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ABSTRACT

Qualitative methodology plays an important role within
computer simulation; modeling and analysis of complex systems
require qualitative methods since humans think naturally in qual-
itative and linguistic terms. The critical interface for simula-
tionists exploring qualitative simulation should rely on an unam-
biguous mathematical formalism or method with foundations in
systems theory. Currently, many ad hoc formalisms exist for en-
coding uncertain or qualitative simulation knowledge; however,
we have found that fuzzy set theory provides for a formalism
where linguistic variables can be encoded as state, parameter,
input and output information in the model. Fuzzy numbers, in
particular, are useful when population statistics are unavailable
— usually due to cost factors. We have constructed fuzzy sim-
ulation programs based on our C-based SimPack library and we
use fuzzy simulation to hypothesize qualitative system models re-
flecting real system behavior, and to specify qualitative versions
of systems.

1. INTRODUCTION

The concept of quality in computer simulation and sys-
tem modelling relates to invariance [Fishwick 1990b] and uncer-
tainty [Klir 1990] in modelling. Methods in qualitative simulation
[Fishwick and Luker 1990] are a concern in both the simulation
and the artificial intelligence (AI) [Fishwick and Zeigler 1989)
communities. How are simulation models created over time?
What are the engineering methods [Fishwick 1989], pruning ap-
proaches [ Zeigler 1984,1989] and tools used in the automation
enterprise? This represents an extremely complex problem which
needs to be addressed if we are to create design approaches for
high autonomy systems [Zeigler 1990a,b]. Our goal in this paper
is to present a method of computer simulation with fuzzy sets
as an integral part of the overall automation process; as complex
systems such as mobile robots gain greater degrees of autonomy
in the workplace, we will need effective ways of communicating
our human concepts to them. Since many of these concepts are
linguistic and “fuzzy” in nature, we feel that fuzzy simulation
has a potential to provide for an improved robot-human inter-
face. In addition, fully autonomous robots may communicate
fuzzy concepts to one another if they are constrained by time.

A human asks a household robot, for instance, “How much
of the house will be painted when I return this afternoon.” The
robot, requiring a natural language interface, may respond “Most
of it.” Let’s examine briefly how the robot could derive such an
answer. There are so many fuzzy factors involved in the plan-
ning process of painting that the robot can only respond with a
relatively fuzzy answer — this fuzzy answer can be the result of
having internally simulated (through fuzzy means) a candidate
plan for the painting job — candidate plans are hypothesized by
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the robot, and then the robot simulates an efficient plan that
satisfies all constraints. Thus, simulation plays a fundamental
role within the overall decision making process.

Another scenario involves a commanding officer on a battle-
field who receives a message from a subordinate saying “Two en-
emy platoons seen crossing the river bed. Should we strike first?”
If the general cannot readily converse with the subordinate, then
he must make a critical decision based on the fuzzy informa-
tion he received in the message. Assuming that the general had
ready access to a portable field computer, he could run a simula-
tion (with natural language input and output) that is based on
fuzzy assumptions to determine possible outcomes. These out-
comes can, then, effect his decision. Ideally, we would have data
and statistics concerning the number of successful strikes against
enemy platoons in specific geographic sites for a select number of
troops on each side. Unfortunately, such volumes of data are not
often available. In light of this lack of available information, fuzzy
methods allow one to directly encode uncertainty to construct a
fuzzy simulation for real-time decision making; if one does not
have a complete statistical map of domain knowledge then one
must use whatever facilities that are available to make a decision.
The method of fuzzy simulation provides these facilities.

It is natural to ask how probability theory is situated with
regard to fuzzy simulation. While the theory of probability serves
the need for modelling uncertainty to a great extent, probability
is not sufficient when modeling all phenomena. For instance,
it is important for simulationists to model variance without the
constraint of normalization defined within probability; there are
many instances where gathering data for statistical analysis is
too costly in terms of either time or money.

We often need to incorporate uncertainty in a model just to
understand the time-varying sensitivity of specific initial condi-
tions upon system state and output. We use the term “uncer-
tainty” in the widest possible sense, so as to include concepts
of uncertainty in belief, perturbations of time varying data and
error in physical measurement [Klir 1988]. Even though Monte
Carlo methods (frequently used in computer simulation) can be
used to accomplish studies in uncertainty, it is useful to “relax”
the normalization requirement in probability theory to permit
the specification of arbitrary intervals and regions of confidence.
Some of this work has been done under the rubric of perturbation
theory; fuzzy methods extend this approach to additionally per-
mit levels of uncertainty. We have found that fuzzy set theory, in
general, serves as a sound mathematical foundation for incorpo-
rating uncertainty and qualitative specification into simulation
modeling.

