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ABSTRACT

The development of systems that provide visual interactive
modeling and simulation capabilities represents one of the major di-
rections in the simulation area. Characteristics of such a system,
which include visual interactive model development, visualization of
the simulation output, user-model interaction, and intelligent advisor-
ing are discussed. The implementation of defined concepts in an ex-
perimental object oriented system for visual interactive simulation of
flexible manufacturing systems is presented.

1. INTRODUCTION

The Visual Interactive Simulation (VIS) is a paradigm which
requires the extensive participation of the user in all phases of a
simulation experiment. A VIS system must provide visual capabili-
ties for graphical display of a simulation model and animation of
simulated activities. It increases the user's ability to control the simu-
lation process. The VIS systems are becoming increasingly popular.
They are developed to help a user who is not a simulation expert to
conduct the simulation experiment successfully. This feature is very
important since there is a rather small number of simulation experts
compared to the number of problems that require the use of simula-
tion. The assumption that the user is not a simulation expert is a po-
tential source of problems, as stated by Law and McComas [1986].
Wrong decisions can be made in various modeling and simulation
activities, such as: model development and validation, simulation in-
put data specification, interpretation of simulation results, and so
forth. To be considered a fully VIS system, it should provide advi-
sory capabilities to help the user to overcome the lack of the simula-
tion and/or problem domain knowledge.

In general, the basic capabilities that should be provided in a
VIS system include:

1) Visual interactive modeling. The user must be able to de-
velop a simulation model by creating the graphical description of the
system to be simulated. Both the graphical representation of the sys-
tem layout and the simulation model could be stored in a simulation
model base and be used for developing future models.

2) Visualization of the simulation output. Changes in the state
of a simulation model during the simulation experiment are animated.
Corresponding changes in the simulation statistics are displayed
graphically as well. The simulation results could be analyzed by the
user or by an expert system.

r - model interaction. A VIS system must provide the
user with mechanisms to stop the simulation, change some modeling
and/or simulation parameters, and continue the simulation.

4) Intelligent advisoring. On-line and off-line intelligent advi-
sory capabilities provide the user with guidelines how to accomplish
modeling and simulation activities.

According to O'Keefe [1987], to be considered as a VIS
system it must provide characteristics described in 2 and 3. The first
three characteristics are usually described in literature on VIS
[Hurrion 1986; O'Keefe 1987]. Most of the commercial VIS systems
are advertised as "easy-to-use", "no-programming-required”, or
"you-do-not-have-to-be-a-simulation-expert" systems. But, as far as
we know, only INSIGHT [Roberts 1989] has limited capabilities to
help a "non-expert" coping with simulation and modeling problems.
We find advisory capabilities very important and think that they must
be provided as well.

Bell and O'Keefe [1987] reviewed the historical development
of VIS systems since the introduction of the original idea by Hurrion
[1978]. O'Keefe [1989] emphasized the suitability of VIS systems
for simulation of complex systems, which require human decision
making. The user is able to make certain decisions being provided
with an animated display of a simulation experiment during its exe-
cution. He emphasized that "typically visual interactive simulation is
successful where the interacting decision maker has to make some
global decisions regarding the system, and really only needs an
overall feel of performance. It is less effective when, for instance,
being used to design specific decision rules due to the limited sample
that is given by interaction with a few runs and the difficulty in ana-
lyzing the effect of interactions”. In earlier work [O'Keefe 1987],
methodologies for supporting the decision making process were de-
scribed.

In this paper, the implementation of VIS concepts is illustrated
with the SIMFLEX, an experimental object-oriented VIS system for
simulation of Flexible Manufacturing Systems (FMSs). The black-
board problem solving model is used to support the decision making
process. It allows for existence of a set of knowledge sources for
solving problems which require the expert knowledge.

In the next section, the object oriented programming rationale
for discrete event simulation is discussed. An object oriented frame-
work for developing VIS systems is described in Section 3. The rest
of the paper is a detailed discussion of the VIS characteristics and
their implementation.

2. OBJECT ORIENTED PROGRAMMING AND
DISCRETE-EVENT SIMULATION

Object oriented programming (OOP) is a way of structuring
computer programs by defining a set of objects capturing information
about corresponding entities that are of interest to the modeler.
Information processing is performed through the communication
between objects, which send messages to each other. Object oriented
problem solving paradigm is based on building a solution procedure
by specifying a sequence of messages to be sent to a particular ob-
ject. Implementing object oriented paradigm for solving a specific
problem can be summarized as a four-step procedure [Pinson and
Wiener 1988]: problem definition, identification of the domain ob-
Jects, identification of messages to be sent to those objects, and def-
inition of a problem solving sequence of messages.

