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ABSTRACT

This paper presents a new simulation approach, which is based
on a recursive expression of sample path and can be applied to sin-
gle-server tandem queueing systems. Numerical results show that
compared with the event scheduling based simulation, the new
simulation can dramatically save run time, particularly for large scale
systems.

1. INTRODUCTION

There are two general approaches to discrete-event simulation
modeling [Law and Kelton 1982; Banks and Carson 1984]. One is
the event-scheduling approach used by some simulation languages,
for example, GASP IV, SIMSCRIPT IL.5, and SLAM. Another is
process-interaction approach employed by GPSS, SIMSCRIPT
II.5, and SLAM. Other approaches include transaction flow, three-
phase, and activity scanning [Derrick et al. 1989]. Developing a
simulator using general-purpose languages, such as C, Pascal, or
FORTRAN, one is most likely to choose the event-scheduling
approach [Banks and Carson 1984, pp. 52-62]. This approach
results in relatively shorter run time (the CPU time needed for
running simulation) [Nance 1971].

For a large scale queueing network, even with the event
scheduling approach, the corresponding run time is still very long.
In many practical situations, simulation speed becomes a significant
factor that affects the period of engineering analysis and design. In
this paper, we develop a new approach for single-server tandem
queueing systems simulation, which can dramatically save run time,
particularly for large scale systems. In what follows we use the
term “traditional simulation” (TS) to mean simulation using an event
scheduling approach and “fast simulation” (FS) to indicate the one
employing the algorithm developed in this paper.

An open single-server tandem queueing system consists of a
number of single servers in series, each server (say, 1) is preceded
by a buffer (i) of infinite or finite size. In a system with finite
buffers, blocking may occur. Two types of blocking are commonly
encountered in practice [Altiok and Stidham 1982; Perros and Altiok
1986; Brandwajn and Jow 1988], namely: manufacturing blocking
and communication blocking. Suppose buffer i+1 has finite size,
manufacturing blocking occurs if a customer sees that buffer i+1 is
full as he completes service at server i. Then the customer has to
wait at server 1 until buffer i+1 has some room available. On the
other hand, if the first customer at buffer i sees that server i is
empty, but buffer i+1 is full, he can not immediately enter server i to
receive service and has to wait at buffer i until buffer i+1 has
available space. This is referred to as communication blocking.

It is well known that an event scheduling based simulation con-
tains an event list. When a new event is created, the event list must
be searched for inserting the new event into a proper position
according to the order of occurrence of events. Usually, this
searching operation is quite time consuming, and the search time
significantly increases as the number of servers in the system
increases. ]

To avoid this time consuming searching operation, we notice
that a set of recursive expressions of sample path have been
proposed for tandem queueing systems with infinite buffer sizes
[Chu and Naylor 1965; Saboo and Wilhelm 1986] and/gr finite
buffer sizes [Chen and Gao 1987; Chen and Suri 1989;
Shanthikumar and Yao 1988]. From these recursive relationships
among departure times of the customers, we find that the departure
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time of the jth customer from server i depends only on the service
time of the jth customer at server i, the departure times of the first j-1
customers and the departure times of the jth customer from the first
i-1 servers. This important observation results in a new simulation
approach for single-server tandem queueing systems, where the
departure times of customer 1 from server 1, server 2,..., server M
is sequentially evaluated first, then the departure times of customer 2
from server 1 through server M, and so on. Figure 1 illustrates this
procedure (see Section 3 for detail). We assume here that the system
has M servers and N customers go through the system in one
simulation run. The notation d;; is used to denote the departure time
of the customer j from server i.

Calculate d i

Calculation of
Performance
Measures

Figure 1. Procedure for the Fast Simulation Approach

It can be seen from Figure 1 that calculating each event time d; ;
in the fast simulation needs at most two comparing operations of reaj
numbers, rather than the searching operations of the event list in the
traditional simulation. Moreover, in contrast to traditional
simulation, the number of the comparing operations for each d;; in
the fast simulation is not affected by the number of servers in the
system. Numerical results show that the run time required by the
traditional simulator increases exponentially as the number of
servers is increased, but the time needed by the fast simulator is a
linear function of the number of servers in the system.

