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ABSTRACT

This paper describes the functionality of the General Purpose
Visual Simulation System (GPVSS) developed as part of a
simulation support environment. GPVSS assists a simulationist to:
(1) graphically design a simulation model and its visualization
under a new conceptual framework, (2) interactively specify
submodel logic, and (3) automatically generate the executable
version of the model in C programming language, while
maintaining domain independence. GPVSS is developed on a Sun
3/160C computer workstation using the SunView graphical user
interface. It consists of over 11,000 lines of documented code.

1. INTRODUCTION

Many visual modeling tools and packages have become
available in recent years [Mathewson 1989]. Of the software
currently on the market, most tend to be “either collections of
FORTRAN subroutines, such as SEE-WHY, or purpose built
languages such as Inter_SIM and Xcell” [Bell and O'Keefe 1987] or
extensions to existing simulation languages. Examples of this
approach include CINEMA which interfaces to the SIMAN
simulation language, and TESS which interfaces with the SLAM II
simulation language.

The purpose of the research described herein is to develop a
software system that aids a simulationist in constructing and
executing a general purpose discrete event visual simulation model.
The software system assists a simulationist to: (1) graphically
design a simulation model and its visualization, (2) interactively
specify the model's logic, and (3) automatically generate the
executable version of the model in C programming language, while
maintaining domain independence.

Section 2 provides background knowledge in visual simulation.
Section 3 describes the hardware and software environment of
GPVSS. The functionality and usage of GPVSS are illustrated by
using an example problem in Section 4. Concluding remarks are
stated in Section 5.

2. BACKGROUND

Since its inception, Visual Simulation (VS) / Visual Interactive
Simulation (VIS) has become an increasingly popular method of
problem solving [Paul 1989]. Graphical symbology, movement
depiction, display type, and the degree of user interaction vary
greatly from one system to another.

In this section, we define the related terms; describe the
graphical symbology and display type; introduce the types, levels,
and methods of interaction; explain the VS/VIS model construction;
discuss the conceptual frameworks for VS/VIS programming;
provide five perspectives on VS/VIS; and finally present the
advantages and disadvantages of VS/VIS.

2.1 Definition of Terms

Recent years have seen the increasing proliferation of discrete
event simulation packages that include some facility for animation,
visual simulation, visual interactive simulation, visual modeling, or
visual interactive modeling.

Animation refers to any graphic display of information where
the information to be imparted to the viewer is conveyed by image
change [Baeker 1974]. This includes many displays clearly outside
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the scope of simulation. Therefore, it is inappropriate to restrict the
definition of “animation tool” to that which provides a display
“portraying the dynamic behavior of the system model” with some
variable degree of user interaction [O'Keefe 1987]. The term
“animation” has been used to refer to a variety of dynamic
simulation displays and degrees of user interaction. According to
Mathewson [1985] “animation is a particular use of the topological
information in a program generator.” Standridge [1986] uses the
term “animation” to refer to either simulation-concurrent or
post-simulation animation. A simulation-concurrent animation is
defined as a dynamic display generated by the state of the
simulation model, regardless of whether user interaction with the
model is supported. Post-simulation animation is a dynamic display
driven by a simulation trace and may or may not include facilities
for user interaction.

Visual Simulation (VS) is the process of building a model
which permits a visual display of its input, internal behavior, and/or
output, and experimenting with this model on a computer for a
specific purpose.

Visual Interactive Simulation (VIS) includes all of the
capabilities of VS and adds the capability of user interaction with
the running model [Hurrion 1989]. This interaction may be either
model or user determined, depending on who initiates the
interaction [O'Keefe 1987]. Prompting the user to make some sort
of scheduling decision is one example of model initiated
interaction. In fact, the need for a user to know the current state of
the modeled system when making such a decision is considered the
impetus behind the first VIS efforts [Bell and O'Keefe 1987]. User
initiated interaction allows the user to change model parameters and
continue execution of the model. This ability to “play” with the
model can be crucial for understanding the system.

