Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

A GENERALIZED REL ABILITY BLOCK DIAGRAM (RBD) SIMULATION

Kerry D. Figiel

International Paper Comipany
P.O. Box 312
Bastrop, Louisiana 71221-0312

ABSTRACT

One of the major problems encountered in designing a general
purpose simulation model is the establishment of a structure which
links the various processes together in a way that does not require
customized programming. This paper demonstrates a computer
simulation yielding reliability and maintainability information for
any system based upon the failure and repair distributions of the
individual components. The information needed to link the
various components together is taken directly from the Reliability
Block Diagram (RBD), thereby negating the need for writing
specialized programs. Final results display 90% confidence
intervals for 4 key endogenous variables, System Availability,
First Failure Time, Mean Time Between Failure (MTBF) and
Mean Time To Repair (MTTR).

Techniques for reducing computer memory requirements are
discussed. The paper demonstrates how connections between
process blocks can be generalized and linked together during
program execution. This method results in more useful programs
that solve a broader range of problems.

1. INTRODUCTION

Kapur and Lamberson (1977) used Reliability Block
Diagrams (RBDs) to describe the possible combinations of
operational components that will result in total system reliability.
The components of the system are the Reliability Blocks that can
be characterized by probability distributions for failure and repair.
The connections between Reliability Blocks identify the success
paths for a system, or the various combinations of working
components that can result in an operational system. A component
is on an operational path if at least one path can be traced from the
beginning of the RBD to that component through non-failed
components. The system is therefore operational if there exists at
least one operational path between the beginning and end of the
RBD. Within the RBD, components may be organized in parallel,
series or other more complex relationships including various levels
of redundancy.

Certain techniques already exist for determining the
probability of system reliability under certain circumstances. If the
reliability of each component is specified over some established
time-frame, a static model is formed. System reliability (the
probability that the system will remain operational) can then be
calculated using a number of techniques including series and
parallel analysis, the event space method, path tracing,
decomposition, cut sets and tie sets. Repair activities are not
modeled in these static models and no variance information is
provided.

Dynamic models incorporate time-dependent functions into
the reliability model by deriving an overall system hazard function
from the hazard functions of the individual components. Whereas
the calculation of the overall hazard function is relatively straight-
forward for exponential failure rates, other distributions can
greatly complicate the analysis. Repair activities still are not
included in the dynamic model and other system effectiveness
measures such as availability and maintainability are not provided.
To obtain these additional measures of system effectiveness,
stochastic means are normally applied.

__ To fully understand a complex system, not only must the
failures be modeled, but also the repair activities. The above

551

Dileep R. Sule

Mechanical/Industrial Engineering Department
Louisiana Tech University
P.O. Box 10348
Ruston, Louisiana 71272-0046

mentioned deterministic techniques do not take into account
activities that can repair a failed component before it affects
system reliability. This complexity is difficult to model other than
in simulation. Additionally, the variability of the endogenous
variables is a key item of interest. For example, one may be
interested not only that System Availability averages 95%, but
whether it is steady and consistent at 94% - 96% or ranges widely
between 83% - 99.9%. As failure and repair activities can be of
different distribution types (uniform, normal, exponential, log
normal, etc.), deterministic means are difficult to apply. Again
simulation gives one the ability to deal with these complexities and
evaluate a number of simulation runs to determine variability and
confidence intervals.

The immediate problem in constructing a general purpose
simulation model is how one can efficiently describe all possible
connection of blocks in limited computer memory. RBD’s by their
nature require a sequential arrangement of blocks without
loopbacks. In other words the success path to a block cannot
depend on the operational status of the block itself. Consequently,
within a system of N blocks, any of the N may be chosen as the
starting point. The first block may connect to any or all of the
remaining N-1 blocks but not to itself. The second block chosen in
sequence may connect to any of the remaining N-2, but not to the
first or itself. If each block were free to connect to any other block,
N2 paths would be possible (i.e. N components connecting to N
components). As loopbacks are not allowed, the maximum number
of possible connections for each block can be viewed as the
decreasing series, N-1, N-2, N-3,..., 3,2, 1 as freedom is
restricted with each subsequent choice. The maximum number of
possible connectipns in any RBD is therefore the sum of this series
or N(N-1)/2 = N“/2 - N/2. As the number of possible connections
is a function of the square of the number of blocks, computer
mc(rjncl)ry requirements become exorbitant as for large block size
models.