Wenstop [1976] has performed research in the fuzzy simula-
tion of verbal models — discrete time state variables are related
using fuzzy relations. Nguyen [1989] has studied fuzzy meth-
ods in discrete event simulation. Fuzzy set theory, originated by
Zadeh [1965], has a long history (more than two decades) and
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is a generalization of classical set theory. We feel that fuzzy set
theory can provide a necessary formal infrastructure for research
in qualitative simulation modeling and analysis [Fishwick and
Luker 1990]. Qualitative simulation is normal computer simu-
lation with special emphasis on modeling and analyzing invari-
ance with respect to state/parameter space and model structures.
Examples of invariance include identifying qualitative phase fea-
tures when simulating nonlinear systems (parameters can be var-
ied within ranges without qualitative feature difference), and the
use of interval algebra (variable values can be varied without al-
tering interval label values - for certain functional expansions).
In the latter case, for instance, we see that the interval equation
C = A+ [1,4] is invariant with regard to the set of equations
where a real value is used: C = A + 3, V3 € [1,4]. Ultimately,
invariance in algebraic forms and in model structures is the result
of a homomorphic relationship which provides the “lumping” ef-
fect. With simulation we are concerned, not specifically with the
preservation of the addition relation (as in the previous exam-
ples), but with the preservation of the simulation relation which
is more complex. By simulation relation, we refer to the relation-
ship between input and output trajectory segments as defined by
Zeigler [1976] and Wymore [1977].

Our approach to qualitative simulation is based firmly in
system and simulation theory [Zeigler 1976] and uses models at
the level of abstraction [Fishwick 1988] at which they are best
“defined. For instance, with continuous models, where detailed
state variable relationships are known, we use differential equa-
tion based models to generate quantitative state variable infor-
mation; however, qualitative inputs and outputs may be assigned
using a lexicon containing fuzzy number mappings. These out-
puts may then be used to identify lumped, abstract models using
finite state automata, for instance. Cellier [1987] has recently
written about qualitative methods based on highly abstract state
spaces. Artificial intelligence researchers such as Kuipers [1986]
are investigating the use of lumped, qualitative models for the
purposes of simulating human process reasoning.

It is natural to first ask: “What simulation model compo-
nents can be made fuzzy?” The answer to this question is based
on a study of the fuzzy set literature to see what types of struc-
tures can be made fuzzy. It is not surprising to find that most
non-fuzzy mathematical structures can be made fuzzy by sim-
ply extending the appropriate definitions to encapsulate fuzzy,
and not crisp, sets. Zadeh and others in fuzzy set theory have
specified the eztension principle [Dubois 1980] which permits the
transfer of existing mathematical methods to incorporate fuzzy
semantics. Here is a sample of how this relates to simulation. We
can make fuzzy:

e A state variable value. This includes both initial conditions
and values at a specific time.

Parameter values. Time variant systems can use fuzzy func-
tions for parameters.

¢ Inputs and outputs.
o Model structure.
o Algorithmic structure.

In the last item, we note that a simulation model is re-
ally just an algorithm at the lowest semantic level, and therefore
methods in fuzzy algorithms can be utilized.

In this paper, we first cover basic principles of applying fuzzy
set theory to simulation modeling and then we discuss two ap-
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plications of fuzzy simulation: 1) fuzzy simulation with linguistic
variables, and 2) identification of qualitative models from fuzzy
simulation runs.

2. FUZZY SIMULATION

2.1 The Fuzzy Number Concept

Considering the wide variety of application of fuzzy set
theory to simulation, we have designed and implemented proce-
dures to deal with fuzzy valued variables. We term a first order
fuzzy number to be one that equals a single real value. As we
increase the order, we obtain the following:

e An interval of confidence. Ex: X = [1,3] where X is an
interval fuzzy number with p(1) =1 and p(3) = 1.

e A triangular number. Ex: X = [1,1.2,3] where X is a
triangular fuzzy number with p(1) = 0, #(1.2) = 1, and
u(3)=0.

e A trapezoidal number. Ex: X = [1,2.5,3,4] where X is a
trapezoidal fuzzy number with p(1) = 0,1(2.5) = 1,4(3) =
1, and p(4) = 0.

o General discrete fuzzy number. X = Y%, pi/w;.