The term Visual Modeling (VM) has been used relatively
loosely in the literature, and refers generally to the process of
building any form of Visual Simulation [Paul 1989]. Visual
Interactive Modeling (VIM) is restricted to the process of building a
VIS model.

2.2 Graphical Symbology

Currently there are a variety of methods used to represent the
state of a system model visually. These methods consist of
llcgyég(])ard characters, icons, and three dimensional rendering [Paul

Keyboard characters are the simplest method of representing
model objects. The use of keyboard characters is inexpensive in
both hardware and development time. Hardware costs are lower
because no special graphics hardware is required to display the
character image. Development time for creating the object image is
lower because the object images (characters) already exist. The
tradeoff is that the diversity of model object images that can be
employed is extremely limited, and one may feel constrained in
adequately conveying the diverse objects in a system visually. In
addition, object movement representation is crude at best.

_{cons are a more faithful representation of system model
objects. Icon images may be pre-defined, defined by the user, or
generated automatically [Paul 1989]. The use of iconic
representational  graphics is typically more hardware- and
development-intensive due to the need for special purpose graphics
hardware and the time required to create the icon image. Despite the
additional overhead, the use of icons to represent system model
objects greatly enhances the quality of the visual simulation.
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If desired, the visual simulation may be further enhanced by
the addition of animation. Animation may be in the form of icon
movement, or icon change. In icon movement animation, the icon is
dynamically drawn on the screen with time, position, movement,
and speed attributes analogous to the object being represented in the
system. Icon change animation occurs when the animation is
implicit in the varying icon image. Thus it would be possible to
show a customer moving from a queue to a server, and show him
walking at the same time. The overhead associated with icon
change animation is considerable since it requires multiple icon
images for each object to be animated and requires substantially
more skill and effort of the modeler.

Finally, three dimensional rendering can be used for maximum
realism. Techniques range from simple polygon projection to
photo-realism. The primary drawback of these methods is that they
are currently not able to run in real time due to hardware
considerations. However, with technical advances such as the Intel
80810 RISC architecture CPU, which features on-chip Phong and
Gouraud three dimensional shading, the prevalence of this
technique is sure to increase.

2.3 Display Type

Hurrion [1980, 1986, 1989] classifies display types into
schematic, logical, and null displays. Schematic displays attempt to
parrot the system being modeled. Typically they have a detailed
blueprint or schematic diagram as a background over which icons
representing objects in the system move. This approach is
particularly suitable for creating dynamic displays of relationships
among objects where a spatial or simple logical relationship exists.

Logical or summary displays take the form of bar charts,
histograms, time series, etc. Use of this type of dynamic display is
appropriate when relationships among system model objects are
extremely complex or when use of a schematic display is
inappropriate. For large complex models, it may be more useful to
present the user with a logical display containing summary statistics
rather than observing a schematic display of the model.

Null displays enable the end user to run the simulation without
the performance degradation associated with a dynamic visual
display. This method is similar to executing a conventional
simulation model.

2.4 Interaction

The degree of interaction that VIS provides users is perhaps
one of its most significant benefits. Within VIS, interaction varies
greatly in the type, level and methods for incorporating interaction.

There are two means by which a user may interact with a
running model: model prompted and user prompted. Model
prompted interaction occurs when the simulation itself prompts the
user for input. An example of this method in Hurrion's seminal
visual simulation of a job shop manufacturing system where the
scheduler was prompted to make scheduling decisions. User
prompted interaction is characterized by the user's ability to specify
when the interaction is to occur. This method enables the user to
change model parameters and continue execution of the model.

