Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

HIERARCHICAL MODELING IN A GRAPHICAL SIMULATION SYSTEM

Robert F. Gordon
Edward A. MacNair

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

ABSTRACT

Hierarchical performance modeling allows the modeler to
create models either in a top-down process, where he or she
creates a high-level model and progressively fills in the details
replacing stubs with detailed submodels or in a bottom-up
process, where he or she first builds a library of submodels (or
uses an existing library of submodels) and then links them
together to form the overall model. In reality, modelers use
a combination of both techniques. Submodels can themselves
contain submodels in any number of layers in the hierarchy.

To support this hierarchical performance modeling in a
graphical system requires the functionality to create, view,
edit and store the graphical networks of individual submodels,
to graphically link the submodels to other modeling elements
(including other submodel instances), to graphically replace
submodels with other modeling elements, and to view the re-
sults, including animation, for the overall model and each
submodel instance.

The RESearch Queueing Package Modeling Environment
(RESQME), a graphical workstation environment for iter-
atively constructing, running and analyzing hierarchical
models of resource contention systems, will be used to illus-
trate the hierarchical modeling methodology.

1. INTRODUCTION

Submodels in modeling play the same role as subroutines
in a programming language. A submodel defines a portion
of the model network. It can contain parameters and can be
invoked any number of times by calling the submodel and
assigning values to its parameters, thus forming a hierarchical
model. Submodels can be used to clarify the structure of a
model, to avoid duplication of effort within a model, to permit
sharing of parts of models, to introduce variability in the
model structure and, with decomposition, to solve the sub-
model separately and replace the submodel with a flow
equivalent server.

Hierarchical modeling allows the modeler to create mod-
els either in a top-down procedure, where he or she creates a
high-level model and progressively fills in the details replacing
stubs with detailed submodels or in a bottom-up procedure,
where he or she first builds a library of submodels (or uses an
existing library of submodels) and then links them together to
form the overall model. In reality, a combination of both
techniques is desirable. Submodels can themselves contain
submodels in any number of layers in the hierarchy. The re-
sult is structured, modular models that reuse code and share
pre-tested model components.

This concept becomes even more powerful when com-
bined with graphics. Graphics allows the modeler to view the
hierarchy, to visually associate the submodels with objects in
the modeler’s domain, and to directly manipulate these ob-
jects in building the model structure. Graphics also provides
the interface to analyze the results by viewing the perform-
ance measure charts for each submodel invocation, as well as
the animation of jobs through the hierarchy.

Gordon et al. [1986], Concepcion and Schon [1986], and
Thomasma and Ulgen [1988] discuss graphical, hierarchical
systems. The RESearch Queueing Package Modeling Envi-
ronment (RESQME) [Kurose et al. 1986; Gordon et al. 1986,
1987; Aggarwal 1989] is a graphical workstation environment

499

Kurtiss J. Gordon
James F. Kurose

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

for iteratively constructing, running and analyzing hierarchi-
cal models of resource contention systems. It is built on top
of the RESearch Queueing Package (RESQ) [Chow et al.
1985; MacNair 1985; MacNair and Sauer 1985; Sauer and
MacNair 1982; Sauer et al. 1982a, b, ¢] which provides the
functionality to evaluate extended queueing networks, ana-
lytically or by simulation. RESQME is unique in that it uses
a single, uniform, hierarchical graphical representation of the
model throughout the entire modeling process.

In this paper, we describe the functionality provided in
RESQME to graphically support hierarchical models through
all aspects of the modeling process. Section 2 describes the
hierarchical modeling methodology and how it is implemented
in RESQME. Section 3 shows a simplified example to dem-
onstrate the use of hierarchical modeling. We summarize the
results and benefits in Section 4.

2. HIERARCHICAL MODELING

Submodels can be used effectively to clarify the structure
of models, to ease repetition, to share common elements be-
tween models, to incorporate variability in the number of
model elements and to perform model decomposition.

One way to approach the modeling of a complicated sys-
tem is to identify major subsystems and structure the model
around these subsystems. The subsystems can be defined first
at an abstract level. The modeler can refine the top-level view
of the system in a stepwise fashion by adding more and more
details to the submodels and to their connections and perhaps
defining submodels within them. This block structuring helps
to clarify how the model functions and to determine the level
of detail necessary for the application.