A fuzzy number is defined as a fuzzy set that is both convex
and normal. The simple types of fuzzy numbers are piece-wise
linear and so they can usually be abbreviated using the inter-
val notation just delineated. With generalized fuzzy numbers
we must, though, write down each domain value and its corre-
sponding confidence level. The general form of the discrete fuzzy
number (as shown above) is:

D milz
i=1

and the continuous fuzzy number has the associated denotation
for a continuous domain:

[ n@)a

These two types of fuzzy numbers are similar in concept
to the discrete probability mass function and continuous proba-
bility density function found in the theory of probability. Note
that it is natural to assign lexical values to fuzzy numbers, so
that we can assign high = [200.0,400.0], low = [10.0,200.0], and
hardly_anything = [0,10.0] for a given application.

The three methods that we have devised for studies in fuzzy
simulation are 1) Monte Carlo Method, 2) Uncorrelated Method,
and 3) Correlated Method. These methods are defined more
completely in a working paper [Fishwick 1990]; however, we will
briefly overview them now. The Monte Carlo method has been
widely used in simulation and physics to allow multiple simula-
tions based on sampling from a probability distribution. The un-
correlated method assumes that all uncertainties (or errors) are
completely uncorrelated. The correlated method assumes that
all uncertainty with respect to simulation variables is correlated.
Correlated uncertainty fits well with human thinking since people
tend to “guess on the low/high side” for the duration of a pro-
cess. For this reason, we chose to implement a fuzzy simulation
capability based on defining uncertainty as being correlated.
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3. IMPLEMENTING FUZZY SIMULATION

We now outline the tools necessary to experiment with
fuzzy simulation concepts. SimPack is a library of C routines
and programs for general purpose simulation. The routines and
programs contain facilities for creating single purpose or hybrid
programs based on the following methodologies:

o Discrete Event (Queuing and Communications Networks)
¢ Differential Equation (Block Models)
o Difference Equations (Pulse Processes)

o Combined Models (Delay Differential Equations,Discrete/
Continuous)

o State Models (Automata, Markov Models, Petri networks)

Within this library, we have developed a number of routines
for dealing specifically with fuzzy simulation. The core routines
are as follows:

e fzvocab(vocabulary): specify a lexical and ordinal vo-
cabulary for fuzzy numbers. Different vocabularies may be
accessed during the same simulation.

e nl2fz(key,fuzzy): given a lexical key, produce its corre-
sponding fuzzy number.

£z2nl (key,fuzzy): given a fuzzy number, produce the lex-
ical key that most closely (according to a distance metric)
matches existing vocabulary numbers.

e nl2ord(key,ordinal): given a lexical key produce its or-
dinal mapping. For instance, very high = 2, or very small
= 0. Ordinal mappings are used as lumped fuzzy numbers
or as range values for plotting purposes.

e fzprintf(string,fuzzy): format and print a fuzzy num-
ber.

e fznumb(fuzzy,value): produce a fuzzy number from a
crisp number.

o fzstore(fuzzyl,fuzzy?2): fuzzyl « fuzzy2.

o fzadd(fuzzyl,fuzzy2,sum): sum « fuzzyl + fuzzy2.

o fzmult (fuzzyl,fuzzy2,prod): prod « fuzzyl * fuzzy2.
o fzsub(fuzzyl,fuzzy2,diff): diff — fuzzyl — fuzzy2.
o fzdiv(fuzzyl,fuzzy2,div): div « fuzzyl / fuzzy?2.

e fzinv(fuzzy,inv): inv « 1 / fuzzy.

The routine £z2nl requires that a metric be defined to cor-
rectly map a fuzzy number to the most appropriate lexical entry.
Let the fuzzy number in question be f defined as a triangular
number [f(1), f(2), f(3)] and let the vocabulary file contain n lex-
ical entries with corresponding fuzzy numbers g1, ...,¢g,. Then,
we use the following metric:

3
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In terms of implementation details, we built a fuzzy function
library on top of the existing SimPack software. The library is
currently encoded in C; however, we have recently created a sep-

arate C++ class [Dewhurst 1989] for fuzzy numbers. C++ is an
object oriented extension of the traditional C language. In this
manner, it is possible to write C++ code with operator overload-
ing that enables arithmetic expressions such as the following:

Xnew = X + delta*Xprime;

where these variables can be a mixture of fuzzy and real-valued
numbers. For instance, variables Xnew, X and Xprime could
be fuzzy numbers while delta is a real number. This type of

0 +
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Figure 1. Sliding Block with Periodic Forcing

class definition, therefore, provides the programmer with a trans-
parency with respect to specific types of numbers.