Hurrion and Secker [1978] categorize three levels of
interaction: basic operations, priorities, and algorithms in the order
of increasing levels of interaction. Basic operations consist of
interactions that affect one-to-one changes in the system model.
Any entity or any attribute of an entity on the dynamic display may
be modified, deleted, moved, or replicated and the corresponding
modification is incorporated into the system model. Priority
interactions modify the priorities of operations, jobs, or entities.
This form of interaction gives the user the capability of assigning
dynamic priorities to entities for the balance of the simulation run.
Algorithm interactions modify the various driving algorithms of the
simulation model. Using algorithm interaction, an analyst would be
able to create “algorithmic modules” which could be combined in
various ways to produce the desired system model. Hurrion [1980]
later combines priority and algorithm interaction into a new level
called structural interaction.

O'Keefe [1987] outlines three methods for handling both
model- and user-initiated interaction: embedded programming,
standard interactions, and stopping interpretation. The embedded
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programming method incorporates all display generating code into
the model itself. This method provides a great deal of flexibility,
but requires much more development effort and offers little
reusability. Providing a library of standard interactions is a step
forward. This method allows the modeler to pick and choose among
a set of pre-defined interactions thereby decreasing development
time. If need be, some standard interaction libraries may be
extended. OPTIK is an example of such a library [O'Keefe 1987].
Stopping interpretation is perhaps the most powerful method by
which a user may interact with the simulation model. As the name
implies, the underlying code of the simulation model must be
interpreted in order to utilize this method. When the interpretation
is halted, it is possible to actually alter the simulation model code.
While this may provide great flexibility, it does require the user to
have some knowledge of the code being modified.

2.5 Construction of VS/VIS Models

Two methods of VM/VIM currently exist. The first technique
separates design of the model and the dynamic display [Macintosh
et al. 1984; Hurrion 1980]. Hurrion [1980] explicitly divides the
VM/VIM process into construction of the simulation model and
design of the display and interaction facilities. This has the effect of
forcing the modeler to construct two models: a model of the system,
and a visual display which is in effect a model of the model.

An alternative method is to provide the user with the capability
to create the system model and specify the dynamic display at the
same time, so that a one-to-one correspondence exists between
objects in the display and objects in the model [Gordon and
MacNair 1987; Bell and O'Keefe 1987]. Unfortunately most of
these systems have suffered from a distinct lack of application
independence.

2.6 Conceptual Frameworks for VS/VIS Programming

Event scheduling, activity scanning, three-phase approach, and
process interaction are the commonly used conceptual frameworks
(world views) for VS/VIS programming. Balci [1988] describes
how to implement a simulation model in a high-level programming
language using these conceptual frameworks.

Since the event scheduling conceptual framework is event (or
time) based, animation of state changes in the system model is
relatively straightforward. However, if user interaction with the
model is desired, several difficulties arise. Since the simulation
always leads the animation display by some amount, the additional
burden is placed on the simulation of continuously keeping track of
the model state at the current animation time. Also, any future
events that have been calculated must be re-calculated using the
new system model parameters.

Hurrion [1980] advocates the activity scanning conceptual
framework because it provides significant ‘“advantages for
interaction at run time.” Provided the model is designed such that a
one-to-one relationship exists between objects in the model and
objects in the dynamic display, it is a relatively easy task to change
the activity tests.

The three-phase and the process interaction conceptual
frameworks possess the advantages of activity scanning and the
disadvantages of event scheduling. Since the process interaction
conceptual framework is object based, changes in attribute values of
objects in the dynamic display can be reflected quite easily in
changes in the appropriate system model object attributes. On the
other hand, objects experiencing delays which are time-based and
unconditional must be handled using a future object list [Balci
1988] which must be handled in a manner similar to that discussed
for event scheduling.

Ultimately, the choice of a conceptual framework for
implementing a VS/VIS model is dependent on the degree of user
interaction desired and the nature of the system being modeled.

2.7 Perspectives on VS/VIS

O'Keefe [1987] defines five separate views of VS/VIS:
statistical, decision support, computer aided design (CAD), gaming,
and simulator.