Another use of submodels is to replicate similar portions
of a model. A submodel can be defined with parameters
which can be assigned different values for each invocation.
This ease of repetition simplifies the construction of many
models.

Often, different models contain sections representing
similar subsystems. For example, different assembly line
models may use similar subsystems for robots, bake ovens,
conveyor belt mechanisms. These subsystems can be placed
in a library of submodels, and models can then be created by
connecting these prefabricated modules in a “tinker-toy”
fashion.

Submodels can also be used to provide a variable number
of similar parts of a model. When the mechanism for invok-
ing a submodel provides an array capability, the number of
copies made can be a parameter of the model. By changing
the parameter value, the number of queues, nodes, and chains
in the model can be varied without recompiling the model.

Another benefit of submodels is for hierarchical decom-
position. It is sometimes possible to hierarchically structure
the model with submodels which can then be solved individ-
ually. Results from each submodel solution can be used to
characterize a queue dependent rate server to replace the
submodel. For models which cannot be solved analytically,
decomposition may yield submodels and aggregate models
which can all be solved analytically. Theoretical work which
provides justification for using this approach can be found in
Chandy, Herzog and Woo [1975] and Courtois [1975,
1978]. Even if the decomposed model does not produce sub-
models and aggregate models which can be solved analyt-

R.F. Gordon, E.A. MacNair, K.J. Gordon, and J.F. Kurose

ically, decomposition could still provide speed-up benefits for
the simulation, because the flow equivalent server requires
only a single event in place of the many events required in the
original submodel.

2.1 RESQME Implementation of Hierarchical Modeling

To provide a hierarchical modeling feature, a graphical
system requires the functionality to create, view, edit and
store the graphical networks of individual submodels, to
graphically link the submodels to other modeling elements
(including other submodel instances), to graphically replace
submodels with other modeling elements, and to view the re-
sults, including animation, for the overall model and each
submodel instance. We demonstrate how this functionality
can be provided by describing the RESQME implementation.

The objects of a RESQME network diagram are icons
which represent

1. fundamental modeling elements (such as an active queue,
passive queue, job source),

2. invocations of subnetworks of these elements (submodels),
and

3. chain links which connect the elements and submodel
invocations to form the job routing.

The modeler is provided with tools to extend the fundamental
modeling elements. The modeler can create a subnetwork of
these elements and draw a user-created icon or use a generic
submodel icon to represent that subnetwork. Placing a user-
created icon on the network diagram creates an invocation of
the submodel associated with it and causes that submodel (if
it exists and is not already attached) to be attached to the the
main model in a tree structure. This can also be accomplished
by placing the generic submodel icon on the diagram and
specifying its type by giving the name of the desired submodel
to be invoked.

A submodel invocation has an iconic representation and
a graphical representation of the submodel’s network, and
textual attributes, such as invocation name, submodel name,
parameter names and parameter values for the invocation.
Thus the submodel can be treated as a black box which the
modeler can invoke, as long as the modeler knows its as-
sumptions and can provide its parameter values for that in-
vocation.

The graphics environment allows the modeler to pan,
zoom, locate and layer up and down through the hierarchical
model layers. The modeler can view and modify the higher-
level model, as well as the corresponding details of all levels
of submodels. A separate layer is provided for each sub-
model. Each submodel occupies a separate canvas, into
which the modeler can view any portion of any submodel.

The modeler is presented with a menu-driven, iconic
interface to build the model (Create/Edit Task), run the sim-
ulation (Evaluate Task), and examine the results (Output
Analysis Task).

2.2 Create/Edit Task

In this task, the modeler can select icons from the icon
palettes and place them on the modeling plane. The icon
palettes contain both the elementary icons and the user-
created submodel icons. When either type of icon is selected
and placed on the modeling surface, the appropriate template
appears for the modeler to supply the underlying textual in-
formation.