In Section 2 we derive the recursive expressions of departure
times. Section 3 gives the algorithms of the fast simulations for three
types of single-server tandem queueing systems, and derives formu-
las of various performance measures. Scenarios of the experimental
design are described in Section 4. The analysis and discussion of
numerical results are given in Section 5. Section 6 is a brief conclu-
sion.
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2. RECURSIVE EXPRESSIONS FOR DEPARTURE
TIMES

In this section, we derive recursive expressions for single-
server tandem queueing systems that have either infinite buffer sizes
or finite buffer sizes. In the latter case, it may be subject to
manufacturing blocking or communication blocking.

We first define the following notation:

C;: the jth customer;

S;: the ith server;

a;: the arrival time of C; to the system;

b(i): the size of buffer i, including the one in service;

si; the service time of Cjat Sj;

eij: the starting time of service of C;at S;;

djj: the departure time of Cj from S;.

wl!lere all aj's equal zero for systems with infinite supply, i.e. cus-
tomers are always available for the first server.

Throughout this paper, we always assume that there are M sin-
gle-server workstations in the system and N single-class customers
go through the system in a simulation run. First-Come-First-Served
(FCES) service discipline is employed.

2.1 Infinite Buffer Sizes

For single-server tandem queueing systems where all buffers
are of infinite sizes, no blocking occurs. Thus d;, the instant of C;
leaving S;, is just the instant when it starts service (e;;) at S; plus its
service time (s;;):

d.==e.+s..
ij Lj i

-1
for i=1,...,.M; j=1,...,N. Furthermore, if we define dg;=a; and
d; =0 if i>M or j< 0 or j>N, then the value of ¢;; in (2-13 is itself
diflferent under the following two situations:

Case a: If S is busy when Cj leaves S;.j, then Cj can not
enter S; to receive service immediately and has to wait at buffer i
until Cj.; departs from S;:

e.=d

ij 1,j-1 (2-2)

Case b: If S; is idle when C; leaves S; 1, then Cj will immedi-
ately enter S; to receive service:

(2-3)

Note that in Case b, Cj.1 has departed from S; before Cj departs
from S;., i.e., dj.1; > djj.1, and conversely, di.1,j < dij-1 in Case
a. Summarizing the above two situations, €;; can be expressed as

& = diyy Vi

i (2-4)

where the notation V denotes the maximizing operation: V' a,b € R,

aVb = max(a,b) (2-5)
From (2-1) and (2-4), d;j can be expressed as
dj = diy; Vs (2-6)

for i=1,..,M; j=1,...,N, where dg=a; and d; 0=0. (2-6) is a simple
recursive expression for d;;. It is also valid for the case where dj.1
= djj-1-

2.2 Finite Buffer Sizes

We now extend (2-6) to such tandem queueing systems where
some buffers are finite, and blocking may occur. We separately con-
sider two types of blocking; manufacturing blocking and communi-
cation blocking.
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2.2.1 Manufacturing blocking

It is easy to see that (2-6) holds as buffer i+1 has finite size and
is not full. However, if buffer i+1 is full as C; completes service at
Si, then Cj will be blocked by Sj,1. When this happens, the
customer in service at Sj,; must be Ci(1). Thus, C; cannot leave
S; until the instant dj,1,j-bi+1) When Cjp(is1) departs from Si,1 In
this case,

d 27

ij ~ di+1,j-b(i+1)

Clearly, this situation will occur only if (di.1,jV dij1+ 8ij) <
djs1,j-bi+1)- That is, Cj can not leave S; at the instant expresse& by
right-hand side of (2-6) and is delayed by the blocking.
Summarizing the analysis in 2.1 and 2.2.1, we obtain the following
recursive expression of d; j for open tandem queueing systems that
may be subjected to manufacturing blocking:

d. =@

i i Y i sy vV

i+1,j-b(i+1) 2-8)

for i=1,..,M; j=1,..,N, where dg;=3; and d;;=0 if i>M or j< 0 or

The formula (2-8) is valid for systems with infinite or finite
buffer sizes. In the case of an infinite buffer, say, buffer i+1, we
always have j-b(i+1)<0, and so by the definition, the quantity di, -
b(i+1) €quals zero. Thus the formula (2-8) degenerates into (2-6).

2.2.2 Communication blocking

Like manufacturing blocking, the formula (2-6) holds for d; ; as
buffer i+1 is not full. But, when buffer i+1 is full, the time ofj G
starting service at S; is delayed until the instant di, 1 j.1-p(i+1)> When
Cin(i+1) departs from Si,y:

€ = it jbgisn 2-9)

Note that (2-9) holds only if (dij-1V di1,j) < dis1,j+1-b(i+1)-
Thus, for open tandem queueing systems with finite buffer size and
communication blocking, there exists a recursive expression for dj;:

d.=4d

1,j i-1,j v di,j-l v d,

ir1j-bi+1) T Sij (2-10)

for i=1,..,M; j=1,...,N, where dgj=a;, and d;;j=0 if i>5M or j< 0 or
j>N. We notice that (2-10) also degenerates into (2-6) as all buffers
have infinite sizes.