OOP is increasingly used for discrete event simulation (DES).
Both advantages and disadvantages of OOP for developing DES
systems are discussed in literature. Zeigler [1987] described compat-
ibility between the OOP paradigm and DES. In a recent work
[Zeigler 1990], the development of an approach to object oriented
DES based on the concept of hierarchical, modular model construc-
tion is described. Limitations of OOP are reviewed by Rothenberg
[1986) and identified as the lack of the following capabilities: model-
ing power, control, representation, comprehensibility, and model
building.

A variety of OOP languages have been used for developing
DES systems, such as: C++ [Blair and Selvaray 1989; Eldredge et
al. 1990; Ali and Wyatt, 1990], MODSIM II [Bryan, 1989], Simula
[llgggr]u 1987], and Smalltalk [Knapp 1986, 1987; Van der Meulen

Manufacturing systems are considered as a natural application
for the message - passing characteristics of the OOP paradigm. The

490



R. Vujosevic

system abstraction is achieved by creating a set of classes represent-
ing corresponding physical components that might be included into
an FMS design. An FMS model can be created by using one of two
approaches for modeling of discrete systems in an OOP environ-
ment, as defined by Bezivin [1987]:

1. Network mposition - Simulation objects communicate
to each other by sending messages.

2. Client- r mposition - Clients are active simulation
objects while servers are passive ones. A client may send messages
to servers, but the reverse case is not possible.

For example, by applying network decomposition for FMS
modeling, workstations can be modeled as objects and parts as mes-
sages to be sent to workstations. On the other hand, following client
-server decomposition, parts can be modeled as active objects
(clients), while workstations would be passive objects (servers).
Parts send messages to workstations in order to be processed.

A number of Smalltalk applications for simulation of manufac-
turing systemns have bcen reported. Thomasma et al. [1990a] gave an
excellent overview of Smalltalk applications in manufacturing simu-
lation. Some of the reviewed simulation systems have VIS capabili-
ties. Thomasma et al. [1990b] described SmartSim, a VIS system for
simulation of manufacturing systems. SmartSim uses Smalltalk ca-
pabilities for development of an interactive user interface for defining
the physical configuration of a system, and specifying behavior of
simulation objects and relationships between them. Beaumariage and
Mize [1990] described an object oriented environment for modeling
of manufacturing systems. In a recent paper, Guo et al. [1990] pre-
sented an object oriented system for flexible manufacturing in which
the simulation is integrated with a manufacturing information system.
3. A FRAMEWORK FOR DEVELOPMENT OF AN
OBJECT ORIENTED VIS SYSTEM

The very first step in development of an object-oriented VIS
system is the definition of a class hierarchy which supports imple-
mentation of visual interactive modeling and simulation capabilities.
The Model-View-Controller (MVC) programming paradigm imple-
mented in Smalltalk-80 [Krasner and Pope, 1988] provides mecha-
nisms for development of a VIS system. The MVC allows for
building interactive applications by providing mechanisms for captur-
ing information and operations in a particular problem domain
(Model); graphical display of the domain information (View); and
control of the user - problem domain interaction (Controller). The
Smalltalk-80 class hierarchy implemented in SIMFLEX is shown
bellow.

Object
Model
FMSModel
View
Canvas
FMSView
Controller
MouseMenuController
CanvasController
FMSController
Workstation
Machine
Part
PartBuffer
AutomatedGuided Vehicle
Robot
Distribution
Magnitude
Time
SimulationTime
Neuron

More modeling and simulation capabilities could be included by
either defining new methods in existing classes (for example, opera-
tional and control capabilities), or creating new classes to be in-
cluded in the class hierarchy (for example, a class for representing a
material storage and retrieval system).

The information about a particular FMS simulation model and
activities performed during a modeling and simulation process are
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contained in the class FMSModel, which is a subclass of the class
Model. The class FMSView displays graphical description of the
FMS simulation model and animated display during the simulation
experiment. It is a subclass of the class Canvas created to facilitate
display of a system layout which is larger then the initial screen size.
The class FMSController controls the user-model interaction. It is
a subclass of the class CanvasController, which allows for
scrolling of a graphical window. Classes Workstation, Machine,
Part, PartBuffer and AutomatedGuidedVehicle represent cor-
responding components of an FMS. These classes are instantiated as
many times as needed. Different distribution functions usually used
in simulation of FMSs are provided by the class Distribution. The
MVC interaction in SIMFLEX is presented in Figure 1, adapted from
Krasner and Pope [1988].

User
.

