Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

UNBOUNDEDLY PARALLEL SIMULATIONS VIA RECURRENCE RELATIONS
FOR NETWORK AND RELIABILITY PROBLEMS

Albert G. Greenberg
Boris D. Lubachevsky

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

ABSTRACT

New methods are presented for parallel simulation of discrete
event systems that, when applicable, can usefully employ a number
of processors much larger than the number of objects in the system
being simulated. The simulation problem is posed using recurrence
relations, and three algorithmic ideas are brought to bear on its solu-
tion: parallel prefix computation, parallel merging, and iterative
folding. Efficient parallel simulations are given for the G/G/1
queue, a variety of queueing networks having a global first come
first served structure (e.g., a series of queues with finite buffers),
acyclic networks of queues, and networks of queues with feedbacks
and cycles. In particular, the problem of simulating the arrival and
departure times for the first N jobs to a single G/G/1 queue is
solved in time proportional to N/P + log P using P processors.

1. INTRODUCTION

The simulation of a discrete event system is the process of gen-
erating a sample path, or trajectory, that represents the system state
as a function of time. This normally entails the use of a global clock
and an event list. In the last few years, much effort has been devot-
ed to the task of splitting the simulation process into a number of
sub-processes and executing the latter in parallel on different pro-
cessors [Chandy and Misra 1979; Lubachevsky 1989; Misra 1986;
Nicol 1988; Wagner and Lazowska 1989; Jefferson 1985]. For ex-
ample, when simulating a queueing network, the idea might be to
allocate each processor to a node, or a group of nodes, and let it
handle the corresponding events, taking care of possible interac-
tions with other processors. At best, the degree of parallelism ob-
tained by such an approach will be equal to the number of nodes,
and in general may be much smaller [Wagner and Lazowska 1989].

We propose new methods that do not limit the degree of paral-
lelism in this way. Our methods require only single instruction,
multiple data (SIMD) parallel processing. The methods can be effi-
ciently implemented on the current generation [Thinking Machines
Corporation 1989; Grondalski 1987] of SIMD massively parallel
processors. Some preliminary benchmarks of simulations per-
formed on an 8K processor Connection Machine (CM-2, Thinking
Machines, Incorporated) are reported below. A more complete de-
scription of our work can be found in [Greenberg et al. 1990].

Our point of departure is to pose the simulation problem using
recurrence relations. When the relations are of a certain type, com-
puting their solution is a parallel prefix problem [Ladner and Fischer
1980]. The first algorithmic idea introduced here is to use fast algo-
rithms for the parallel prefix problem [Greenberg et al. 1982; Hyafil
and Kung 1977] to solve the recurrences and thereby simulate the
system. The simplest, non-trivial system that yields to this approach
is the G/G/1 queue, using the first come first served discipline. In
this case, the recurrence relations define the sequences of job arrival
and departure instants. We show that the arrival and departure times
for the first N jobs can be computed in time proportional to N/P +
log P using P processors. Memory requirements are moderate. If B
= O(N) memory locations are available, the time to simulate N jobs
is proportional to

N/P (1 + Plog P/B),

which implies linear speedup with respect to N, the number of jobs,
provided B > P log P.

731

Isi Mitrani

Computing Laboratory
University of Newcastle
Newcastle Upon Tyne, NE1 7RU
United Kingdom

Other systems that have a global first come first served struc-
ture yield to the same approach, for example, acyclic fork/join net-
works [Baccelli et al. 1989], queues connected in a cycle, and
queues in series with finite buffers [Mitra and Mitrani 1989]. We
show that the first N events of any of these systems can be simulat-
ed in time proportional to N/P + log P using P processors, though
the constant of proportionality may grow with the size of the net-
work.

To extend the scope of our simulation methods to queueing
networks that allow overtaking (meaning a pair of jobs A and B may
exit a given node in the order A, B, and another in the order B, A),
we combine fast parallel prefix algorithms with fast parallel merging
algorithms to produce the job arrival and departure instants for each
queue in the network. This leads to parallel simulations of acyclic
networks of queues, which use P processors to produce the job arri-
val and departure times at each node for the first N jobs through the
network in time order N/P +log P + log N.