4. APPLICATIONS OF FUZZY SIMULATION

4.1 A Model: Forced Linear Vibrations

First, we choose a scenario to demonstrate the capabili-
ties of fuzzy methods within simulation. Consider a second order
non-homogeneous differential equation for modeling periodically
forced vibrations. Fig. 1 shows the system to be modeled: a
sliding block (of mass m and friction ¢) connected to a spring
(with constant k). On the opposite end of the block there is a
mechanism for enabling periodic forcing.

The equation is represented as a first order system as follows:

T, = 1

’ c k ra
T —£xy— 7 + Lcos(azs)
zy = 1.0

We now consider two aspects of fuzzy simulation to this phys-
ical scenario: linguistic variables [Zadeh 1975a,b,c] and qualita-
tive system identification. In our examples, we will let x; equal
the triangular fuzzy value [0.3,0.5,0.7].

4.2 Linguistic Variables and Values

The overall process of simulation involves the following
key components:

o Input: the type of forcing function. For simple periodic
functions (i.e. sinusoidal), we can choose to specify the
amplitude as a key parameter to effect the input.

e State: the state of the system is a vector. For our system,
there are 2 key state variables (2, and ;) and so our state
vector is < r),T2 >. z3 simply serves to formalize the
system in terms of first order expressions (i.e. 3 is the
independent time variable).

o Output: the system output. We let z; (horizontal position,
displacement) be the output.
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o Parameters: parameters which are time-invariant for this
system, and serve to control the system features (such as
spring stiffness and mass).

DEFINITION: Fuzzy SIMULATION IS THE PRO-
CESS OF SIMULATING A SYSTEM BY MAKING FUZZY
ONE OR MORE OF THE ABOVE SYSTEM COMPO-
NENTS UNPUT,STATE,OUTPUT,PARAMETER)

In our definition of fuzzy simulation, we do not currently
cover 1) simulation of a fuzzily defined system structure, or 2)
simulation using fuzzy time. In the first instance, a fuzzy struc-
ture would be one where the skeletal model structure is not fixed
for the duration of the simulation. In the second instance, time
would not be totally ordered, but instead, it may be specified by
an arbitrary partial ordering (or lattice). Table 1 displays the
system components and linguistic variables associated with each
component.

Table 1. Linguistic Variables

Component | Sub-Component | Variable
Input a amplitude
State z7 position

z velocity
Output z; position
Parameters c surface
k spring
m mass

Table 2 displays the linguistic values associated with the lin-
guistic variables. Linguistic values are encoded using the trian-
gular fuzzy number previously defined. Each linguistic variable
has several possible values. Each value is associated with a fuzzy
number. Many of the fuzzy numbers also have associated with
them a symbol and an ordinal mapping. The symbol is simply a
short hand representation which is useful when graphing the sys-
tem behavior in terms of linguistic values. The ordinal number
assigns a total ordering to the fuzzy numbers for a given linguis-

tic variable. This feature is useful if graphing a time series or
phase plot of fuzzy values.

4.3 Running the Simulation

First, we define the ideal execution environment and
then provide a sample simulation in our current environment.
Ideally, the simulation would be driven by a natural language
query such as: If I give a fast push on the block from just right
of center, how fast will the block be going after 15 seconds?. The
processing of such queries is a difficult task; however, some re-
cent work has illustrated some success with limited vocabularies.
For instance, we have previously constructed a natural language
system [Beck and Fishwick 1989) for a biological systems control
domain where a lexical functional grammar was used to break
sentences into key components. Within a system such as this on
our sample sentence, key phrases would be identified such as fast
push and right of center. These phrases are then mapped to their
fuzzy number equivalents and a fuzzy simulation proceeds. The
simulation is executed for 15 time units and the state variable
7, (indicating velocity) is translated first into “speed” and then
into its lexical counterpart (using the distance metric). Possible
answers may be either The block is crawling or The block is mov-
ing slowly where crawling and slow are determined according to
the fuzzy to linguistic mapping.