As the modeler builds the model by selecting the user-
created icons or the generic submodel icon, a submodel tree
structure is formed with the main model at the root and the
submodels forming the branches. To view or modify a sub-
model represented by a user-created icon or the generic sub-
model icon, the modeler selects the “Layer Down” menu item
from the screen management menu and points to the user-
created object to see its details. The submodel represented by
that icon is then displayed on the screen and can be edited in
the same way as the main model. The modeler can traverse

500

the multiple levels of the model’s hierarchy by selecting the
“Layer Up” or “Layer Down” menu items. The selection
displays a choice in a pop-up menu of the names of the parent
(sub)models in the hierarchy tree above the current layer
when the “Layer Up” item is selected and the child submod-
els below when the “Layer Down” item is selected. Included
in the choice when “Layer Down” is selected, are a “Library
of submodels” entry and a “New” entry. The “Library of
submodels” entry allows the modeler to select pre-packaged
submodels to include in his model, and the “New” entry al-
lows the modeler to create a new submodel.

Thus the modeler can build his model by linking together
existing submodels from libraries and, if necessary, building
new submodels in a bottom-up approach. Also, the modeler
can replace elementary nodes (including the generic submodel
node) with detailed submodels in a top-down approach.
User-created icons can be created before, after or during the
development of the associated submodel.

We will describe the key aspects for creating a new sub-
model here.

When a modeler selects “New” from the pop-up menu
resulting from the “Layer Down” command, a blank canvas
layer is provided on which to create a new submodel. Each
submodel has a header which identifies its parameters (in the
same manner as arguments are used in a subroutine). The
parameters that the modeler specifies in the header for the
submodel will appear as prompts for values in the invoca-
tion’s attribute window when that submodel is invoked at a
higher level. The modeler can use any of the icons, including
user-created icons of other submodels, when drawing the
subnetwork for the new submodel. In the attributes for each
subnetwork chain, the modeler identifies the node names of
the input port and the output port. RESQME identifies these
in the subnetwork diagram by attaching an [and an O, re-
spectively to these nodes.

The invocation of that submodel at the level above passes
information to the submodel by providing values for the sub-
model parameters. These values are provided in the invoca-
tion’s pop-up attribute window. When a job reaches an
invocation, it is sent to the subnetwork through the input
port, and jobs return to the next node on the path after the
invocation when they reach the subnetwork’s output port.

Actually, RESQME provides a number of ways to have
jobs flow in and out of a submodel and also provides several
ways to pass data to a submodel. First of all, as we just
mentioned, each submodel has a unique input port and out-
put port for each routing chain in the calling (sub)model. The
input port and output port link the submodel chain to the
corresponding routing chain in the (sub)model that invoked
it. Additionally, jobs can be passed to the submodel through
parameter nodes and fully-qualified path names. A generic
lcon is used to represent a parameter node. This node type
associates by name any point in a submodel with a corre-
sponding node in a higher level (sub)model. Whenever a job
reaches the named node at the higher level, it is transferred
to the point of the node parameter in the submodel. Simi-
larly, whenever a job in the submodel reaches a node param-
eter, it is transferred to the corresponding node in the higher
level (sub)model.

Las_tly, using a fully-qualified path name, a modeler can
spec1fy in the routing the next node to visit which can be a
node in any submodel. The fully-qualified path identifies the
path through the invocation tree, uniquely specifying the de-
sired node. Jobs traverse through that link directly to the
specified node.

_In addition to providing information to a submodel by
assigning values to its parameters in an invocation, global,
system, and job variables can be used to pass information
among subrqodels. ‘This information can be used, for exam-
ple, for routing decisions, assignment statements, distribution
means. As a result, decisions in one invocation can depend
on activity anywhere else in the model.

The modeler can save the model and all its submodels
and/or save a submodel in an individual file, in which case it
will become part of the library of submodels. The modeler

Hierarchical Modeling in a Graphical Simulation System

can change and save submodels within a model, while letting
the library version remain unchanged, or can change the li-
brary version as well.

When using submodels, it is necessary to quickly switch
between the higher-level view and the submodel details. Be-
cause of this, we store the complete model and its submodels
in memory, so that layering between levels is very fast. There
needs to be close coordination between editing in a submodel
and corresponding changes to the main model. Changes, for
example, in the parameters of the submodel are automatically
reflected in the invocation’s attributes. Large editing, such
as deleting a submodel, or for that matter, a complete subtree
is done in two keystrokes - one to delete and one to confirm.