2. THE MODEL

The solution to this problem is the development of a matrix
structure which keeps track of the connectivity of the blocks (the
output connections) and the operational status of paths and
individual blocks. Five variables for each block are maintained to
implement this solution. They are:

1) Input threshold -Required operational paths to block?

2) Block input status -Actual operational paths to block?

3) Block operational status -Is the block itself operational?

4) Block output status -Operational path to and through block?
5) Output connections -Increments input status of next blocks.

The status of the system is determined by processing all
blocks sequentially when any block changes state (next event
simulation). To process the above block model, one first checks
whether the number of operational inputs to a block (the input
status) satisfies the established threshold. If so, then a valid
operational path exists to the block. Normally, one valid input is
needed for a valid operational path to exist. However, certain
circumstances such as redundancy may require some higher value.
If four paths connect to a block and two are required for the
system to function, this block’s input threshold would be set to 2.

After one has established that the block is indeed on an
operational path, the block’s operational status governs whether
that operational path will be continued and linked to the output
blocks. When a block is operational and has satisfied its input

K.D. Figiel and D.R. Sule

connection #1

BLOCK
connection #2
input operational output
status status status connection #3
connection #4
threshold

Figure 1. Block Model

threshold, the block’s output status word is set. Linking is carried
out by incrementing the input status words of all connected blocks.
When it is then the connected blocks turn to be processed, input
connections and operational status will again be checked and new
linkages performed.

As blocks are processed in sequential order, it is required that
no block have an output connection to a lower numbered block. A
connection will be defined to be uni-directional from the output of
one block to the input of the next. Block 1 therefore must always
be the starting point of this RBD model and has an operational
input status by default. The output status of the last block
represents the System’s operational status, and is the principle
endogenous variable of interest.

To design a program that will fit in memory, some heuristic
limit to the number of connections per block must be made. This
allows the dimensioning of the connection in the matrix structure
to some finite value. As already noted, the array size needed to
handle the model becomes unmanageable when no such limitation
is made. Itis therefore required that the number of connections
per block be limited to some reasonable value to economize on
memory requirements.

Dummy blocks can be added to the model to provide full
connectivity. As dummy blocks will never be allowed to fail
within the time frame of the simulation, they can never contribute
to system downtime, and are transparent to the results obtained.
Hence, the number of output connections per block can be
effectively expanded without wasting vast array space on
improbable combinations or losing generality. In this particular
model a four connection per block limit was selected as a prudent
compromise.

Figure 2 shows how a reliability block structure allowing only
four output connections per block can be effectively expanded. In
this example, Block BOO1s output status is connected to eight
other blocks (B004 through BO11) via the use of two dummy
block connections (B002 and B003).

In comparing the memory requirements for a 100 block
model, one finds that without this technique, 100(99)/2 = 4950
memory locations would be required to allow for all possible

connections. With the 4 connections per block model, only
4*100= 400 memory locations are needed if no Dummy Blocks
are used. Dummy Blocks do consume blocks that are otherwise
available for use and in that sense are an added memory cost. In
the computer program used in this paper, 10 integer and 10 reals
variables are used for record keeping on each block. Assuming
that each real value consumes two memory locations (double word
reals are very common in the computer industry), one finds that 30
memory locations are required for each Dummy Block. Hence the

552

tradeoff in size can be easily evaluated. The technique saves 4950-
400 = 4450 memory locations, which is equivalent to 4450/30 =
148 dummy blocks. Consequently, it is more efficient to use the 4
connection per block model on a 100 component system as lqng as
the number of Dummy Blocks does not exceed 148. In practice, 4
output connections per block is adequate for most RBDs. It
should be noted, however, that the choice of 4 output connections
per block is heuristic in nature and certain situations may be better
suited to a larger or smaller number.