Currently a mechanism is set up where the user enters lin-
guistic values for each linguistic variable using a menu structure.
The system presents questions (Q) and provides a menu selec-
tion, while the user responds (A) with instantiations of linguistic
variable values.

Q: What is the value of position?
(1) near right end
(2) just right of middle
(3) middle
(4) just left of middle
(5) near left end

A: 5

Table 2. Linguistic Values

Variable Value Symbol | Ordinal | Fuzzy Number
amplitude low ~ 0 [0.0,0.5,1.0]
amplitude medium ~ 1 [1.0,1.5,2.0]
amplitude high = 2 [2.0,2.5,3.0]

position near right end ++ 2 [0.6,0.8,1.0]

position | just right of middle + 1 [0.2,0.4,0.6)
position middle 0 0 [0.2,0.0,0.2]
position | just left of middle - -1 [-0.6,-0.4,-0.2]
position near left end — -2 [-1.0,-0.8,-0.6)
speed crawling 0 0 [-0.3,0.0,0.3)
speed slow + 1 [-1.0,0.0,1.0]
speed fast ++ 2 (-3.0,0.0,3.0]
surface smooth = N/A [0.0,0.5,1.0]
surface rough = N/A [1.0,5.0,10.0)
spring relazed ~ N/A [0.0,0.5,1.0]
spring stiff = N/A [1.0,1.5,2.0]
mass light 0 N/A [0.0,2.0,4.0]
mass heavy oo N/A [4.0,6.0,10.0)
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Q: What is the value of speed?
(1) crawling
(2) slow
(3) fast

A: 3
. .CONTINUES FOR OTHER LINGUISTIC VARIABLES...

Q: Which variable is to be output?
(1) Time
(2) Position
(3) Speed

A: 3

Q: Do you want:
(1) Time Series Output
(2) Steady State Value

A: 2
..FUZZY SIMULATION RUNS...
RESULT: Speed is crawling.

We should note here that the choice of fuzzy number is of
paramount importance. The choice of triangular numbers should
be considered much like the choice of time interval size in digital
signal analysis. Specifically, in signal analysis, the choice of an
inappropriate sampling time can result in aliasing problems - the
signal is sampled too infrequently and important signal informa-
tion is lost. In the same way, fuzzy numbers whose endpoints are
widely separated can provide simulation results where the output
variable will always equal one lexical value even though the actual
numerical system behavior (if one exists) suggests several qual-
ities. Coarse linear interpolation, as demonstrated in the next
section, will also result in aliasing problems. As with any good
analysis, the analyst must insure that fuzzy number definitions
agree as closely as possible with the “expert” that issued those
definitions through the usual knowledge acquisition procedure
(using expert systems technology) where the fuzzy knowledge is
first elicited.

4.4 Qualitative System Identification

System Identification has a long history [Davies 1970;
Eykhoff 1974] and there are many methods for identifying both
structure and parameter settings through optimization and real
system experimentation. The types of models usually identified
are either continuous-time or discrete-time systems. To identify a
discrete space model (such as a finite state automaton), one finds
most of the literature on identification in other areas (especially
in language translation and AI) under the heading of “induc-
tion.” Gold [1967], for instance, was one of the first researchers
to investigate the general problem of inducing grammars from
examples. Induction can be based on both positive and negative
examples; we will use only the positive example obtained from a
continuous system as the basis for induced structure.
For our identification method, we will specify two sets of
parameter settings from the forced vibration model defined in
the last section. The two settings are:
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1. Setting 1: a = 1.0,¢=0.2, f = 0.0, k = 1.0 and m = 1.0.
(No Forcing, Damping).

2. Setting2: a =3.7,¢= 0.0, f =10.0, k = 16.0 and m = 1.0.
(Periodic Forcing, No Damping).

There are several methods that we can use to map specific
linguistic values such as “low,” “high,” “medium,” or moder-
ately low” to fuzzy numbers. We have just covered many of
these possibilities in tables 1 and 2. Employing the mapping
specified in the tables, we used the SimPack tools to produce
symbolic/lexical plots. We used an interpolator (1intp) to lin-
early interpolate the ordinal output data. Linear interpolation
consists of a filter where the symbolic output values representing
sequential states of identical value are removed to yield a more
compact plot. The values of z, are the ordinal values assigned
in the mapping table. The simulation is made fuzzy by assigning
a fuzzy initial condition to ;. We let =, = [0.3,0.5,0.7] before
running the simulation. Using the distance metric we see that
the corresponding lexical value for z;, (position of block) is just
right of middle. Therefore, the block is let go just right of the
middle (i.e. the zero point).