3. PERFORMANCE MEASURES AND FAST
SIMULATION ALGORITHMS

_In the fast simulation, we only accumulate d; j's and ajj's, by
which the following sample performance measures can be evaluated:
W: sample average system time of one customer;

L;: sample average number of customers at S;;
Wi: sample average sojourn time of one customer at S;;
Wii: sample average service time of one customer at S;;
W,;: sample average queueing time of one customer at buffer i;
Wyi: sample average blocking time of one customer at S;;
I;: sample idle time of S;;
Uj: sample utilization of S;;
TP: sample throughput rate of the system.
The system time of Cj is (dw j-a;) for systems with finite supply

and the sojourn time of C; at S;is (d; j~di-1)- Thus, we have

N
_ 1 _
Y=y th(dM.i A)
J=

(G-1

where Aj; = a; if the system has finite supply, and Aj=dy if the
system has infinite supply. ’
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j=1

W = (3-2)

Z|~

The idle time of §; that is seen by Cj is max(0, dj.1,j-dj 1) for
the systems with infinite buffer sizes or manufacturing blocking.

N
L= ), max(0,d,; -d; ] (3-3)
01

In (3-2) and (3-3), if a system has infinite supply, then I} = 0 and
W1 is the average service time of customers at server 1.

For systems with communication blocking, the idle time of S;
that is seen by Cj is

N
=T+ ) max(0, ;] (-4)
o1

where ¢;; = di;1j-b(i+1) - (di-1j V dij.1 ). Furthermore, we have

d, . -1
Ui = M_l (3-5)
dM,N
R T
U - MN (3-6)
! dyn
TP = N 3-7)
dM,N

where Uj and U'; are the sample utilizations of S; for systems with
manufacturing blocking and communication blocking respectively.

W; can be divided into two parts: W; and Wy;' for systems
having infinite buffer sizes or communication blocking (for the
latter, we do not distinguish blocking time from queueing time), or
into three part: W, Wq;" and Wy, for systems with manufacturing
blocking. In any situation, we always have

(3-8)

But, W,;' and Wy;" are different. Wi can be directly obtained by

qu =W, -W, (3-9)
While W;" should be evaluated by
" 1 N
Wy = ) max0.d, -4, (3-10)

=1

For the system with infinite supply, Wq1" = 0. Finally, we have

N
1
W, = N—Z max[0, b, ] 3-11)

j=1

where bjj = dis1jbgsn) - iy V dij-1 + sij)- )
The average number of customers at one server can be derived
by the above performance measures and Little's Law;
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E[L]= E[TP]1E[W] (3-12)
and the variance of Lj can be obtained by the generalization of
Little's Law (Gross and Harris 1974, p. 245).

Var (L] = E[TPJ’ {E[W;] - E[W,J’} + E[TP E[W] ~ (3-13)

Based on the recursive expressions (2-6), (2-8), (2-10) and the
formulas (3-1) through (3-7) of performance measures, we can now
formulate the following algorithms of the fast simulations for single-
server tandem queueing systems. Algorithm 1 (Figure 2) is used for
systems with infinite buffer sizes. Algorithms 2 and 3 (Figures 3
and 4) are for systems with manufacturing blocking and
communication blocking respectively.

Algorithm 1
(1) Initialize:
Set W;=0, I;=0, W=0, d; ;=0 and dpow(i) = 0,
i=1,...,M; j=1,..N.
Set i=1, j=1.
(2) Simulate:
If i=1, then d;j = max[aj, dyow(i)] + sij,
otherwise, dj;= max(dyow(i-1), dnow(fS] + 8jj-
W= W;+d - dnow(i); .
1= + max[0, dyow(i-1) - daow(];
dnow(d) = dij.
(3) Update 1:
Ifi#M, theni=1i+ 1, and return to (2),
otherwise, i = 1, W = W + dpou(i) - aj, and go to (4).
(4) Update 2 and Stopping Criterion:
If j #N, then j =j + 1, and return to (2).
Otherwise, let

Wi=WyN and Uj= (dnow(i)-Ii}/dnow(i), i=1,..., M;
W=W/N;
TP = N/dow(i).