B0O04

BOO

1

BOO2 006

(DUMMY]

B0O07]

F

BOO1

o
o
Q
(o]

B00O3
(DUMMY)

BOO

V]
(=]
=3
O

Figure 2. Use of Dummy Blocks to Expand Output Connections

3. SIMULATION PROGRAM

A simulation program was written to implement this general
RBD model. It was written in Fortran 77 (o run on an Harris
H1200 super mini-computer, but may be easily modified to run on
any of a wide variety of computers having Fortran compilers.
Input and output to the program are via text files specified by the
user. File input is selected over interactive input to reduce errors
by allowing the user to study and edit the file. It is very
discouraging for a user to complete a long simulation run only to
discover that the input was entered incorrectly. The user may
optionally elect to enable a trace print out that records key system
variables after each event. The trace print out is, however, I/O
intensive and slows the simulation run. Key element of the
program are:

3.1 Inputs

The input file to the program is divided into thice sections.
Section 1 provides general information needed by the simulation
model, i.e. the time limit (in simulation minutes), a logical entry
specifying whether the trace features of the program are to be
enables, a second logical entry to determine if interim results are to
be printed after each simulation run, and the starting random
number seed.

EXAMPLE OF SECTION ONE:
10000.0 FALSE TRUE 28923
END

The interpretation of this line is to run the simulation for
10,000 minutes of simulation time, disable trace statements, enable
interim results, and use a starting random number seed of 28923.

Section 2 is taken from the RBD and defines all blocks used,
up to four output connections and the blocks’ input thresholds.

These lines are prefaced by the specifier B for a Block Diagram
Definition.

A Generalized Reliability Block Diagram (RBD) Simulation

EXAMPLE OF SECTION TWO LINE:
B010 12 14 17 0 2

The interpretation of this line is that block B0O10 is to connect
to three other blocks (B012, B014 and B017) and is to have an
input threshold of 2. A zero or blank for an output connection
implies an unused connection. A zero or blank threshold defaults
to a value of 1. Hence, B0O10 12 means that block BO10 connects
only to block B012 and has an input threshold of 1.

Section 3 defines the repair and failure distributions associated
with each block that will be used in the simulation. The R
specifier is used to denote a repair distribution while the F denotes
a failure distribution. The following table is used to identify the
allowable distributions and their associated parameters.

TYPE PROCESS PARAMETER 1 PARAMETER 2

1 Constant Value

2 Exponential Mean

3 Normal Mean Standard Deviation
4 Uniform Mean Standard Deviation
5 Log Normal Mean Standard Deviation

Table 1. Repair and Failure Distribution Parameters

EXAMPLE OF SECTION 3 INPUT:
F010 2 500.
RO10 3 100. 25.

The above lines define the repair and failure distributions for
block B010. Hence, B010 fails according to an exponential
distribution with a mean of 500 minutes. Repair is normally
distributed with a mean of 100 and standard deviation of 25
minutes. Should the failure distribution be omitted, it is assumed
that the block will never fail during the simulation. Likewise, if
the repair distribution is omitted, it is assumed that the block can
never be repaired during the simulation. In these cases the
program selects constant failure and repair processes with rates of
5 times the total simulation time. All sections are terminated with
an END statement.

—3 B002 |—

BOO1

BOO0O3 B0OO5

B0O0O4 |—

Figure 3. RBD Model of 2 of 3 Redundant System

To illustrate the input file, a simple 2 of 3 redundancy system
is be modeled in Figure 3. Block B0O! will be the start and BOOS
the termination used to measure reliability. Blocks B002, B003,
and B004 each have an exponential failure rate of 500 minutes,
and normal repair rate of 100 minutes with a 25 minute standard
deviation. The threshold for BOO5 is set to 2 to make it a 2 of 3
system. The Block diagram for this system is as depicted in
Figure 3.

553

1000.0 TRUE TRUE 68923
END

BOO1 2 3 4 0

B0OO2 5

BOO3 S

BOO4 S

BOO5 O 0 0 0 2
END

FO02 2 500.