To handle general networks of G/G/1 queues, with overtaking,
feedbacks (the same job may visit the same node several times) and
cycles (jobs may flow between a pair of nodes in both directions),
breakdowns (jobs wait until service is restored), and priorities, a
third algorithmic idea, iterative folding, is introduced wherein:

1. Complex dependencies (cause and effect relationships)
between events are temporarily relaxed, and estimates are
used for the timing of some of these events. A tentative
sample path is then computed, using parallel prefix and
merging algorithms.

2. The previously relaxed dependencies are then taken into
account to update the estimates.

As this process is iterated, a wave of events, which begins at

simulated time ¢ = 0 and propagates toward ¢ = oo, converges to the
correct values, and this convergence is guaranteed. Each iteration of
this method, producing a new tentative sample path, is always fast.
In particular, using P processors, order B/P + log B + log P time is
required to simulate a batch of B jobs. The efficiency of the method
hinges on how many iterations are needed for convergence. A wide
range of experiments for a variety of networks at a wide range of
loads (and overloads) show that the number of iterations is small,
about log B iterations for a batch of B jobs.

In this work, the simulation problems considered are such that
all random variables can be precomputed, without regard to the
state the system happens to be in. These variables are the job inter-
arrival times, the routes the jobs take through the network, and their
service demands along the route. To a limited degree, this sort of
precomputation was exploited in [Lubachevsky 1987], and in the
“future event list” technique [Nicol 1988]. Precomputing random
choices may help accelerate the simulations of some networks
where routing is state dependent. Work is in progress on applying
our parallel simulation approach to the simulation of multiple ac-
cess protocols such as Aloha [Abrahamson 1985; Greenberg et al.
1990]. We are also working on the simulation of loss systems (cir-
cuit switching networks) [Eick et al. 1990].

For the G/G/1 system, if the object of interest is the waiting
time, it would also be possible to use Lindley's recurrences [Klein-
rock 1975], rather than those presented below. However, Lindley's
recurrences do not contain enough information to reconstruct the
sample path. It was known that these recurrences provide a simple



A.G. Greenberg, B.D. Lubachevsky, and I. Mitrani

serial simulation algorithm for generating job waiting times for the
G/G/1 queue (see, e.g., [Gaver and Thompson 1973]). Baccelli and
his coworkers introduced recurrence relations generalizing Lin-
dley's recurrences to describe embedded processes in a variety of
first come first served stochastic systems [Baccelli et al. 1989; Bac-
celli 1989]. Baccelli [1989] recently characterized these systems as
a restricted class of stochastic Petri nets. In this work the recurrenc-
es serve as the starting point for the study of ergodicity conditions
and for the derivation of stochastic orderings and bounds.

Chandy and Sherman [1989] posed simulation as the problem
of filling in a space-time rectangle containing the events. The task of
filling in this rectangle is viewed as the problem of finding the
unique fixed point X of a function F, X = F(X), where X represents
an assignment of events in the space-time rectangle (i.e., a possible
sample path) and F expresses the dependencies that determine each
event from neighboring events. This appealing view unifies earlier
optimistic [Jefferson 1985] and conservative [Misra 1986] ap-
proaches to parallel simulation. Chandy and Sherman [1989] pro-
posed using relaxation for finding the fixed point. Roughly, the idea
is to tile the space-time rectangle in any advantageous manner, and
assign one process to each tile with the task of filling in the events
for that tile. To take into account information flowing across from
neighboring tiles, it would appear to be necessary to serialize the
computation. To avoid this senalization each tile process makes as-
sumptions about the events in neighboring tiles. As information
from the neighboring tiles is received, the tile process corrects the
assumptions and repeats the simulation within the tile. We also ap-
proach simulation as the task of finding a fixed point. However,
while Chandy and Sherman [1989] propose no specific tilings for
fast convergence, we do (see also [Eick et al. 1990]). In addition,
we specify massively parallel algorithms for propagating correc-
tions to the errors in the event placement assumptions. Specifica-
tions that guarantee efficiency are important to the practical use of
the ideas in [Chandy and Sherman 1989]; errors in the assumptions
are inevitable, and relaxation alone can propagate corrections to
these errors slowly. For example, applying the method of Chandy
and Sherman [1989] to the problem of just computing the first ¥
job arrival times to a G/G/1 queue results in serial convergence; or-
der N time is consumed, regardless of the number of processors
used. In contrast, our method for this problem is efficient because it
rapidly propagates information about early events to guide the
placement of later events.