Stop.

Figure 2. The Algorithm 1 (Infinite Buffer Sizes)

Algorithm 2
(1) Initialize:
Set Wi=0, [;=0, W=0, d;;=0, dpow(i) = 0 and dpjock(ik) = 0,
k=1,..., N-b(i+1); i=1,..., M; j=1,..., N.
Seti=1, j=1.
(2) Simulate:
If i=1, then
d;j = max{ max[aj, doow(i)] + Sij, dblock(i+1,j-b(i+1)) }*,
otherwise,
dij= max{max[dnow(.i'1),dnow(i)]+5i,j, dblock(i+1,j-b(i+1)) }*.
i= Wi +d; - now{l); )
5= + max(d, dyou(i-1) - daow(];
dnow(i). = di,jl
dpjock(.j) =dij;
delete dpjock(i+1,j-b(+1)).
(* When j-b(i+1) £ 0, dplock(i+1,j-b(i+1)) = 0.)
(3) Update 1:
Ifi# M, theni=1i+ 1, and return to (2),
otherwise, 1 =1, W = W + dpow(i) - 3j, and go to (4).
(4) Update 2 and Stopping Criterion:
If j#N, then j =j + 1, and return to (2).
Otherwise, let
Wi= WiN and U= (dpow(i)-I)/dpow(i), i=1,..., M;
W=W/N;
TP = N/dpow(i).
Stop.

Figure 3. The Algorithm 2 (Manufacturing Blocking)
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Algorithm 3
(1) Initialize:

Set Wi=0, I;=0, W=0, d; =0, dnow(i)=0, and dpiock(i,k)=0,

k=1,..., N-b(i+1); i=1,..., M; j=1,.., N

Set i=1, j=1.
(2) Simulate:

If i=1, then

djj= max{aj, dnow(i), dblockli+1,j-b(+1)]} + sij*

otherwise,

dij = max{dpow(i-1), _duow(i): dplock[i+1,j-bA+1)]} + sij.*

i= Wi+ dij - dnow(l); .

Ti= T, + max(d, daow(i-1) - duow()];

dnow(l). = di,j;

dblock(i,j) = dijs

delete dpjock[i+1,j-b(i+1)].

(* When j-b(i+1) <0, dpjockli+1,j+1-b(i+1)] = 0.)
(3) Update 1:

Ifi# M, theni=1i+ 1, and return to (2),

otherwise, i = 1, W = W + dyou(i) - 3j, and go to (4).
(4) Update 2 and Stopping Criterion:

If j#N, then j = j + 1, and return to (2).

Otherwise, let

Wi=WiN and Ui= (doow(D)-1)/dnow(i), i=1,..., M;
W=W/N;

TP = N/dpow(i).

Stop.

the system respectively and the number of customers is set to
10,000 for each experiment. The experimental design for the case
of finite buffer with communication blocking is exactly the same as
that of the system with manufacturing blocking.

Table 1. Scenarios for Studying Systems With Infinite Buffer

Sizes
Customer # or WS # r=0.5 | r=0.9 [ Heterogeneous
30 stations, change customer # A B C
30000 customers, change station # | D E F

Table 2. Scenarios for Studying Systems With Finite Buffer Sizes
(The Number of Customers = 10,000, Change The

Number of Servers)
[Buffer Size r=0.5 |r=0.9 Jr=1.0 | Heterogeneous
2 G H 1 J
6 K L M N
1 0 P o) R
Unequal S T U v

Figure 4. The Algorithm 3 (Communication Blocking)

In Algorithm 1 through Algorithm 3, d;; is stored in dpow(i)
temporarily for calculating dj,1; and djj,1. While dplock[i+1,j-
b(i+1)] in Algorithms 2 and 3 is used to record di,1,j-b(i+1)-

It can be seen that all three algorithms have identical step (3)
and (4). Although step (1) and (2) in Algorithms 2 and 3 are not
same, they have very similar structures. In fact, if a simulation
program for Algorithm 2 has been developed, then it can be easily
modified as a program for Algorithm 1 or Algorithm 3. Although
only open tandem queueing systems are discussed here, these
algorithms can be easily extended to closed tandem queueing
systems.

4. EXPERIMENTAL DESIGN

Two different simulators, employing the event scheduling ap-
proach and the recursive approach separately, are developed for
three types of single-server tandem queueing systems described in
previous sections. For all these systems, we assume that there is
only one type of customers going through the systems. The
programs are written in C. All of the simulations in this study are
run on an IBM/PS2 model 80 with 80386 processor and 80387 co-
processor.