ROO2 3 100. 25.
FOO3 2 500.

ROO3 3 100. 25.
FO04 2 500.

ROO4 3 100. 25.
END

Figure 4. Input File for 2 of 3 Redundant System

In the input file for this model, (Figure 4) Section 1 again
specifies a simulation of 10,000 minutes with all trace messages
and interim results enabled. A random number seed of 68923 is
selected. Section 2 defines all connections. Block BO01 connects
to B002, B003 and B004. These blocks then in turn connect to
B005. The threshold of 2 for Block BOO5 requires two valid paths
for it to have an operational input status. Section 3 defines the
distributions which apply. Blocks BOO1 and BOOS5 are not
modeled as they are the start and termination blocks and are
therefore not permitted to fail or be repaired. B002, B003 and
B004 are modeled as specified, i.e. exponential failure (type 2),
normal repair (type 3).

3.2 Program Structure

The RBD program is modular in nature and uses structured
programming techniques for flexibility and ease of modification.
The main program itself consists of only 21 executable lines of
Fortran code. Its primary function is to control the order of
subroutine calls. The FOR statement is used to control the
execution of 100 simulation runs to obtain the required variance
information. The LOOP statement keeps each simulation running
and processing "next events" until the current time exceeds the
specified end time of the simulation. Consequently, the program
actually performs 100 full simulations, each for the specified time
limit. Once one simulation run is complete (current time exceeds
the specified end time) all variables including system time are
reinitialized and the next run is made with a new random number
seed.

CALLREAD INPUT FILE IREAD ALL INPUTS
IF (ERR FLAG) IDID ERROR OCCUR IN READING INPUTS
CALL PROCESS INPUT ERROR 1...YES, WRITE THE ERROR MESSAGE
CALL EXIT 1...AND TERMINATE PROGRAM EXECUTION
END IF 1...NO, CONTINUE WITH SIMULATION

FOR NUM RUNS = 1,100 1100RUNS FOR VARIANCE ANALYSIS

CALL SYSTEM START UP ISTART UP W/ALL BLOCKS OPERATIONAL

Loor ILOOP UNTIL SIMULATION TERMINATES
CALL DETERMINE NEXT EVENT IWHAT IS THE NEXT SYSTEM EVENT?
CALL UPDATE BLOCK STATUS IWHAT BLOCKS ARE OPERATIONAL?

CALL DETERMINE SYSTEM STATUS
IF (CURRENT TIME .GE. END TIME)

IS THE SYSTEM OPERATIONAL?
IHAVE WE REACHED END OF SIMULATION

EXIT LOOP 1...YES, EXIT FROM THIS LOOP
ENDIF 1..NO, CONTINUE
ENDLOOP IEND OF SIMULATION LOOP
IF INTERIM RESULTS) IIF TRACING INTERIM RESULT
CALL WRITE INTERIM RESULTS IWRITE ALL STATE VARIABLES
ENDIF
ENDFOR
CALL WRITE FINAL RESULTS IWRITE FINAL ANALYSIS OUTPUT
CALL EXIT IOUTPUT FILE AND END PROGRAM
END

Figure 5. Main Program

3.3 Trace Enable

SUBROUTINE

READ INPUT FILE

PROCESS INPUT ERROR
SYSTEM START UP
DETERMINE NEXT EVENT
UPDATE BLOCK STATUS
DETERMINE SYSTEM STATUS
WRITE INTERIM RESULTS
WRITE FINAL RESULTS
PROCESS

REAL SORT LO TO HI

K.D. Figiel and D.R. Sule
FUNCTION

Process Users Input File. Places information in common.
Outputs messages if input is in error.

Initializes all variables.

Determines which block has next change of state.
Resolves blocks’ operational status.

Resolves blocks’ and system’s output status.
Wirites results of each simulation run.

Writes summary of 100 simulation runs.

Determines failure and repair time of blocks.

Sorts real array in ascending order.