The statistical or traditional perspective treats VS/VIS as a
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selling aid. Statistical experimentation is the primary means of
decision support. Little or no provision is made for the user to
interact with the system model as it is running. This perspective is
almost mandated by the use of post-simulation animation, since any
significant degree of user interaction is ruled out. Decision support
perspective views VS/VIS as a decision support tool to solve
unstructured problems. Consequently much emphasis is placed on
providing the user with facilities to interact with the system model.
Use of a standard set of interactions may limit the usefulness of a
VS/VIS system under this perspective. The CAD perspective
perceives VS/VIS as a tool for designing a system by combining
either pre- or user-defined parts. The CAD perspective is
particularly appropriate when an object-oriented approach is used.
Users can create instances of objects and place them in the system
model. The CAD perspective is prevalent with VS/VIS users
involved in manufacturing system design. Gaming perspective
views VS/VIS as a tool for leamning as opposed to analysis of
results. The simulator perspecrive incorporates VS/VIS as a
rudimentary simulator with the user as the “man-in-the-loop”.

The perspectives presented above are sufficient to describe the
domain of capabilities of VS/VIS when taken as a whole. However,
no single perspective currently exists to adequately encompass
VS/VIS.

2.8 Advantages of VS/VIS

Many benefits are associated with VS/VIS [Bell and O'Keefe
1987; O'’Keefe 1987]. O'Keefe [1987] states that VS/VIS gives the
client and developer three additional capabilities not found in
traditional simulation methods in the areas of selling, gaming, and
learning.

VS/VIS augments selling by providing both a communication
and a presentation medium. During model development the
dynamic display becomes a communication medium that enables
the modeler and the client to discuss model validation,
development, and experimentation. The dynamic display becomes a
presentation medium for the presentation of model results obtained
using VS/VIS or by traditional statistical experimentation.

VS/VIS enhances gaming capabilities by making it possible to
use gaming with relatively complex system models. The need for
user interaction with the running system model was the impetus
behind Hurrion's original job shop visual simulation.

Learning capabilities are enhanced because the interactive
capabilities of VIS allow the client to “play” at managing the
system. This allows the client to gain knowledge pertaining to
management of the system.

In addition to these augmented capabilities, the following are
generally accepted advantages that VS/VIS provides.

The dynamic display associated with VS/VIS augments model
credibility through the enhanced presentation of simulation results.
This is due to the fact that the client need not have an extensive
simulation background to understand model results [O'Keefe 1987].
In a survey by Bell and Kirkpatrick [1986] seventy percent of the
respondents felt that their decisions were implemented more often
when VS/VIS was used. Although Bell and Kirkpatrick [1986]
themselves admit the validity of their survey is in question, clearly
VS/VIS has had some beneficial effect on model credibility for
some.

VS/VIS enhances model verification, validation, and testing.
This is because the analyst can easily see the effect of incorrect
behavior when the system model is not working correctly [Paul
1989]. In addition, the communication medium that VS/VIS
provides enables the client to participate to a greater degree in
establishing the simulation model credibility. In the same survey by
Bell and Kirkpatrick [1986] eighty-eight percent of the respondents
said that validation was either “faster” or “much faster” when using
a VS/VIS system.

One additional benefit of VS/VIS is that the client can be
involved in model development at a much earlier stage than is
otherwise possible. This allows the developer to tailor the model
much closer to the clients needs, and to possibly avoid costly
misunderstandings. In addition, the client may soon know enough
about the system to ask questions that would not have previously
been thought of [Palme 1977].
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2.9 Disadvantages of VS/VIS

VS/VIS has definitely advanced the state of the art in discrete
event simulation. However, VS/VIS does have some undesirable
characteristics that the analyst and client should be aware of before
choosing to use VS/VIS. )

It is difficult to estimate the cost/benefit ratio of developing a
VS/VIS simulation [Bell 1985]. While increased costs are certain,
the benefits of implementing VS/VIS are much less tangible.

VS/VIS tends to be hardware specific [Bell 1985] due to
graphics requirements. Furthermore, the choice of hardware
determines the graphics capabilities available to the modeler. While
increased complexity may or may not be desirable, this does have
the effect of placing a limit on the maximum complexity of the
model display.