2.3 Evaluate Task

In the Evaluate Task, the modeler provides the values for
the model parameters and selects execute to evaluate the
model. The underlying system, RESQ, expands the submodel
invocations into a flat model and runs the simulation and
generates the performance measures for all the objects.

2.4 Output Analysis Task

Selecting Output Analysis, the modeler can view the re-
sults at any level in the model hierarchy. The modeler does
this by pointing to the icon(s) whose performance measures
he wants to see. The corresponding performance measure
names are displayed in a pop-up menu. The modeler can se-
lect any number of performance measures to plot and posi-
tions the resulting graph on the modeling surface along with
the network diagram. Performance measures can be viewed
for any object on the screen: elementary icons, user-created
(invocation) icons, routing chains, the model itself. For ex-
ample, pointing to an invocation icon allows the modeler to
view all performance measures for all nodes in its subnetwork.
Alternatively, the modeler can layer down to the detailed
network diagram of that submodel invocation and view the
performance measures of any specific node by pointing to it.

In the Create/Edit Task, we provide tlre modeler with the
ability to traverse the submodel tree, whereas in the Output
Analysis Task, we need to provide the modeler with the
functionality to traverse an invocation (instances) tree. This
is because, the modeler needs to access the performance
measures associated with a specific instance of a submodel in
the output analysis task.

For example, assume that there are two invocations,
called “emergl” and “emerg2”, of a hospital emergency room
submodel, called “emergency”, and the submodel emergency
has a passive queue named “doctor”. The modeler has to be

able to distinguish between the performance of the doctors in
emergency room | from those in emergency room 2. There-
fore, in the Output Analysis Task, we set up the menu items
“Layer Up” and “Layer Down” to present the invocation tree
to the user.

Similarly, when viewing the animation of jobs, the
modeler needs to traverse the invocation tree. RESQME an-
imates the jobs and tokens in each layer of the invocation tree.
The modeler can move between the layers with the menu
commands, to see the animation on any layer.

Alternatively, the modeler can trace the movement of a
specific job as it traverses through the layers of the model.
If the modeler selects this trace option, the screen view will
automatically change to each layer, as the job moves through
that layer of the model, i.e. as it reaches an invocation, an
output port, a parameter node or a fully-qualified specifica-.
tion. The traced job is shown in a different color to distin--
guish it from the other jobs, which are also animated.

2.5 Icon Drawing

An icon drawing program is provided so the modeler can
draw his or her own icons to represent individual submodels.
As mentioned above, a generic submodel icon is also provided
in RESQME as part of the elementary icons. The modeler
links his or her drawing of an icon to a specific submodel by
providing the name of the submodel. The drawing package
provides edit commands and line, rectangle and circle ele-
ments to create the icon and place it in a palette. The result-
ing palette of user-created icons is given an application name
and is added to the pages of elementary icons for that appli-
cation, when it is being modeled. ’

The user-created icons are selected, manipulated, linked
in the network exactly as the elementary icons. They have
attributes determined by the submodel to which they are
linked, and graphically, they are manipulated identically to
the elementary icons. They can be rotated, zoomed, panned
in the same way as the elementary icons.

3. HOSPITAL EXAMPLE

As a simple example to demonstrate the support provided
for graphical hierarchical modeling, we present a model of an
ambulance dispatching system containing a dispatching sub-
model, called “ambulance”, and three invocations of a hospi-
tal emergency room submodel, called “emergency”. Figure 1
illustrates the highest level of the model with two user-created
icons, representing the ambulance and emergency room inv-
ocations. This specific invocation of the ambulance submodel
is called vehicle. Patients enter the system at source nodes

e e 4.|:|,
En
D—IA- responsea
ambulonce oliro vehicle reiro SINK
O
D—o—{ | :
dernand3 setp3
deky3
D——D———-I
dermond2 setp2

demand1 allrév setp reception

responsew

hospital (Main)