- FMSController
input

messages

Model access
and

editing
messages

Dependency
messages

Dependency
messages

Figure 1. The Model-View-Controller Interaction in SIMFLEX

The characteristics of a VIS system, described in the introduc-
tory section, require a sophisticated user interface which supports
definition of input data and simulation objectives, graphical represen-
tation of the system layout, visual representation of the simulation
model, interactive model modification, display of simulation results,
animation of simulated activities, and user-model interaction. The
MVC supports development of such a user interface. The SIMFLEX
user interface consists of a set of interactive buttons for activation of
modeling and simulation activities and manipulation of the simulation
model base, a window for displaying icon-based system layout rep-
resentation, a window for displaying the visual simulation model
representation, and a window for displaying simulation results and
various messages.

A set of interactive buttons is used for guiding the modeling
and simulation process. A button is an instance of the class
SwitchView having instances of the class OneOnSwitch as
models. An instance of the class Object serves as a connector to
make sure that only one button is activated at a time. The window for
icon - based representation of an FMS physical layout is an instance
of the class FMSView. The model is an instance of the class FMS
Model and the controller is an instance of the class
FMSController. This window is defined as a Canvas (an in-
stance of the class Form) on which an FMS layout is drawn. The
visual representation of an FMS simulation model is in the second
window. The model for this window is an instance variable cur-
rentModel of the class FMSModel. The window for textual mes-
sages and outputs is an instance of the class TextCollector.

The described framework provides mechanisms for the imple-
mentation of VIS characteristics defined in the introductory section.
4. VISUAL INTERACTIVE MODELING
Simulation modeling is a process of creating a simplified com-
puter representation of the system to be simulated. The fundamentals
of simulation modeling are described in numerous literature. An ex-
cellent overview of simulation modeling is given by Rothenberg
(1989). In this paper, we are concerned with how the simulation
modeling should be supported in a VIS system.

The way in which a VIS system supports simulation modeling
has a great importance for the final user. Considering modeling ca-
pabilities of existing VIS systems, they could be divided into three
groups:

1) General purpose VIS systems that require knowledge about
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the programming and/or simulation language in which a VIS system
is implemented. This requirement is a major drawback of this kind of
VIS systems. However, they offer great application flexibility.
Examples of such systems include CINEMA (Siman) [Poorte and
Davis 1989], SIMGRAPHICS (Simscript 11.5) [Bryan 1989], and
SEE/WHY (Fortran) [Gilman and Billingham 1989].

2) General and specific purpose VIS systems that provide
graphical capabilities for model development, but the system layout,
needed for animation, is developed separately. A graphical represen-
tation scheme is used for describing simulation models. Most often
the network diagrams are used, as it is implemented in TESS [Grant
and Starks 1988] and INSIGHT [Roberts and Flanigan 1989].
WITNESS [Gilman and Billingham 1989] is an example of such a
system for simulation of manufacturing systems.

3) Specific purpose VIS systems which provide icon-based
graphical capabilities for parallel model and system layout develop-
ment. These systems, most often developed for manufacturing appli-
cation, are described as easy-to-use VIS systems for rapid modeling.
The graphical display of the system layout is used for animation.
These features can be found in XCELL+ [Conway and Maxwell
1986] and SIMFACTORY I1.5 [Rohrbough 1989].

The research presented in this paper involves an object oriented
implementation of modeling capabilities described for the last group
of VIS systems. An attempt towards the definition of a more
"intelligent" model development framework has been made. The
framework is presented by describing the method of modeling
knowledge representation, simulation model base, and model devel-
opment capabilities.

4.1 Modeling Knowledge Representation

Various methods have been used for the computer representa-
tion of a simulation model. There is an increasing use of Al tech-
niques for modeling knowledge representation. Elzas [1986] gave an
overview of the applicability of Al techniques to knowledge repre-
sentation in modeling and simulation.

In SIMFLEX, the domain modeling knowledge is encoded into
an associative (semantic) network by using the NRL, a Network
Representation Language [Antao 1988] developed in Smalltalk-80.
Reasons for applying a semantic network for this purpose are as
follows:

1) It supports the hierarchical model development.

2) It serves as a blackboard data structure for various know-
ledge sources implemented.

3) A knowledge network can be stored in the simulation model
base and used for developing future models.

4) The hypertext user interface paradigm, provided in NRL,
supports the user-model interaction, which is one of the most impor-
tant features of a VIS system.

NRL provides a set of representation primitives (nodes and
links) used for building a semantically consistent representation of an
FMS model. Nodes are primitives that represent the knowledge en-
coded in the network. Nodes can represent entire concept descrip-
tions (concept nodes), attributes belonging to a concept (attribute
nodes), or instances of a generalized concept (instance nodes). For
example, a node may represent concept Machine and capture
knowledge about that particular generalized concept. A set of at-
tributes assigned to this generalized concept is represented using at-
tribute nodes. A machine object, an instance of the concept
Machine, is represented by an instance node. In a semantic net-
work, links represent associations between concepts.