Figure 6. Subroutine Descriptions

Each subroutine used in the program performs
defined functions. A common is used to avoid the need for long
argument lists being passed between these subroutines. Figure 6
depicts the function of some of the major subroutines used in the

When enabled, the trace mechanism logs all major system
events to a trace file. Initially, the input file is echoed to record the
simulations understanding of the problem it is to solve. The initial
status and transition times of each block are also recorded to the

file. Then each ensuing subroutine that is called logs the
information pertinent to its decision, including the result and
reasons for that decision.

certain well

Figure 7 illustrates a sample trace made from a simulation run
of the problem in Figure 3. The top of the listing is a simple
restatement of the input file from Listing 1. After SYSTEM
START UP FOR SIMULATION RUN 1, Block failure times are
first calculated, displayed and then placed in an array of CHANGE
OF STATE TIMES for each block. Note that Blocks 1 and 5
which have no specified failure distribution have been calculated
to fail at 50,000 minutes (S times the simulation time limit). This
guarantees no failure of those components during the simulation

10000. T T 68923
END

BOOL 2 3 4 0o 0

B0OO2 5 o o o 0

BOO3 S 0o 0 o o

BOO4 S o o o o

BOOS 0O o o o 2

END o o o o 0

FO02 2 500.00 0.00 300.00

ROO2 3 100.00 25.00 300.00

FO03 2 500.00 25.00 0.00

ROO3 3 100.00 25.00 0.00

FO04 2 500.00 25.00 0.00

ROO4 3 100.00 25.00 0.00

END 3 100.00 25.00 0.00
SYSTEM START UP 1

NEXT FAILURE TIME OF BLOCK 118 50000.00
NEXT FAILURE TIME OF BLOCK 2 18 2400.82
NEXT FAILURE TIME OF BLOCK 318 955.63
NEXT FAILURE TIME OF BLOCK 4 IS 1.73
NEXT FAILURE TIME OF BLOCK 5 IS 50000.00

OF STATE TIMES i

égégét\gogm"gfoo.azo i 955.634 1.721 50000.000 10000.000
CURRENT TIME 1.73 PASS NUMBER 1
BLOCK 4 IS THE NEXT EVENT AT .13

EVENT IS A FAILURE
CHANGE OF STATE TIMES

50000.00 2400.82 955.63 1.73 50000,00

10000.00
TIME INCREMENT 1.7269
BLOCK OPERATION TIMES

1.7 3 1.7 4 1.7 5 1.7
1.73

SYSTEM OPERATIONAL TIME IS
STATUS OF NEXT EVENT BLOCK

4 IS NONOPERATIONAL

NEXT REPAIR TIME OF BLOCK 4 IS 126.63
BLOCK STATUS ARRAYS
INPUT THRESHOLD OPERATIONAL OUTPUT
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 0 [¢]
2 1 1

S 2
SYSTEM STATUS IS OPERATIONAL

Figure 7. Trace Output from Figure 3 Simulation

554

A Generalized Reliability Block Diagram (RBD) Simulation

run. Component 4 has the earliest failure time of 1.727 minutes.
Although this failure seems rather short for a 500 minute expected
failure rate, it corresponds to a random number value of 0.9965
which is not that unusual. CURRENT TIME then moves ahead to
1.727 minutes and block 4 is declared nonoperational. The repair
of block 4 is determined to take 126.63 minutes. All block status
arrays are traced after each transition showing each blocks input
status, threshold, operational status and output status. Finally, the
SYSTEM STATUS IS OPERATIONAL after this first change of
state. The trace feature then continues to track each change of
state in this manner. It should be noted that the trace enable
feature is essentially a validation aid and should not be used during
actual simulation runs. The trace increases the actual clock and
CPU time required to complete the simulation by several orders of
magnitude.