Hospital 1

Figure 1. Ambulance dispatching system model

501

R.F. Gordon, }.A. MacNair, K.J. Gordon, and J.F. Kurose

(demandl, demand2, demand3) where they are walk-ins to
the emergency rooms in three hospitals in the city, and as de-
mand for ambulances at source node, ambulance. Ambu-
lances can take patients to any hospital. The model was
developed in a top down fashion, where first active queues
were used for ambulance transport time and time in the
emergency rooms and then more details were added. Since
there are multiple emergency rooms, a submodel was devel-
oped to be general enough to handle all three emergency
rooms, using parameters for the number of nurses, the num-
ber of doctors, mean service time for walk-in patients, and
mean service time for ambulance patients to differentiate the
emergency rooms. Detail on the main model was started for
the reception area for walk-ins for hospital 1, but is still
shown as simply an active queue for the other two hospitals.
This detail may later become a submodel that will be invoked
for each hospital. Furthermore, the submodel for the emer-
gency room may be included in other hospital models in a
bottom-up development fashion.

If we layer down to the submodel which represents the
ambulance dispatching, we see the layer of the model shown
in Figure 2. The decision as to which emergency room to go
to is based on global variables indicating the activity level of
each emergency room and the specialty of that hospital and
job variables identifying the requirements of the specific pa-
tient. The input and output ports are labelled. A global

Determine destination
based on patient problen
and statt availability

variable is set (in node destl, dest2 or dest3) to indicate the
chosen emergency room, and the appropriate transportation
time is selected by the routing. At the main model level, that
global variable is used to select the link to the appropriate
emergency room invocation.

There are three invocations of the emergency room sub-
model in the main model diagram. Parameters for number
of nurses, number of doctors and service times are used to
differentiate the activity among these instances of the emer-
gency room. Layering down to the emergency room sub-
model, we see the subnetwork diagrammed in Figure 3. The
nurses and doctors are represented by passive queues. There
are two chains, each with their input and output ports. One
is for patients arriving by ambulance; the other is for walk-
ins. Walk-in and ambulance patients share the same re-
sources (nurses and doctors), although they require different
service times and can have different priorities.

When viewing the animation, the modeler sees at the
main level patients arriving from the four source nodes. The
ambulance routing chain is shown in a different color than
the walk-in routing as are the moving balls representing pa-
tients. This distinction is preserved through the submodels
emphasizing the different classes of patients.

At any point in the animation, the modeler can select a
particular patient (say from the ambulance source node) and
follow that patient as it goes through the model. The patient

’O] transp1

¢

setpr dest2 durn’
transp2
dest3 O
tronsp3
hospital asbulanc
OB - - - - - it :
ain .=' :
basica treate comp
5: @) . & O]
- T {o { o] e
tovail
setovo alnurse boce aldoc ot Anurse reldoc oddovail complete
hospital engency

Figure 3. Emergency room submodel

502

Hierarchical Modeling in a Graphical Simulation System

icon will go to the vehicle invocation, layer down to this in-
vocation showing the hospital selection (say hospital 1), then
layer back up to the main level as it moves to the emergl in-
vocation, then layer down into that invocation as it waits for
nurses and doctors. Simultaneously, the other patients and
the queues at each node will be dynamically changing.

4. SUMMARY

Graphics allow the modeler to interface with the com-
puter based on a network diagram. Hierarchical modeling
allows the modeler to build a model with reusable, pretested
code in both a top-down and bottom-up approach. Together,
graphics and hierarchical modeling provide the modeler with
the ability to build and experiment with a model that is a vi-
sualization of objects in the modeler’s application domain.

To provide this power, our modeling environment sup-
ports functions to create, view and manipulate both a sub-
model tree and an invocation tree. The former is used during
model building, and the latter is used during output analysis
and animation. The modeling environment provides a
viewport into each layer of the tree to display its network,
performance measures and animation and to edit each layer’s
contents as well as the tree itself. We also provide an iconic
representation of each submodel layer. When placed on the
modeling screen and given parameter values, it can be linked
to other nodes in the network and creates a layer of the invo-
cation tree.

ACKNOWLEDGEMENTS

We would like to thank Anil Aggarwal, Janet Chen, Paul
Loewner and Geoff Parker for their work on RESQME and
Charles Sauer for his design work of RESQ.