When a concept node is created, an object representing the cor-
responding FMS component is generated. The object becomes a part
of the model. Supplementary information is provided by attribute
nodes that are aggregated within multiple contexts assigned to a con-
cept node [Antao et al. 1989]. Contexts provide a mechanism for
defining different sets of attributes about a concept for various user
categories. The underlying representation is presented to the user as a
labeled graph, as shown on a simple example in Figure 2.

The NRL interface, based on the hypertext paradigm, allows
for [Antao et al. 1988]: viewing the entire network visually, display-
ing parts of the network, browsing through the network by tracing
associations to other nodes, storing and displaying augmented de-
scriptions at nodes, and interactively modifying the network structure
by creating new links or deleting existing links.
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Figure 2. Visual Representation of an FMS Model
4.2 Simulation Model Base

When a simulation experiment has been performed, the user
may want to save the simulation model. That model can be later used
for running another simulation experiment, or for building another
simulation model. This can significantly reduce the model develop-
ment time. To provide this capability, a simulation model base must
be maintained. It involves capabilities for storing and retrieving
models from the model base and searching the model base. Kettenis
[1986] discussed the importance of being able to access simulation
models already developed.

Storing a simulation model in a VIS system assumes storing
graphical representations of the system layout and the model. The
simulation model base is implemented in Smalltalk-80 as a global
variable stored in the Smalltalk system dictionary. For example, an
FMS simulation model is stored by storing an instance of the class
FMSModel in the global variable ModelBase, as shown below.

SaveAnFMSModel
| modelName |
modelName <- (FillinTheBlank request: 'Enter name of the
new FMS model").
self model name: modelName.

(Smalltalk at: #ModelBase) at: modelName put: (self
model).

Various approaches for retrieving and using an existing model
stored in the model base are discussed in the next section.

4.3 Simulation Model Development

Simulation is usually used for either simulation of an existing

system or for the design of a new system. The VIS modeling capa-
bilities must support both cases.

4.3.1 Modeling of an Existing System

For this purpose the user is provided with icon-based graphical
modeling capabilities. That allows the user to generate two ggpll')escn-
tations of the system at the same time: (1) external (visual) represen-
tation, as a real-like icon-based picture on the screen, and (2) internal
(logical) representation, as a set of objects representing correspond-
Ing system components, which build the simulation model.

_ The modeling process starts with defining general characteris-
tics of the system. A particular component is modeled by activating
the corresponding interactive button. The user is asked to define
characteristics of the component and then to place an icon, represent-
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ing that component, on the screen in the proper location. The icons
are scaled according to the defined physical size of the system. The
graphical representation of the system generated in such a way is
later used for the animation purpose.

The simulation model itself is generated in parallel. The user is
asked only to place nodes for the visual representation of the seman-
tic network used for the modeling knowledge representation.

4.3.2 Modeling of a New System

The design requirements and specifications define an ideal
model of the FMS, which is later compared to alternative designs de-
veloped during the conceptual design phases. Sadowski [1989] de-
scribed the level of complexity of the model needed for various sce-
narios in design of a new manufacturing system. We discuss how
such a model could be developed.

The first step in modeling a design alternative should be
searching the simulation model base, which consists of overall simu-
lation models already developed, and primitive models. The overall
models are searched to find a model that can be accepted as the con-
ceptual model. Two ways of performing this activity are described.

1. Human decision making. The user selects an existing model
through a menu-driven dialogue. The user is able to list the model
base and select models interactively. Characteristics of a selected
model are displayed graphically and numerically. Modifications of
an existing model, such as replacing or deleting icons are supported
as well. Afterwards, the modified model can be stored in the model
base. The advantage of this approach is flexibility obtained by using
humans for the decision making process. However, the level of ex-

pertize required is significant. )
2. Development of an intelligen m for 1 retrieval
Two ideas for development of such a system are currently being ex-

plored: )

a) Using a rule-based expert system which analyzes the overall
functions of the stored models. If more then one model can be se-
lected, the ultimate selection is based on some criteria defined by the
designer: total cost, physical constraints etc. )

b) Using a neural 1] triev . The
existing simulation models are stored in an associative memory. The
ideal model is then classified into one of the categories, based on
which of a number of stored patterns (overall models) it most re-
sembles.

A simulation model may also be built by performing the model
synthesis using a set of primitive models. For that purpose, the ap-
proach for building hierarchical, modular discrete-event models,
proposed by Zeigler [1987], can be applied. That approach is used
for development of an intelligent system for model synthesis [Kusiak
et al. 1990]. An outcome of the model synthesis process is shown in
Figure 3.
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Figure 3. An Outcome of the Model Synthesis

5. SIMULATION AND ANIMATION OF SIMULATED
ACTIVITIES

In this section, the development of an object oriented simula-
tion driver is described. Then we discuss the importance of visual-
ization of simulation statistics and animation of simulated activities
for the user-model interaction. Finally, a neural network based ap-
proach for analysis of simulation results is presented.