In order to compare the fast simulation with the traditional one,
we apply the Common Random Number (CRN) technique to gener-
ate interarrival times and service times of customers. One generator
is used to generate interarrival times. Moreover, each server has its
own generator for generating service times. Under these
considerations, the numerical results of performance measures of
systems obtained by the fast and traditional simulators respectively
are entirely identical. The only difference between the two sets of
simulation runs are their run times. The performance measures
evaluated in each simulation include all those discussed in the last
section.

In the case of infinite buffer sizes, we consider r; (we use r to
mean all ri's), i=1,...,M, the ratio of mean service time at server i to
mean interarrival time, to be homogeneous (r=0.5 and r=0.9) and
heterogeneous (rj # r; when i # j). Experiments with various number
of customers and number of servers are undertaken (see Table 1). In
different simulation runs, we change the number of customers from
5,000 to 50,000 and the number of servers from 10 to 100. In the
case of finite buffer sizes with manufacturing blocking, we run
simulations with system configurations listed in Table 2, where each
scenario consists of 10 experiments, i.e. 10, 20,..., 100 servers in

5. NUMERICAL RESULTS AND DISCUSSION

The numerical results of run times are shown in Appendix
(Table A to V corresponding to scenarios A to V). Limited by space
requirements, we do not present the results of communication
blocking cases, which are very similar to the results of
manufacturing blocking cases. Figure 5 (infinite buffer sizes, Table
A to C) pictorially depicts the relationship between the run time and
the number of customers. We observe that the run time is a linear
function of the number of customers for both fast and traditional
simulations. For example, the run time for 50,000 customers is
approximately 10 times of that for 5,000 customers. Thus, the
number of customers is not a significant factor that affects FS/TS,
the ratio of the time required by the fast simulation to that needed by
the traditional simulation.

Figure 6 (infinite buffer sizes, Table D to F) illustrates the rela-
tionship between the run time and the system size, i.e. the number
of servers in the system. Figure 7, 8, 9 and 10 show the
relationships between the run time and the system size when buffer
sizes are 2 (Table G to J), 6 (Table K to N), 11 (Table O to R), and
variant (Table S to V) respectively. The buffer size we mention here
includes the one in server.

From simulation results, it is found that the run time needed by
the fast simulation is always less than that required by the traditional
simulation. When we fix the number customers and increase the
system size, the run time of the traditional simulation increases
exponentially. In contrast to this, by using the fast simulation
developed in this paper, the run time has a linear relation with the
system size. That means, the larger the system size becomes, the
more significant the effect of the fast simulation on FS/TS is.

Another factor that may affect the run time is ri's. When r;'s in-
crease, the run time needed by the traditional simulation increases
too. However, the run time required by the fast simulation keeps
constant and is not influenced by the change of rj's. We can see this
situation from Figure 7 to 10 where the lines indicating fast simula-
tion with different r's pile together. Thus, in a large scale system
where utilizations of some machines are relatively high (reflected by
high ry's), the fast simulation can save much more run time.

For single-server tandem queueing systems with finite buffer
sizes and manufacturing blocking, the ratio FS/TS may reach 25% if
the system contains 100 servers and r;'s are around 0.9. In another
case where systems have infinite buffers and 100 servers, the ratio
FS/TS may achieve 20%.

It should be mentioned that appropriate simulation analysis of a
queueing system requires replicated runs for obtaining accurate per-
formance measures of the system and derivation of confidence inter-
vals. For a simple but large tandem queueing system with finite
buffer sizes and high ry's (say, 100 servers and 1;'s are around 0.9),
the traditional simulation needs more than 4 hours for one single run
with 100,000 customers on an IBM/PS2 model 80. For the same
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system, on the other hand, the fast simulation uses only about one

hour.