2. IMPLEMENTATION

The parallel simulation methods proposed here are applicable
to a wide variety of parallel architectures. The methods call on a
small number of basic parallel processing operations: parallel prefix
(sometimes called scan), reduce computation, linear recurrence
computation, matrix multiplication, and parallel merging and sort-
ing. These operations have been widely studied and programmed
for a great variety of architectures, including systolic arrays, hyper-
cubes, butterflies, ultracomputers, meshes, etc. [Leighton 1989].
These operations can all be implemented on SIMD parallel proces-
sors. Indeed, our simulations appear well suited for fine-grained
“data parallel” machines, such as the Connection Machine [Think-
ing Machines Corporation 1989], where the computation proceeds
via massively parallel synchronous transformations of arrays of
data.

We implemented the simulation of series of G/G/1 queues on a
CM-2 Connection Machine, having 8192 1-bit processing elements
and 256 32-bit floating-point accelerators [Greenberg et al. 1990].
This simulation has a dual role: (i) to serve as a first benchmark of
our methods, and (ii) to obtain results of current interests to queue-
ing theorists. Recently, Srinivasan [1989] and Glynn and Whitt
[1990] have obtained novel results on the transient behavior of se-
ries of single-server queues, which could be used to model the start-
up behavior of a long production line or the transient flow of mes-
sages over a long path in a communication network. Glynn and
Whitt [1990] prove limit theorems about the departure time of the

kth customer from the nth queue as, for example, n tends to e with
k fixed, or with k increasing with n, say k = Vi ork = n. Though

their analysis shows existence of limits, it does not specify the lim-
its numerically except in a very few special cases. Thus, it is of in-

732

terest to explore the numerical values through simulation, especially
where the invariance principle of [Glynn and Whitt 1990] applies.
Via the invariance principle the results can be applied universally,
for essentially any service time distribution.

Table 1 gives timings for simulations of a single M/M/1 queue,
and Table 2 gives timings for simulations of series of M/M/1
queues. In these runs just end-to-end response time statistics were
collected. On long simulation runs, the CM-2 code is over 100
times faster than corresponding code on a MIPS RS2000 worksta-
tion; no special optimization tricks were tried in either code. The
speed of the parallel series of queues code is about 17 billion simu-
lated services per hour.

Table 1. Time to Simulate a Single M/M/1 Queue
Number of Jobs Simulated Running Time (seconds)
213 01
215 02
216 .02
217 .03
218 .06
21 12
220 42
22! .80

Table2. Time to Simulate 22! = 2,097,152 Jobs
Through a Series M/M/1 Queues

Number of Queues Running Time (seconds)

10 4.87
100 45.11
1000 446.03
h—
ACKNOWLEDGEMENTS

We are grateful to Otmar Schlunk for programming the CM-2,
to Sandia National Labs and Thinking Machines, Incorporated for
providing the computer time, and to Ward Whitt and Raj Srinivasan
for their collaboration (in progress) on the series of queues experi-
ments.

REFERENCES

Abrahamson, N. (1985), “Development of the ALOHANET,” IEEE
Transactions on Information Theory IT-31, 2, 119-123.

Baccelli, F. (1989), “Ergodic Theory of Stochastic Petri Nets,”
Technical Report 1037, INRIA-Sophia Antipolis, INRIA-
Sophia 06565, Valbonne, France.

Baceelli, F., W. Massey, and D. Towsley (1989), “Acyclic Fork-
join Queueing Networks,” Journal of the ACM 36, 3, 615-642.