5.1 Development of an Object Oriented Simulation
Driver

An FMS model is executed by the simulation driver which
consists of a number of methods defined under the simulation cat-
egory in the class FMSController. The simulation driver runs the
simulation model, gathers statistics, maintains a simulation clock and
event list, displays simulation output, and performs concurrent ani-
mation.

One of the main issues to be addressed in building an object
oriented simulation driver is the representation of the list of simula-
tion events and part buffers within an FMS. An event list is imple-
mented as an instance of the class SortedCollection, and contains
events sorted according to the simulation time they occur. An event
from the list is an Association, where the key is the simulation time
the event occurs, and the value is an Array with the following event
attributes: event type, part type, number of the workstation required
to process next operation on the part, machine number within the
workstation, operation type, and AGV identification number.

For example, the event (25.5 -> (1 2 1 1 transfer 2)) means
that at the simulation time of 25.5 time units, part type 2 should be
transfered by vehicle 1 to workstation 1 where machine 2 will per-
form operation 1. Some events do not require all of these attributes.
The method scheduleNextEvent schedules events in the event list
using a minimum simulation time criteria. This means that next event
is always first one on the event list.

Part buffers are implemented as instances of the class
OrderedCollection, and are maintained using the First-In-First-
Out rule. The simulation clock, advanced according to the simulation
time of the next event, is implemented in the class
SimulationTime. A variety of distribution functions used in the
simulation of FMSs are provided by the class Distribution.

5.2 Visualization of Simulation Results

The visualization of simulation statistics during a simulation
experiment is a feature that significantly increases the efficiency of
the user-model interaction. This capability provides the user with an
insight into the current state of a simulation model. Based on that, the
user is able to observe certain problems in the model and make nec-
essary changes. For example, during the simulation of an FMS, the
user can constantly check the utilization of equipment, queue lengths,
part statistics etc. If some problems are encountered (for example,
equipment overutilized or underutilized), the user may stop the simu-
lation, make necessary changes, and continue the simulation. Some
VIS provide such capabilities. To mention only one, Cinema [1989]
dynamically displays plots and histograms representing system states
variables.

Smalltalk-80 does not have built-in capabilities to support this
feature. However, a package called PluggableGages is developed
and used for monitoring values of simulation variables in an FMS
simulator [Adams, 1988]. Guo et al. [1990] use the bar gages for
displaying the current number of parts in part buffers. This capability
is not implemented in SIMFLEX.

5.3 Animation

Animation is an essential feature of a VIS system. The graphi-
cal representation of the system layout is used to animate simulation
activities in which components of the system, represented graphi-
cally, are involved. It is a valuable support for the user-model inter-
action since most malfunctions of the model are apparent visually.
The animation helps to establish the credibility of the simulation
model, especially in the eyes of people who are not simulation ex-
perts. The animation provided in existing VIS systems is either per-
formed in parallel with the simulation execution, or, postprocessed.
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The animation is a built-in capability in Smalltalk-80. Its use
for simulation of FMSs is reported by Ulgen and Thomasma [1987],
Adams [1988], and [Guo et al. 1990]. The animation capabilities of
SIMFLEX are implemented by using the built-in Smalltalk-80 ani-
mation mechanisms. Animated objects are divided into two groups:
stationary objects (workstations and part buffers) and moving objects
(vehicles).

The change in the state of a stationary object is animated by
changing the color of a corresponding icon. For example, different
colors are provided for various states of a workstation: processing
(black), idle (white), blocked (light gray), and broken (gray). Motion
of vehicles is animated using the follow:while: message. A snap-
shot taken during a simulation experiment is shown in Figure 4.
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Figure 4. Animation of Simulated Activities

5.4 Analysis of Simulation Results

The simulation results must be analyzed to make necessary
conclusions about the dynamic behavior of the system simulated.
This is especially important when a new system is being developed.
Based on the analysis of the simulation results one design alternative
is accepted or modified to be used for another simulation experiment.
An approach for analysis of FMS simulation results is presented
[Vujosevic and Kusiak 1990b].

The system for analyzing FMS simulation results serves as a
knowledge source attached to the blackboard data structure of
SIMFLEX, as shown in Figure 5.

The system consists of three components:

1. A rule-based preprocessor which compares simulation re-
sults with the target values and, if necessary, generates the topology
of a neural network for analysis of simulation results.