The use of VS/VIS introduces further requirements for the
construction and presentation of model results that would not be
present for conventional simulation techniques. In addition to
constructing the system model, the analyst is now responsible for
creating a dynamic display. Currently, a good screen design
methodology has yet to be developed within the simulation
community. Consequently, the modeler must also be substantially
familiar with graphics design and programming. Some aspects of
model behavior may be difficult or impossible to portray visually.
Paul [1989] presents an example of a port model that easily portrays
incoming ships entering their berths. However, the assignment of a
given ship to a berth, the primary impetus behind the simulation, is
dependent upon many different attributes such as cargo, berth
capabilities, and ship type. Paul [1989] states “Any attempt to
represent visually such rules would probably be self-defeating” due
to the resultant complexity in the dynamic display.

The use of a dynamic display as a presentation medium may
require the modeler to add more detail to the system model than
actually required to obtain the desired statistical results. Bell [1985]
cites an example of a truck dispatching system model. If the system
road network is dense, it may not be relevant which route a truck
actually takes to arrive at a given point. The client, however, may
not fully accept the model as credible without actually seeing which
route the truck takes.

A dynamic display is an aid in model verification/validation,
not a means in itself. Paul [1989] makes the observation that “undue
confidence” may be placed in the model merely because it “looks
alright”. Bell [1985] warns that since VS/VIS displays the model
transient period in great detail, and since the client can observe this
transient behavior in the system every day, there is a distinct
possibility that the client may assess model credibility based on the
transient period rather than steady state.

The client must be aware that interacting with the running
system model by changing model parameters invalidates the usual
assumptions associated with steady-state analysis of model output.
The danger exists that the client views a “snapshot” of model
behavior and assumes that the system always exhibits these
characteristics [Paul 1989]. The use of a dynamic display does not
abrogate the need of the modeler to instruct the client about the
nature of statistical methods.

Paul [1989] addresses one area that has been distinctly lacking
in VS/VIS literature — human factors. The expressions “seeing is
believing” and “a picture is worth a thousand words” immediately
come to mind when discussing VS/VIS. Yet within the legal
community eyewitness evidence is considered the least reliable
form of evidence. Paul [1989] states that “dreams, wishes, desires
and thoughts” can affect an individual's perceptions. Another
human factors consideration is the choice of colors used in the
dynamic display. Red and green are two of the most widely used
colors in VS/VIS but roughly ten percent of the total population is
unable to distinguish these due to color blindness [Paul 1989].
Thus, considerable attention must be paid by the modeler to
established human factors guidelines when designing a VS/VIS
dynamic display. As the quality and quantity of VS/VIS systems
increase, the impact of human factors considerations is increasingly
to be felt. The onus is on the modeler to determine when, where and
how to implement VS/VIS.
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3. HARDWARE AND SOFTWARE ENVIRONMENT

GPVSS is implemented on a SUN 3/160C computer running
the SUN UNIX operating system. The SUN workstation consists of
a 380-MB Fujitsu Eagle disk subsystem, a 1/4-inch cartridge tape
drive, 8-MB of main memory, a 19-inch color monitor with a
resolution of 1152 X 900 pixels, and a mouse.

The most significant element of the user interface is the
19-inch bit-mapped display screen. This display technology offers
excellent graphics capabilities. The user communicates with the
SUN via keyboard input and the mouse. The mouse may be used to
point to or select locations on the screen. The system provides
feedback on the current mouse location by continuously updating
the position of the mouse pointer. Virtually any material that is
displayed on the screen can be pointed to and treated as input.

The windows are the basic building block of the user interface
and are roughly analogous to sheets of paper on a desktop.
Windows may be resized, overlapped, closed, or quit. Resizing a
window allows the user to effectively increase the available
workspace. Overlapping is useful when the user needs to interact
with multiple windows, but there is not enough room to display all
of them. Closing reduces a window to a small 64 X 64 bit image
known as an “icon”. Icons are useful when a window contains a
process that does not require immediate user interaction, but it is
still desirable to keep that process running (shell, for example).