1800 T Sim Time (sec)
1600 -+
1400
1200
1000
800
600
400
200 X
A/‘/ No. of Customers (unit 1000)
0 + t t t t t t t t |
5 10 15 20 25 30 35 40 45 50
--FS(r0.5) TFTS(r0.5) -*-FS(r0.9)
< TS (r09) =s~FS(varr) & TS(varr)
Figure 5. Infinite Buffer, 30 stations
6000 T gim Time (sec)
5000 +
4000 +
3000 +
2000 +
1000 +
" No. of Stations
0 7 t } t t } t t —

10 20 30 40 50 60 70 80 90 100

-*FS(r0.5) T TS(r0.5) -*FS(r09)

- TS (r0.9) -+-FS(varr) & TS(varr)

Figure 6. Infinite Buffer, 30,000 Customers
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®-FS(r05) T-TSx05) -*"FS(r0.9) < TS(r0.9)

-a-FS(r1.0) & TS(r1.0) X FS(varr) X TS (varr)

Figure 7. Finite Buffer (=2), 10,000 Customers
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Figure 8. Finite Buffer (=6), 10,000 Customers
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No. of Stations

10 20 30 40 50 60 70 80 90 100

“®-FS (r 05 TTS(r0.5)

-=FS(r1.0) & TS(r1.0)

“*"FS(r09) ©TS(r09)
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Figure 9. Finite Buffer (= variable), 10,000 Customers

2500 T Sim Time (sec)
2000 +
1500 4

1000 +

500 T

No. of Stations

10 20 30 40 50 60 70 80 90 100

®-FS (05 T TS(ro.5)

-=FS(r1.0) & TS(r1.0)

“**FS(r0.9) <©TS(r0.9)

X FS (varr) X TS (varr)

Figure 10. Finite Buffer (= 11), 10,000 Customers

6. CONCLUSIONS

The time needed for employing simulation to solve problems
consists of simulator development and simulation implementation.
For modeling the single-server tandem queueing systems, the pro-
gram size of the fast simulator, such as the ones we developed, is
less than half of that of the traditional simulator. Because the fast
simulator does not use an event list, reduction in its program size is
predictable. Besides, it is easier to develop the fast simulator since
we do not have to manage the tedious event-related operations for
the fast simulator.

As we have shown, the run time needed by the fast simulator is
always less than the time required by the traditional simulator. In
most of the cases we studied, the run time ratio FS/TS falls between
20% to 50%. That is, compared to traditional simulator, fast simula-
tor may save 50% to 80% of run time. The ratio FS/TS decreases
when the system size increases.

The recursive expression based fast simulation is a promising
and exciting concept. It derives its strength in two aspects:
simplicity and time saving. However, there are some limitations on
the algorithms introduced in this paper. For example, these
algorithms can not trace the distribution of the number of customers
in a system unless a more time consuming procedure is added to the
current algorithms. In addition, we have to make some assumptions,
such as single server in each station, First-Come-First-Served
(FCES) service discipline, single type customers, reliable servers,
and tandem systems.

The authors are currently working on the relaxation of the as-
sumptions of single server station and FCFS discipline. Some
progress has been made.

APPENDIX A. TABULATED SIMULATION RESULTS

Table A. Simulation Results of Table B. Simulation Results of
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Tandem System With Tandem System With
30 Stations,Infinite 30 Stations, Infinite
Buffers, r=0.5 Buffers, r=0.9
Cstm | SimT(sec) |Ratio Cstm | SimT(sec) | Ratio
No FS |TS |FS/TS No FS |[TS |FS/TS
5000 |56 131 |142.75% 5000 |56 170 132.94%
10000 | 112 260 | 43.08% 10000 | 112 1335 ]3343%
15000 | 167 1390 |42.82% 15000 | 167 1503 |33.20%
20000 | 224 | 521 |42.99% 20000 §224 [ 669 |33.48%
25000 |1 279 | 651 |42.86% 25000 | 279 | 841 ]33.17%
30000 {335 781 |42.89% 30000 | 335 ]1005 |33.33%
35000 1391 1913 |42.83% 35000 1390 | 1175 |33.19%
40000 [ 447 11042 | 42.90% 40000 [ 447 ] 1341 |33.33%
45000 502 ] 1173 | 42.80% 45000 | 502 ] 1510 ] 33.25%
50000 | 558 | 1303 | 42.82% 50000 | 558 1676 |33.29%
Table C. Simulation Results of Table D. Simulation Results of
Tandem System With Tandem System With
30 Stations,Infinite 30,000 Customers,
Buffers, r=0.1~0.9 Infinite Buffers, r=0.5
Cstm | SimT(sec) [ Ratio WS SimT(sec) | Ratio
No FS [TS |FS/TS No FS |TS |FS/TS
5000 |56 130 | 43.08% 10 117 1228 |51.32%
10000 | 112|258 |43.41% 20 225 1486 |46.30%
15000 | 168 1386 |43.52% 30 335 |781 |42.89%
20000 (223 | 515 |43.30% 40 445 11115 139919
25000 [279 1645 |43.26% 50 554 | 1485 137.31%
30000 | 335|775 |43.23% 60 664 | 1892 | 35.10%
35000 1391 (904 143.25% 70 774 12338 133.11%
40000 {447 1034 143.23% 80 885 12819 [31.39%
45000 [ 503 1163 |43.25% 90 995 13339 | 29.80%
50000 | 559 1292 | 43.27% 100 1104 | 3897 | 28.33%
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Table F. Simulation Results of
Tandem System With
30,000 Customers,