2.A for training the neural net-
work, reasoning about simulation results, and explanation of con-
clusions made.

3. A nule- for implementation of design
modifications into the FMS simulation model.

S%MEJJE)(E Rule-based
Blackboar TEProcessor
Data Structure pep T
Neural
processor
T
Rule-based
POStprocessor

Figure 5. The Knowledge Source for Analysis of FMS
Simulation Results
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The rule-based preprocessor compares the production objec-
tives and the simulation results. Based on the outcome of that com-
parison and the information about the FMS physical configuration,
the preprocessor generates the input data to the neural processor.
Information generated by this system include neurons that corre-
spond to variables of interest, variable names, and values for input
data (neurons in the input layer). The neural network used as a
knowledge base for FMS diagnosis has the following characteristics:

1. It is a feedforward neural network with the input layer, one
hidden layer, and the output layer. The number of neurons in each
layer depends on the physical configuration of an FMS being consid-
ered. The neurons in the input layer correspond to the variables rep-
resenting FMS performance measures (station utilization, material
handling system utilization, and queue length). The hidden layer in-
volves a number of neurons representing variables that describe
problems that may result in an undesired FMS performance (eg., ca-
pacity problem, loading problem, etc.). The neurons in the output
layer indicate the design modifications that should be implemented
when a certain difficulty is encountered.

2. The neuron outputs in the input layer take three discrete val-
ues: +1, if a performance measure is above the maximum value al-
lowed; -1, if a performance measure is below the targeted value;
and 0, if a performance measure is within limits. The neuron outputs
in the hidden layer and in the output layer take two discrete values:
+1, if a bottleneck reason is detected (hidden layer) or if a design
modification is recommended (output layer) and 0 otherwise.

Three types of rules may be identified in the rule-based prepro-
cessor: decision rules, rules for description of the neural network
topology, and rules for assigning values to neurons in the input
layer.

Y The feedforward neural network topology, generated by the
rule-based preprocessor, is the input to the neural processor devel-
oped for reasoning about FMS simulation results. The user is asked
to enter a set of training examples for a particular FMS model, if the
set does not exist. The perceptron learning algorithm [Wasserman
1988] is used for training the neural network.

The training process results in a set of weights assigned to the
connections between neurons and biases. A knowledge base for rea-
soning about simulation results is obtained. The reasoning process is
initiated by applying values generated by the rule-based preprocessor
to neurons in the input layer. Then, the neuron outputs in the hidden
layer are calculated. For each neuron the total sum of products of
values of input neurons to that neuron and corresponding weights is
calculated. The output of the corresponding neuron is +1 if the sum
is > 0 and O otherwise. The results of the FMS analysis process are

obtained by computing the neuron outputs in the output layer in the
same manner.

The neural processor is able to explain the conclusion made by
tracing down in the input layer neurons (variables) that were in favor
of the conclusion obtained. The explanation of the reasoning process
is given in the form of production rules.

The FMS design modification recommended is presented to the
user for verification. Two cases may appear:

1. The user accepts the result of FMS analysis. The rule-based
preprocessor analyzes the design modification and incorporates ap-
propriate changes into the FMS simulation model.

2. The user does not verify the design modification. In that
case, the user is able to modify an FMS simulation model using the
capabilities for interactive model modification.

54.1 Hlustrative Example

To illustrate the ideas presented, a problem of analyzing simu-
lation results of a flexible manufacturing cell for producing a single
part type is considered. The system consists of two machines, a
robot for machine loading, a part buffer, and automated guided ve-
hicle for part delivery and pick-up.

Assume that the target number of parts has not been achieved
and therefore the bottleneck analysis has to be performed. Based on
the FMS physical configuration, the rule-based preprocessor defines
the neurons that correspond to performance measures (input layer),
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pogsible bottleneck reasons (intermediate layer), and design modifi-
cations (output layer). The names of variables represented by neu-
rons, and (assumed) values assigned to the input neurons based on
the simulation results are as follows:

Variable name
Input layer:
1) machine 1 utilization rate +1
2) machine 2 utilization rate +1
3) robot utilization rate +1
4) AGV utilization rate 0
5) queue length +1
Intermediate layer:
6) capacity problem
7) loading problem
8) transportation problem
Output layer:
9) increase number of machines
10) replace robot
11) increase number of AGVs

Value

The next step, performed by the neural processor, is to train the
neural network using the perceptron learning algorithm. For that
purpose, a small set of 8 training examples has been used. The set of
training examples could be obtained from previous simulation runs
or by using a heuristic knowledge.

A knowledge base for the reasoning about simulation results
for this simple example of FMS analysis, with assigned weights and
biases obtained from the training process, is shown in Figure 6.
Although neurons are fully interconnected without feedback, for the
sake of simplicity only connections with the weights not equal to
zero are displayed.