3.4 Interim Results

After each simulation run, the results from that individual run
can be recorded in the output file. These interim results detail
status information concerning each reliability block. The
information maintained on each block includes the block
operational time, failure time, first failure time, next change of
state time and number of total failures for that block. This
information is not used to build the confidence intervals for the
final results section. Consequently, as these variables are then
reinitialized for the next run, the data must be output or lost.
Certainly, it is possible to store the interim information for later
analysis; however, the memory cost is quite high. As each block
variable would need to be maintained for 100 runs on 100 blocks,
10,000 locations are needed for each. Additionally, the point of
the simulation is to determine system performance, not block
performance. Validation that the computer simulation truly
produces random variates of the correct distribution is better
handled in the testing of the individual subroutines. All that the
tracking of these blocks can accomplish is the revalidation of this
fact. Consequently, when properly modeled the blocks will have
failure and repair distributions according to the selected choices.
The matter of concern is how does the whole system with
unknown failure and repair distributions act. An example of this
Interim Output is included as Figure 8.

FINAL RESULTS OF RELIABILITY SIMULATION

AVAILABILITY

PERCENT

MEAN 92.246

sD 2.297

PERCENTILE RANKINGS
1 85.143
S 87.127
10 89.454
15 90.196
20 90.673
25 90.991
30 91.245
35 91.603
40 91.989
45 92.134
50 92.480
55 92.601
60 93.108
65 93.321
70 93.646
75 93.765
80 93.968
85 94.200
90 94.498
95 95.932
100 97.903

90% CONFIDENCE INTERVALS

JVAILABILITY 87.127 TO 95.932
FIRST FAILURE 47.549 TO 1757.512
MTBF 428.302 TO 1079.697
MTTR 41.567 TO 69.248

INTERIM RESULTS OF RELIABILITY SIMULATION 1 PAGE 1
OPERATIONAL FAILURE
BLOCK TIME PERCENT TIHE NUMBER

1 10000.00 100.00 -1.00 [}
2 8547.66 85.48 2400.82 14
3 8202.87 82.03 955.63 18
4 7821.38 78.21 1.73 22
S 10000.00 100.00 -1.00 0

SYSTEM OPERATIONAL TIME 9324.840

TOTAL PERCENT SYSTEM UPTIME 93.248

FIRST SYSTEM FAILURE OCCURRED AT 955.634

NUMBER OF SYSTEM FAILURES WAS 16

Figure 8. Interim Results of Figure 3 Simulation
3.5 Final Results

The final output of the RBD simulation model is a measure of
four reliability indicators for the system as a whole. The four
measures that have been selected are: System Availability, First
Fgllure Time, Mean Time Between Failure (MTBF), and Mean
Tm}e Tp Repair (MTTR). The results from each simulation run is
maintained for each of these variables and a statistical analysis
performed to yield the mean, standard deviation, and a 90%
Confidence Interval based upon the empirical results.
Additionally, the percentile distribution is shown in 5%
increments.

Figure 9 gives the final output for the Figure 3 simulation.
These results show considerable variance for all four variables. At
a 90% observed confidence level, availability varies between 87%
and 96% with a mean of 92.2%. First failure time varies widely
between 48 and 1758 minutes of simulation time. MTBF and
MTTR show simular variability. Consequently, variance
information must closely examined in analyzing effectiveness
measures in reliability.

4. EXAMPLE OF COMPLEX SYSTEM

Figure 10 depicts a more complex system, that is not readily
analyzed. Structurally, it cannot be broken down into simple
series and parallel components. Mean failure probabilities can be
calculated by several deterministic means (such as the event space
method, path tracing, decomposition, and cut and tie sets).

MTBF

FIRST HITR
FAILURE 702-233 54.866
691.125 208. 8.224
604.330

388.787 34.953
.01 428.302 1567
47,549 464.198 44.851
. 508.017 46,527
67.865
535.007 48,467
95.642 554.394
49.768
131.854 571.911 50.364
163.165 291.920 o aee
209.882 209.939 R
349.098 616.873 R
394.143 €53.157 il
478.108 690,657 2o
536.559 311.006 e
612.642 748.729 s ase
682.243 776.595 aacs
804.360 802,463 o 150
884.099 840,843 pedbeid
955.634 950.135 FEabis
1114.014 1049.327 65.792
1;32~§g3 1079.697 €9.248
1576. X .
1757.512 1354.144 75.404
3075.308

Figure 9. Final Results of Figure 3 Simulation

555

K.D. Figiel and D.R. Sule

However, no variance information can be found by these
methods, nor can other pertinent information such as availability,
first failure time, and MTTR. These answer are best found by

simulation.