Infinite Buffers, r=0.1~0.9

WS SimT(sec) [Ratio wSs SimT(sec) | Ratio

No FS |TS |FS/TS No FS |TS |FS/TS
10 116 [273 142.49% 10 1171230 [50.87%
20 225 1606 ]37.13% 20 226 1485 146.60%
30 334 11006 |33.20% 30 336 (774 |4341%
40 445 11473 130.21% 40 446 | 1099 | 40.58%
50 554 12005 |27.63% 50 555 11458 {38.07%
60 664 12605 | 25.49% 60 664 [1852 [35.85%
70 773 13274 123.61% 70 774 12279 | 33.96%
80 884 | 4015 |22.02% 80 886 12739 |32.35%
90 994 14818 |20.63% 90 995 13234 130.77%
100 1104 [ 5700 |19.37% 100 1106 | 3763 | 29.39%

Table G. Simulation Results of

Table H. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=2, r=0.5 Buffer=2, r=0.9
WS SimT(sec) | Ratio WS SimT(sec) | Ratio
No FS |TS |FS/TS No FS |TS |FS/TS
10 54 82 65.85% 10 55 92 59.78%
20 108 174 162.07% 20 110 | 198 [55.56%
30 160|280 ]57.14% 30 163 1321 [50.78%
40 214 1400 |53.50% 40 217 1460 |47.17%
S0 267|534 |50.00% 50 270 1617 |43.76%
60 321 |681 [47.14% 60 325 | 791 |41.09%
70 375 1840 |44.64% 70 378 {979 ]38.61%
80 428 11014 |142.21% 80 432 11180 | 36.61%
90 482 11200 |40.17% 90 486 | 1400 |34.71%
100 535 1400 [38.21% 100 540 1632 133.09%

Table I. Simulation Results of
Tandem System With
10,000 Customers,

Buffer=2, r=1.0

Table J. Simulation Results of
Tandem System With
10,000 Customers,
Buffer=2, r=0.1~1.0

WS SimT(sec) | Ratio WS SimT(sec) [ Ratio

No FS |TS |FS/TS No FS [TS |FS/TS
10 57 94 60.64% 10 56 83 67.47%
20 110 1201 154.73% 20 109 1177 [61.58%
30 164 1324 ]50.62% 30 162|282 [57.45%
40 217 1463 146.87% 40 216 1397 |5441%
50 271 622 143.57% 50 269 522 151.53%
60 325 1795 ]40.88% 60 323 1660 |[48.94%
70 378 1982 [38.49% 70 376 1809 |46.48%
80 433 11185 | 36.54% 80 431 1967 |44.57%
90 486 | 1404 | 34.62% 90 485 | 1137 | 42.66%
100 540 11638 |32.97% 100 539 1319 |40.86%

Table K. Simulation Results of

Table L. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=6, r=0.5 Buffer=6, r=0.9
WS SimT(sec) | Ratio WS SimT(sec) | Ratio
No ES |[TS |FS/TS No FS |TS [FS/TS
10 54 82 65.85% 10 54 94 57.45%
20 107 {176 | 60.80% 20 107 1209 [51.20%
30 160 [ 285 ]56.14% 30 160 1348 145.98%
40 213 ]411 |51.82% 40 213 1510 |41.76%
50 265 1553 147.92% 50 267 [ 697 ]38.31%
60 318 | 710 |44.79% 60 320 [907 [35.28%
70 372 1883 142.13% 70 374 | 1141 )32.78%
80 425 11072 139.65% 80 427 11398 ]30.54%
90 478 11277 [37.43% 90 480 | 1677 | 28.62%
100 531 | 1499 [35.42% 100 534 1978 [ 27.00%
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Table M. Simulation Results of
Tandem System With
10,000 Customers,
Buffer=6, r=1.0

Table N. Simulation Results of
Tandem System With
10,000 Customers,
Buffer=6, r=0.1~1.0