Increase Increase
number of number of
machnes vehicles

1 Transportation
problem

N1 N2 N3 N4 NS
Machine 1 Machine 2 Robot AGV Queue
utilization utilization utilization utilization length

Figure 6. The Knowledge Base for Analysis of a Flexible
Manufacturing Cell

Reasoning about simulation results is performed by using the
input vector of values for neurons in the input layer. The output of
the neurons in the hidden layer and the output layer are calculated and
two conclusions made: "increase number of machines" and "replace
robot".

In that case, the user can verify both conclusions, one of them,
or neither one. If the conclusion "increase number of machines” is
verified by the user, an instance of the class Machine, provided in
the class hierarchy of SIMFLEX, is created and included in the simu-
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laton model. Any additional information is provided by the user.
6. USER - MODEL INTERACTION

One of the key features that must be provided in a VIS system
is the user-model interaction during the execution of a simulation ex-
periment. The user must be able to interrupt a simulation run, make
changes in the model or even in the simulation driver's computer
code, and continue simulation. Changes should stay recorded in the
model even after simulation is completed. Schriber [1987] discussed
the aspects of the user-model interaction. For simulation of FMSs,
this feature is especially useful for checking different control strate-
gies.

Smalltalk-80 is an ideal environment for implementing these
features. The simulation experiment can be interrupted in some pre-
defined points, or arbitrarily, according to the user's observation that
some intervention is necessary. Smalltalk-80 provides special win-
dows called Debuggers that allow inspecting objects. The debugger
can be used either when the message self halt is encountered, when
a user interrupt is signalled, or when a run-time error appears
[Pinson and Wiener 1988].

The message self halt may be used for interrupting execution
of a simulation run in predefined points. When necessary changes
have been made, the simulation can be continued by selecting the
menu option proceed available in the debugger's yellow button
menu.

A user interrupt can be signalled arbitrary by using control-c
key combination.

7. INTELLIGENT ADVISORING

The assumption made in the development of a VIS system is
that the user is not a simulation expert, or even not an expert in the
application area. In addition, the user might not be familiar with the
programming language in which a VIS system is implemented. Such
a user should be able to accomplish modeling and simulation activi-
ties efficiently. This can be achieved only if the VIS system used
provides intelligent advisory capabilities. If this characteristic is not
provided, a simulation non-expert is likely to make errors. On the
other hand, the lack of the problem domain knowledge makes the
simulation experiment practically impossible. In any case, errors
made in activities, such as model development, model validation,
simulation input definition, interpretation of simulation results, and
so on, lead to an invalid simulation experiment.

A way of incorporating the intelligent advisory capabilities in a
VIS system is presented and illustrated by describing its implementa-
tion in SIMFLEX. It assumes the existence of on-line and off-line
advisory capabilities.

7.1 On-line Intelligent Advisoring

The on-line advisoring capabilities are realized by providing a
set of knowledge sources attached to the blackboard data structure
(further refereed as blackboard). The blackboard is the hierarchical
associative network that contains FMS modeling knowledge. The
knowledge sources "suggest" the user solutions of particular prob-
lems and write solutions or recommendations on the blackboard, if
accepted by the user. The system for analyzing simulation results,
presented in the section 4.4 is an example of such a knowledge
source. To illustrate suitability of the applied blackboard model,
which allows for existence of a set of knowledge sources imple-
mented in different knowledge representation paradigms, and using
different problem solving methods, we describe two knowledge
sources used for on-line advisoring: an expert system for machine
layout and/or material handling system (MHS) type selection, and a
neural network algorithm for solving the machine layout problem.

The knowledge source for machine layout and/or MHS type
selection performs following activities:

1. Suggests a machine layout type and/or a material handling
system if the user does not define these parameters.

2. Checks both parameters if entered by the user. For example,
if the user selects a circular layout type and an automated guided ve-
hicle system, the expert system suggests that a robot should be se-
lected for that machine layout type.

The expert system, implemented in the HUMBLE rule based
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expert system shell [Piersol 1987], takes the data from the black-
board using an interrogator and updates the blackboard with new
data - the FMS layout type and/or material handling system type.
HUMBLE, an expert system shell implemented in Smalltalk-
80, allows development of rule based expert systems. The expert
system for machine layout and/or material handling system type se-
lection consists of rules about machine layout and material handling
system entities, as suggested by Kusiak and Heragu [1988]. Sample
rules from the HUMBLE data base are presented bellow.
if: (selectedLayoutType = 'unknown'
& (selectedMHSType = 'agv'))

then: [suggestedLayoutType is: linear row'].

if: (selectedLayoutType = linear single row' |
(selectedLayoutType = 'linear double row')
& (selectedMHSType = 'unknown'))

then: [suggestedMHSType is: 'agv'].

