Procedure Simulate;

begin
for each record in Input Trace[I] do

begin
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if hit(cache[I],record) then
bewi

reorder cachel[I];
hits[I] := hits[I] + 1;
end

else

if Cache[I] contains -« in same set then
Place this record in Output Trace[I]
else misses[I] := misses +1;
Put record into Cache[I] and remove the LRU line;
end;
end;
end; {Simulate}
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