WS |SimT(sec) [Ratio wSs SimT(sec) [ Ratio

No FS TS FS/TS No FS |TS [FS/TS
10 54 96 56.25% 10 55 86 63.95%
20 107 212 | 50.47% 20 107 186 | 57.53%
30 161 350 | 46.00% 30 161 297 |5421%
40 214 512 |1 41.80% 40 214 1423 [50.59%
50 267 700 |38.14% 50 268 | 563 | 47.60%
60 321 911 |35.24% 60 321 | 722 |44.46%
70 374 1145 | 32.66% 70 374 1892 14193%
80 427 1402 | 30.46% 80 428 1081 | 39.59%
90 480 1682 | 28.54% 90 481 1278 | 37.64%
100 534 1983 | 26.93% 100 536 ]1502 | 35.69%

Table O. Simulation Results of

Table P. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=11,r=0.5 Buffer=11,r=0.9
WS SimT(sec) | Ratio wSs SimT(sec) | Ratio
No FS |TS |FS/TS No FS |TS |FS/TS
10 53 81 65.43% 10 54 96 56.25%
20 106 1176 ]60.23% 20 107|217 149.31%
30 160 286 |55.94% 30 159|362 |43.92%
40 212 411 |51.58% 40 212|534 139.70%
50 265 1553 147.92% 50 266|737 |36.09%
60 319 1710 |4493% 60 319 1963 {33.13%
70 371 | 883 |42.02% 70 372 11220 | 30.49%
80 425 1074 139.57% 80 425 1500 | 28.33%
90 478 1280 |37.34% 90 478 | 1804 [26.50%
100 531 [ 1501 [35.38% 100 531 12138 [24.84%

Table Q. Simulation Results of

Table R. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=11,r=1.0 Buffer=11, r=0.1~1.0
WS SimT(sec) | Ratio WS SimT(sec) | Ratio
No FS |TS |FS/TS No FS |TS |FS/TS
10 54 98 55.10% 10 54 84 64.29%
20 107 218 149.08% 20 107 186 157.53%
30 160 1365 |43.84% 30 160 1299 [53.51%
40 213 1538 139.59% 40 213 1429 149.65%
50 266 | 743 |35.80% 50 267 1572 [46.68%
60 319 1970 132.89% 60 320 1731 |43.78%
70 372 11226 130.34% 70 373 1902 |41.35%
80 426 1507 128.27% 80 427 11094 ]39.03%
90 478 11810 12641% 90 480 [1302 |36.87%
100 531 | 2145 | 24.76% 100 534 {1521 13511%

Table S. Simulation Results of

Table T. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=2~10, r=0.5 Buffer=2~10, r=0.9
WS SimT(sec) | Ratio WS SimT(sec) | Ratio
No FS |TS |FS/TS No FS |TS [FS/TS
10 54 80 67.50% 10 55 89 61.80%
20 107 170 | 62.94% 20 108 196 |55.10%
30 160|274 ]58.39% 30 161 1322 150.00%
40 213 1392 |54.34% 40 214 | 468 145.73%
50 267 | 523 |[51.05% 50 267 1633 142.18%
60 320 | 669 |47.83% 60 321 1818 139.24%
70 373 829 144.99% 70 374 1021 | 36.63%
80 426 [ 1001 | 42.56% 80 428 11246 | 34.35%
90 479 [ 1188 |40.32% 90 481 |1489 |32.30%
100 533 11388 |38.40% 100 535 11751 130.55%
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Table U. Simulation Results of Table V. Simulation Results of

Tandem System With Tandem System With

10,000 Customers, 10,000 Customers,

Buffer=2~10, r=1.0 Buffer=2~10, r=0.1~1.0
WS SimT(sec) | Ratio WS SimT(sec) | Ratio
No FS |TS |FS/TS No FS |[TS |FS/TS
10 SS 92 59.78% 10 55 80 68.75%
20 108 1204 152.94% 20 109 1172 163.37%
30 162 1333 148.65% 30 161 (272 |59.19%
40 215 1484 |4442% 40 215 1385 |55.84%
50 268 | 654 |40.98% 50 268 | 508 |52.76%
60 321 | 847 [37.90% 60 322 1643 ]50.08%
70 376 | 1059 [35.51% 70 376 | 787 [47.78%
80 429 11293 |33.18% 80 429 1944 |45.44%
90 483 | 1545 131.26% 90 483 11110 {43.51%
100 536 [ 1821 |29.43% 100 536 11287 |41.65%
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