The knowledge base is attached to the blackboard in a manner
similar to that suggested by Piersol [1987]. To attach a HUMBLE
knowledge base to a blackboard, an interrogator which reads the
blackboard must be created. Three messages oneOf:, moreOf:,
and request: are the means by which a HUMBLE knowledge base
interacts with its interrogator. For this purpose, these messages are
defined differently then they are in the class Interrogator provided
in HUMBLE. The message oneOf: looks for the existence of a
single type of entity in the real world. It always returns true because
it is assumed that there is only one machine layout type and one ma-
terial handling system. The message moreOf: looks for more ma-
chine layouts and material handling systems. Since, they do not ex-
ist, this message always returns false. The value of a parameter is
returned by the message request:. Whenever the inference engine
asks for the value of a particular parameter, a method with a selector
corresponding to the parameter name is executed.

As an example of how it works, consider the first rule pre-
sented above. When the HUMBLE inference engine encounters the
parameter selectedMHSType, the method selectedMHS is exe-
cuted and returns the type of the material handling system (in this ex-
ample "agv") entered by the user, which is stored in the blackboard.
Based on this information the expert system suggests "linear row"
machine layout type.

In the same way, any knowledge source that can serve as an
intelligent advisor can be attached to the blackboard. The only pos-
sible modifications are three described messages for interaction with
the interrogator.

In some cases (for example, for design of a new system), the
user may want to perform the optimization of the machine layout, ac-
cording to the machine layout type selected. For that purpose, a neu-
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ral network algorithm for solving the machine layout problem based
on the Hopfield network [Hopfield and Tank 1984] has been devel-
oped. The simulation of the machine layout algorithm and the result
of the optimization process are shown in Figure 7.

7.2 Off-line Intelligent Advisoring

The second approach suggests the use of an associative
(semantic) network for developing a comprehensive advisory system
for simulation. The NRL, originally developed for this purpose, has
already been successfully used for development of an advisory sys-
tem for teaching and coaching designers and students about the use
of a digital logic simulation system [Antao et al. 1989]. An off-line
advisory system for simulation of FMSs is currently under develop-
ment, following design guidelines proposed by Antao et al. [1990].
The system is defined to provide the following capabilities: a tutorial
on modeling of FMSs, a tutorial on discrete-event simulation princi-
ples, a tutorial on the VIS system used, and learning by running ex-
ample simulations.

At any point, the user is able to stop the modeling and simula-
tion process and activate the advisory system. The knowledge used
for advisoring is encoded into an associative network visually dis-
played on the screen. The hypertext paradigm features, implemented
in NRL, allows the user to explore the knowledge network through a
mixed initiative dialogue. The user access to the tutorial knowledge is
guided visually by coloring nodes. The successfully completed
nodes are grayed lightly, the nodes that are supposed to be explored
next are fully displayed, and the nodes not accessible at that point are
blacked out. The user is able to explore (learn) concepts (stored in
nodes) that are of his/her interest in a particular point during the
modeling and simulation process.

A set of simulation examples is stored in nodes. The purpose is
to allow the user to exercise the concepts learned, before performing
an actual simulation experiment.

8. CONCLUSIONS AND FUTURE WORK

The primary goal of the research presented was to explore ap-
plicability of the object-oriented programming paradigm in develop-
ment of VIS systems. The result is an experimental system for VIS
of FMSs. VIS has been found to be a natural domain for application
of the paradigm and graphical capabilities provided in Smalltalk-80.
The research has been focused on the technical aspects of this appli-
cation. Commercial aspects have not been considered.

The other activity involved the application of Al techniques.
The blackboard model based problem solving method implemented
allow for application of different Al techniques, such as neural net-
works and expert systems, for solving various modeling and simula-
tion tasks. An approach for providing the intelligent advisory capa-
bilities in a VIS system is presented.

L . D T I R N .
SIMULATION OF A NEURAL NETWORK ALGORITHM Machine #2 in site #4

W Sy stem Transcript

LOCATION Machine #3 in site #5
3

il 2 f‘ Cost of this machine layout is 19,
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Cm e 5andCje
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Machine #3 in site #4
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Figure 7a-b. Simulation of a Neural Network Algorithm for Solving 5-Machine
Layout Problem. a Intemediate State, b Best Solution Found
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The ongoing research activities are directed towards the devel-
opment of a blackboard model based intelligent FMS design system.
In addition to the features currently under development, as described
in the paper, it requires development of a set of knowledge sources
that perform specific FMS design activities, such as: machine selec-
tion, machine cell formation, cell layout formation etc.
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