REFERENCES

Aggarwal, A., K.J. Gordon, J.F. Kurose, R.F. Gordon, and
E.A. MacNair (1989), “Animating Simulations in
RESQME,” In Proceedings of the 1989 Winter Simu-
lation Conference, E.A. MacNair, K.J. Musselman, and
P. Heidelberger, Eds. IEEE, Piscataway, NJ, 612-620.

Chandy, K.M., U. Herzog, and L.S. Woo (1975), “Parametric
Analysis of Queueing Networks,” IBM Journal of Re-
search and Development 19, 1, 43-49.

Chow, W.-M., E.A. MacNair, and C.H. Sauer (1989),
“Analysis of Manufacturing Systems by the Research
Queueing Package” IBM Journal of Research and Devel-
opment 29, 4, 330-342.

Concepcion, A. and S. Schon (1986), “SAM - A Computer-
aided Design Tool for Specifying and Analyzing Modu-
lar, Hierarchical Systems” In Proceedings of the 1986

503

Winter Simulation Conference, J.R. Wilson, J.O.
Henriksen, and S.D. Roberts, Eds. IEEE, Piscataway,
NJ, 504-510.

Courtois, P.J. (1975), “Decomposability, Instabilities and
Saturation in Multiprogramming Systems” Communi-
cations of the ACM 18, 5, 371-3717.

Courtois, P.J. (1978), “Exact Aggregation in Queueing Net-
works,” Proc. First Meeting AFCET-SMF, Paris, 35-51.

Gordon, R.F., E.A MacNair, P.D. Welch, K.J. Gordon, and
J.F. Kurose (1986), “Examples of Using the RESearch
Queueing Package Modeling Environment (RESQME),”
In Proceedings of the 1986 Winter Simulation
Conference, J.R. Wilson, J.O. Henriksen, and S.D.
Roberts, Eds. IEEE, Piscataway, NJ, 504-510.

Gordon, R.F., E.A MacNair, K.J. Gordon, and J.F. Kurose
(1987), “A Visual Programming Approach To Manufac-
turing Modeling,” In Proceedings of the 1987 Winter
Simulation Conference, A. Thesen, H. Grant, and W.D.
Kelton, Eds. IEEE, Piscataway, NJ, 465-471.

Kurose, J.F., K.J. Gordon, R.F. Gordon, E.A. MacNair, and
P.D. Welch (1986), “A Graphics-Oriented Modeler’s
Workstation Environment for the RESearch Queueing
Package (RESQ),” In /986 Proceedings Fall Joint Com-
puter Conference, Dallas, 719-728.

MacNair, E.A. (1985), “An Introduction to the Research
Queueing Package,” In Proceedings of the 1985 Winter
Simulation Conference, D.T. Gantz, G.C. Blais, and S.L.
Solomon, Eds. IEEE, Piscataway, NJ, 257-262.

MacNair, E.A. and C.H. Sauer (1985), Elements of Practical
Performance Modeling, Prentice-Hall, Englewood Cliffs,
NJ

Sauer, C.H. and E.A. MacNair (1982), “The Research
Queueing Package Version 2: Availability Notice” [BM
Research Report RA-144, Yorktown Heights, NY.

Sauer, C.H., E.A. MacNair and J.F. Kurose (1982a), “The
Research Queueing Package Version 2: Introduction and
Examples,” IBM Research Report RA-138, Yorktown
Heights, NY.

Sauer, C.H., E.A. MacNair and J.F. Kurose (1982b), “The
Research Queueing Package Version 2: CMS Users
Guide” IBM Research Report RA-139, Yorktown
Heights, NY.

Sauer, C.H., E.A. MacNair and J.F. Kurose (1982c), “The
Research Queueing Package Version 2: TSO Users
Guide” IBM Research Report RA-140, Yorktown
Heights, NY.

Thomasma, T. and O. Ulgen (1988), “Hierarchical, Modular
Simulation Modeling in Icon-based Simulation Program
Generators for Manufacturing,” In Proceedings of the
1988 Winter Simulation Conference, M.A. Abrams, P.L.
Haigh, and J.C. Comfort, Eds. IEEE, Piscataway, NJ,
254-262.