Chandy, K.M. and J. Misra (1979), “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,”
IEEE Transactions on Software Engineering SE-S, 5.



Unboundedly Parallel Simulations Via Recurrence Relations for Network and Reliability Problems

Chandy, K.M. and B. Sherman (1989), “Space-Time and Simula-
tion,” In Distributed Simulation 1989, The Society for Comput-
er Simulation, San Diego, CA, 53-57.

Eick, S., A.G. Greenberg, B.D. Lubachevsky, and A. Weiss (1990),
“SIMD Relaxation for Parallel Simulations with Applications
to Circuit-Switched Networks,” in preparation.

Gaver, D.P. and G.L. Thompson (1973), Programming and Prob-
ability Models in Operations Research, Brooks/Cole Division of
Wadsworth, Monterey, CA.

Glynn, P.W. and W. Whitt (1990), “Departures from Many Queues
in Series,” Technical Report, AT&T Bell Laboratories.

Greenberg, A.G., R.E. Ladner, M. Paterson, and Z. Galil (1982),
“Efficient Parallel Algorithms for Linear Recurrence Computa-
tion,” Information Processing Letrers 15, 1, 31-35.

Greenberg, A.G., B.D. Lubachevsky, and I. Mitrani (1990), “Un-
boundedly Parallel Simulations Via Recurrence Relations,” In
1990 ACM Sigmerrics Conference on Measurement and Model-
ing of Computer Systems, ACM, New York, 1-12.

Greenberg, A.G., O.S. Schlunk, and B.D. Lubachevsky (1990),
“Fast SIMD Parallel Simulations,” in preparation.

Grondalski, R. (1987), “A Chip Set for a Massively Parallel Archi-
tecture,” In /EEE International Solid State Circuits Conference,
IEEE, New York, NY.

Hyafil, L. and H.T. Kung (1977), “The Complexity of Parallel Eval-
uation of Recurrences,” Journal of the ACM 24, 513-521.

Jefferson, D.R. (1985), “Virtual Time,” ACM Transactions on Pro-
gramming Languages and Systems 7, 3, 404-425.

Kleinrock, L. (1975), Queueing Systems, Volume 1: Theory, Wiley,
New York.

Ladner, R.E. and M.J. Fischer (1980), “Parallel Prefix Computa-
tion,” Journal of the ACM 27, 831-838.

Leighton, T. (1989), “An Introduction to the Theory of Networks,
Parallel Computation, and VLSI Design,” Draft.

Lubachevsky, B.D. (1987), “Efficient Parallel Simulations of Asyn-
chronous Cellular Arrays,” Complex Systems, 1, 1099-1123.

Lubachevsky, B.D. (1989), “Efficient Distributed Event-Driven
Simulation of Multiple-Loop Networks,” Communications of
the ACM 32,1, 111.

Misra, J. (1986), “Distributed-Discrete Event Simulation,” ACM
Computing Surveys 18, 1, 39-66.

Mitra, D. and I. Mitrani (1989), “Control and Coordination Policies
for Systems with Buffers,” 1989 ACM Sigmetrics Performance
Evaluation Review and Performance ‘89 17, 1, 156-164.

Nicol, D.M. (1988), “Parallel Discrete-Event Simulation of FCFS
Queueing Networks,” In Parallel Programming: Experience with
Applications, Languages, and Systems, ACM, New York, NY,
124-137.

Srinivasan, R. (1989), “Queues in Series Via Interacting Particle
Systems,” Technical Report, Department of Mathematics, Uni-
versity of Saskatchewan.

Thinking Machines Corporation (1989), Connection Machine, Mod-
el CM-2 Technical Summary, Version 5.1, Thinking Machines
Corporation, Cambridge, MA.

Wagner, D.B. and E.D. Lazowska (1989), “Parallel Simulation of
Queueing Networks: Limitations and Potentials,” 1989 ACM
Sigmetrics Performance Evaluation Review and Performance
‘89 17, 1, 146-155.

733