In Figure 10 and corresponding input file in Figure 11, block
1 (the starting block) and block 14 (the termination) do not
represent real components in the system. Block 14’s output status
however represents the status of the overall system. Blocks 2 and
3 are not shown in the figure, but are the dummy blocks used to
connect block 1 with 5 outputs. Blocks 4 through 8 are identical
are characterized by exponential failure and normal repair. Blocks
9 through 11 are identical and are characterized by uniform failure
and log normal repair. Similarly blocks 12 and 13 are identical
with exponential failure and normal repair. Blocks 10, 12, 13 and
14 have input thresholds of 2 which once again complicates any
deterministic evaluatuation. The results of the simulation are
displayed in the Figure 12. It is evident that this system does
exhibit considerable variability in the key variables being traced,
as was the case in the simple 2 of 3 system.

r—l BO0O4 BO0S H 3012}

100000.0
89655
END
BOO1
B002
BOO3
B004
B0OS
BOO6
B0O7
BOO8
BO09
BO10O
BO11
BO12
BO13
B014
END
F004
ROO4
F00S
ROOS
F006
ROO6
Foo07
ROO7
Foo8
ROO8
F009
R0O09
Fo10
RO10
FO11
RO11
Fo12
RO12
Fo13
RO13
END

WNUNVBLVAVIPLUNWNWLNLUNWN

(L")

13
10

11
12

13

coo

1

1

FALSE

coo

500.
100.
500.
100.
500.
100.
500.
100.
500.
100.
200.
300.
200.
300.

1200.

300.

1500.

450.

1500.

450.

FALSE

ocoo
[NENRN

Figure 11. Input File for Figure 4

IBooi l_ BO10 BO14
7,
—lBooa BO11
Figure 10. Complex System Simulation
RELIABILITY SIMULATION
AVAILABILITY
PERCENT FIRST
FAILURE MTBE
MEAN 97.423 3616.930 313.55358
sD 1.657 3175.569
PERCENTILE RANKINGS
1 90.715 125.377 ifé;t???
5 93.182 230.855 1830.601
10 95.182 468.889 2075.556
15 96.905 740.433 2173.599
20 97.219 1259.440 2226.174
25 97.289 1633.920 2363.981
30 97.494 1861.347 2479.419
35 97.547 2064.513 2554.315
40 97.659 2226.202 2601.525
45 97.724 2517.091 2697.478
50 97.828 2949.806 2744.716
ss 97.963 3260.363 2828.388
60 98.046 3647.910 2894.816
65 98.143 3878.934 2998.030
70 98.186 4631.680 3101.869
75 98.301 5282.057 3239.502
80 98.425 5632.555 3444.800
85 98.549 5801.035 3646.291
90 98.625 6453.858 3982.457
95 98.740 7705.967 5255.399
100 99.186 22223.243
90% CONFIDENCE INTERVALS
AVAILABILITY 93.182 TO 98.740
FIRST FAILURE 230.855 TO 7705.967
MTBF 1468.757 TO 3982.457
MTTR 42.564 TO 109.090

Figure 12. Final Results of Figure 4 Simulation

5. CONCLUDING REMARKS

The structure of reliability models makes them readily
solvable by general programs without individual customization.
The simple approach to connecting blocks demonstrated in this
paper can be used to develop powerful general purpose simulation
models that need only the system block diagram and component
reliabilities as inputs. Simulation is important in the analysis of
complex systems as often no definitive analytical solutions are
available. The power of simulation models to analytically develop
variance information for key variables associated with the overall
system is a significant advantage over deterministic solutions.

556

REFERENCE

Kapur K.C. and L.R. Lamber

6

MTTR

4.627
.204

.451
.564
.705
-788
.975
.859
.358
.919
.641
-509
.176
-824
.276
.752
.400
.067
-513
.335
.435
.090
.108

son (1977), Reliability in

Engineering Design, John Wiley, NY.