The GPVSS code consists of approximately 11,000 lines of
documented SunView, C, and EQUEL/C code. All window features
are programmed using the SunView application package which
consists of high-level object-oriented routines to create a graphical
user interface [Sun Microsystems 1988). All storage and retrieval of
model components and data are achieved by the use of INGRES
relational database management system [Sun Microsystems 1986].
The vse of INGRES is completely hidden from the user of GPVSS.
EQUEL (Embedded QUEry Language)/C is used to access
INGRES within SunView programs.

4. FUNCTIONAL DESCRIPTION

A problem is defined in Section 4.1 for use as an example to
illustrate the functionality and usage of GPVSS. For the example
problem, we show how to develop and execute a visual simulation
model step by step.

4.1 Definition of an Example Problem

The operating system of a computer installation with a single
central processing unit (CPU) controls the processing of jobs sent
by three independent terminals in a round-robin manner. The user
of each terminal “thinks” for an amount of time and sends a job to
the computer system for execution. Think times are exponentially
distributed with mean 250 milliseconds. The user is inactive until
the computer's response starts appearing on the terminal.
Thereupon, the user goes through a “thinking” process again and
sends the next job. The arriving jobs join a single queue, with first
come first served discipline on CPU access. Repeated usage of the
CPU is accomplished in a round-robin manner. The CPU allocates
to each job a maximum service quantum of length QUANTUM
(100) milliseconds (not including overhead). If the job is finished
within this service time period, it spends a fixed overhead time
OVERHEAD (15) milliseconds at the CPU after which the job's
output is sent to the originating terminal. If the job is not finished
within QUANTUM, its remaining service time is decremented by
QUANTUM and it is placed at the end of the queue after spending
a fixed overhead time of OVERHEAD. Job service times are
exponentially distributed with mean 500 milliseconds. All
transmission times between the terminals and the host are assumed
to be negligible. (See Figure 3 for a graphical description of the
problem.)

4.2 Model Generator

Typing GPVSS activates the GPVSS and displays the top-level
window shown in Figure 1. GPVSS has three major components:
Model Generator, Model Translator, and Visual Simulator. This
section describes the first component.
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With the use of the Model Generator component of GPVSS,
we graphically design the model and its visualization, define
submodels, interactively specify the logic of each submodel, and
define and specify objects and attributes. When the Model
Generator icon is selected, GPVSS pops up a menu for the name of
the model to be constructed as depicted in Figure 1. Upon the entry
of model name, GPVSS displays the image editor window which
can be resized to the size of the monitor as shown in Figure 2.

4.2.1 Drawing Background and Dynamic Object Images

The first step in constructing the model is to draw the images
that are used in the dynamic display. Two types of images must be
created: the model background images and the Dynamic Object
(DO) images.

The drawing is achieved by using the pen, line, rectangle, and
select modes of the Image Editor. Pen (default) mode is used to
draw freehand using the left mouse button depressed. Line mode is
entered by selecting the “Line” button on the Image Editor control
panel and is used to draw lines on the canvas between two points.
Rectangle mode is entered by selecting the “Rect” button and is
used to draw rectangles. The select mode is provided so that the
user can select any portion of the drawing for duplication on the
canvas or storing on disk. The “Load” and “Save” buttons on the
control panel are used to load and save background and object
images. The Image Editor window is scrollable in x and y directions
as indicated by the arrows in the scroll bars in Figure 2.

For the example problem, the background images are drawn as
shown in Figure 2. The quality of background images is limited
only by the patience and artistic capability of the modeler. To
associate the background images with the model, we select the
“Save” button on the Image Editor control panel. This brings up a
blocking requester for the filename (see Figure 2). The file path
name is entered at the “File:” item and the “Save/Attach
Background” button is selected. This saves the background in the
specified file and places an entry in the INGRES relational database
associating this file with the background images of the model.