Multiple, identically valued states are shown only where the
sequential number of symbolic state values (in an output time
series) exceeds a specified threshold. Figure 2 displays two time
series solutions for z; with parameter settings 1 and 2 respec-
tively. Figure 3 displays a “coarse” linearly interpolated view
of the system with parameter setting 1, and shows the stages
for identifying a finite state automaton model from a continuous
system:

1. Assign linguistic values to fuzzy numbers by building tables
1 and 2.

2. Filter out identical, adjacent linguistic states (linear inter-
polation).

3. Induce (i.e. identify) a finite state automaton from filtered
data.

Fig. 3 has 3 figures which reflect the output of each of these
steps. The first figure is the time series for the linguistic state val-
ues. The second and third figures represent a finite state automa-
ton (FSA) realized from the linguistic data. The FSA is realized
in a straightforward manner by matching a linguistic value with
a state. Other related methods for inducing FSA’s from data are
surveyed by Angluin and Smith [1983] and extensively discussed
by Muggleton [1990] who lists several algorithms for this method
of identification or induction. The second figure is an automaton
where arcs are labelled with the number of traversals for that
arc, and states are identified using thicker circles for states more
frequently accessed. The third figure uses the linguistic value for
each state and thicker arcs for more frequently traversed arcs.
The use of thick lines and circles can be considered a visual-
ization technique for allowing an analyst to see, not only the
oscillation for the system, but also the tendency of the system to
converge (i.e. the damping effect). We note that both plots are
the result of continuous simulation. Fig. 3 displays qualitatively
interesting characteristics in that it displays the changing state
variable with respect to key linguistic concepts. How might such
a qualitatively induced model (i.e. a finite state automaton) be
used in practice? We see two potential uses:
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Figure 2. Quantitative Output of z; vs t (settings 1 and 2)

1. The method automatically produces a finite state machine
from a base continuous model. This machine has lexically
labelled nodes and serves as a qualitative model.

2. The method can be used to generate a qualitative hypothe-
sis (i.e. the FSA) to compare against qualitative knowledge
obtained directly from an expert. In this way, an expert
displays his high level, intuitive knowledge about a system
and then a fuzzy simulation is used to generate a qualita-
tive hypothesis which is then compared against the expert’s
model.

5. CONCLUDING REMARKS

We have discussed the approach of using fuzzy set the-
ory to create a formal way of viewing the qualitative simulation
of models whose states, inputs, outputs and parameters are un-
certain. Simulation was performed using detailed and accurate
models, and we showed how input and output trajectories could
be reflect linguistic (or qualitative) changes in a system. Uncer-
tain variables are encoded using triangular fuzzy numbers and
three distinct fuzzy simulation approaches (Monte Carlo, Corre-
lated, Uncorrelated) are defined. The methods discussed are also
valid for discrete event simulation; we have performed experi-
ments on the fuzzy simulation of a single server queuing model
even thought this result is not presented here. We augmented
our existing C-based simulation toolkit SimPack to include the
capabilities for modeling using fuzzy arithmetic and linguistic as-
sociation, and we coded a C++ class definition for fuzzy number
types.

Fuzzy simulation, as defined in this paper, provides a method
for directly encoding uncertainty into a computer simulation by
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mapping fuzzy, linguistic values to simulation components. This
kind of simulation, in turn, can be utilized to enhance the general
decision making abilities of autonomous agents that have quali-
tative information about a system. Also, it will provide a better
interface between autonomous, robotic agents and humans who
think naturally using linguistic and fuzzy concepts.

There are other methods for studying both uncertainty in
simulation model behavior and qualitative characteristics — in
particular, perturbation and sensitivity analysis (for uncertainty)
and bifurcation analysis (for global characteristic dynamical be-
havior). We do not view fuzzy simulation as replacing other
approaches but rather we see it as an additional tool that is es-
pecially useful when studying the transient effects of uncertainty
in initial conditions and parameters. We have found, in particu-
lar, that graphical study and the linguistic mapping of triangular
fuzzy state behavior over time provides a unique understanding
of the system.
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