Next, images of DOs “job1”, “job2”, and “job3” representing
the jobs originating from Terminals 1, 2, and 3, respectively, are
drawn (as job number within a rectangle) and saved in the INGRES
database. Upon constructing and saving the background and DO
images, the Model Editor mode is entered to define the submodels
and paths.

4.2.2 Defining Submodels and Paths

For the example problem, the five submodels below need to be
defined: Terminall, Terminal2, Terminal3, CPU_QUEUE, and
CPU. To define “Terminall” submodel, select the “SubMod”
button on the Model Editor control panel. This brings up a blocking
requester for the input of the submodel name. Enter “Terminall” at
the prompt and click on “Define Sub-Model”. The editor is now
ready to draw a rectangle to define the boundaries of the
“Terminall” submodel for logic specification and path definition
purposes. This process is identical to drawing a rectangle. A
submodel definition can be deleted by depressing the middle mouse
button. This feature becomes inactive if another editor mode is
entered. This process is repeated to define other submodels.

The paths connecting the submodels should now be defined.
Paths are uni-directional. If a DO moves both ways between two
submodels, two paths must be specified. Not all submodels must be
interconnected, but there must be a path between any two
submodels in the same direction a DO could possibly travel. If a
DO tries to move to and from submodels that are not connected by
a path, an error occurs.

To define a path, first select the “Path” button on the Model
Editor control panel. This brings up a blocking requester for the
path name. After entering the path name select the “Define Path”
button to start the path definition.

Locate the mouse cursor at the point the path is to begin. This
point must begin within a submodel boundary (see Figure 3). Press
the left mouse button to select the first point on the path. If the
mouse cursor is outside a submodel, this has no effect. Subsequent
intermediate points may be specified regardless of submodel
boundaries by depressing the left mouse button. The path
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termination point must be in a submodel and is selected with the
middle mouse button. Repeat the above process until all paths are
defined. The completed submodel and path definitons are shown in
Figure 3.

To save the completed submodel and path definitions, select
the “Save M” button on the Model Editor control panel. This brings
up a blocking requester for a file name (Figure 3). Enter the desired
file name and select “Save/Attach Model”. This stores the model
and makes an appropriate entry in the INGRES database. For future
model saves, the file name defaults to the last one entered if nothing
is typed at the prompt, including blanks. Saved models may be
loaded by selecting the “Load” button.

4.2.3 Specifying Submodels and Their Attributes

Select the “Spec” button on the Model Editor control panel to
enter specification mode. A pop-up menu is activated by depressing
the right mouse button while within a submodel boundary.
Depressing the right mouse button outside of a submodel boundary
has no effect. Select the “Sub-Model Logic” menu item while
within “Terminall” submodel to specify its intemnal logic. This
brings up a blocking requester for the path name of the directory in
which all created files are stored. This path should only be entered
once for all submodels. Subsequent specifications should merely
select the “Specification Path” button without typing anything at the
prompt, including blanks. Selection of the “Specification Path”
brings up the submodel specification window.

The specification of the “Terminall” submodel is shown in
Figure 4. The Entrance Condition (EC) for “Terminall” is true.
This means that DOs can always get into this submodel. Once the
DO has entered the submodel, its origin is set to 1, and
“rservice_time” (remaining service time) is sampled from an
exponential distribution with mean 500. “Origin” and
“rservice_time” are DO attributes that must be defined and
specified along with the DOs. For now it is best to keep a list of
attributes used and define them all at once later. “Seed” is a
pre-defined integer seed for the random number generator. The two
SET_DO statements constitute the Logical Operations (LO) if the
EC holds true. Note that all subwindows in Figure 4 are scrollable
up and down as indicated by the arrows in the scroll bars.

Since the Activity Start Condition (ASC) is true, the DO may
engage in the activity right away. The activity duration is sampled
from an exponential distribution with mean 250. This is the user
“think” time. The DO remains engaged in the Activity until this
time has passed.

After the activity is completed, the “SYS_ENTRY” macro (in
C programming language) records the DO entering the computer
system. Since the eXit Condition (XC) is true, the DO leaves the
submodel and moves to the CPU_QUEUE submodel. Note the
“_MODEL” extension to the CPU_QUEUE submodel name.

Upon completing the specification, select the “Save” button
located at the bottom left hand side of the window to exit the
window and save the specification. The other submodels are
similarly specified.

The specification of submodel logic is currently in the form of
C macros. A high-level extensible specification language is
currently under development.

To specify submodel attributes, activate the pop-up menu by
depressing the right mouse button while within a submodel
boundary. Select the “Sub-Model Attribute” item from the pop-up
menu. This brings up a blocking requester for the input of the
attribute name. After entering the attribute name, select the “Name
Attribute” button to enter the attribute specification window. In
entering the brief description of the attribute, after reaching the end
of the Brief Description line, the line scrolls to the left continuing to
accept input. Initial attribute value can be specified as a constant,
read from a file, returned from a C routine, or sampled from a
probability distribution.

4.2.4 Defining and Specifying Dynamic Objects

Select the “Dynamic” button on the Model Editor control
panel. This brings up a requester for the Dynamic Object name.
After entering the DO name, click on “Name Dynamic Object” to
enter the DO specification window.
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The DO specification window for “job1” is shown in Figure 5.
A brief description of “jobl” DO is entered. In entering the brief
description, after reaching the end of the Brief Description line, the
line scrolls to the left continuing to accept input. “Jobl” is
described as a job originating from Terminal 1. The name of the
first submodel the DO tries to enter is “Terminall.” We input the
path name of the file that contains the “job1” image created earlier.
Inter-Arrival Time can be specified as a constant, read from a file,
returned from a C routine, or sampled from a probability
distribution. The maximum number of DOs to be created of this
type is one.

The DO attributes “origin” and “rservice_time” used
previously in the submodel specification should now be defined and
specified. Select the “Specify DO Attribute” button to bring up a
blocking requester for the DO attribute name. Select the “Name
Attribute” button to enter the attribute specification window. DO
attribute  specification is identical to submodel attribute
specification.

When all DO attributes are defined, exit the DO specification
window by selecting the “Save” button. This exits the program and
places appropriate entries in the INGRES relational database.

4.3 Model Translator

The Model Translator component of GPVSS is activated from
the menu in Figure 1 and is used to transform the visual simulation
model specification, created by the use of the Model Generator
component, into an executable simulation. The Model Translator
uses the process interaction conceptual framework [Balci 1988] for
implementing the model. Select the “Model Translator” icon on the
top level window to bring up a blocking requester that should
already have the system model name entered. Select the “Generate
Code” button to create an executable visual simulation model in C
programming language. The blocking requester clears after the
completion of the code generation.

4.4 Visual Simulator

The Visual Simulator component of GPVSS is used to run the
simulation in visual mode or with no visualization. Select the
“Visual Simulator” icon from the menu in Figure 1 and wait for the
dynamic display screen to come up (see Figure 6). Select the
“Load” button to load the background image and initialize
variables. Select the “Animate” button to toggle the visual
simulation on and off. Selecting the “Run” button brings up the
statistics panel as shown in Figure 7. Random number generator
seed, number of independent replications, the length of transient
(warm-up) period, and the length of steady-state period are
specified. Click on the “Run Simulation” button to run the model
without the dynamic display. Results of the simulation are stored in
terms of confidence intervals for the performance measures of
interest in a file.

5. CONCLUDING REMARKS

GPVSS is a major step in our Simulation Model Development
Environments research project [Balci and Nance 1987a) in
achieving the automation-based software paradigm ([Balci and
Nance 1987b]. With the development of GPVSS, it has been shown
that a graphically described and interactively specified visual
simulation model can be automatically translated into an executable
C programming language code while maintaining domain
independence. Our experience with GPVSS advocates the use of
graphical design for developing (visual) simulation models.
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