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ABSTRACT

In this paper the methods of object-oriented programming are
compared with the software needs of the field of computational me-
chanics and then accessed. It appears that object-oriented program-
ming techniques can enable computational mechanics software struc-
tures with desirable characteristics not easily obtained within a con-
ventional software perspective: (1) they can function more easily
with different coordinate types; (2) they facilitate the construction of
larger system models from proven (relocatable) sub-system models,
and (3) they easily support multi-resolution computational processes.

1. INTRODUCTION

In recent years significant progress has been made toward the
development of solvers for analyzing large and complex mechanical
systemns composed of several interconnected rigid or flexible bodies
[Haug 1984]. Typical systems analyzed by these solvers range from
relatively simple slider-crank systems to very complex ground or
aero-space vehicles. These solvers often integrate several modes of
analysis such as static equilibrium analysis, nonlinear dynamical
analysis, kinematic analysis, inverse dynamic analysis and linearized
dynamical system analysis. Static analysis is used to determine a
system equilibrium state. Nonlinear dynamics analysis consists of
producing time histories of body positions, velocities, accelerations
and reaction forces. Kinematic analysis is used to compute body
positions, velocities and accelerations when predetermined motion
trajectories are imposed on one or more bodies. Inverse dynamical
analysis is used to compute the forces necessary to cause prescribed
motion. Linear dynamical analysis is carried out by automatically
linearizing a nonlinear dynamics model and applying eigenanalysis
methods.

Current trends are toward more advanced modelling capabilities,
integration of more modes of analysis and the introduction of multi-
disciplinary physical effects such as nonlinear material effects, feed-
back control elements and electro-mechanical or hydraulic actuators.
There have also been efforts to integrate design optimization methods
with the technology (e.g., the emerging field of design
automation).We can expect, however, if traditional approaches are
used to meet the objectives stated above that bulkier and more
complex software structures will result and it is likely that reliability,
responsiveness to technological change and maintainability will
suffer. Recent developments in software engineering, especially
object-oriented programming techniques, have been directed toward
overcoming these problems by providing new ways of organizing
software structures [Dahl et al. 1967; Cox 1986; Goldberg and
Robson 1983; Pascoe 1986; Petersen 1987; Stefik and Bobrow
1986].

This paper describes our research into the design of multibody
mechanics solvers based on the concepts of object-oriented program-
ming. The results have been encouraging. In each of the examples
that we have studied we have concluded that object-oriented pro-
gramming methods not only provide solutions to the practical
software problems mentioned above, but they also open up several
new opportunities in the simulation of engineering systems.

The paper is organized as follows: In Section 2, a general state-
ment of the main goals is presented. In Section 3 the approach is
described. Section 4 presents conclusions and future directions. In
Appendix A a brief overview of object-oriented programming is
presented. In Appendix B the body of general computational engi-
neering methods that we use is presented.
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2. GOALS

Object-oriented programming is a relatively new idea in software
programming that concentrates on the objects of a system rather than
on the procedures that manipulate data, as conventional software
does (e.g., FORTRAN or PL/T). Object-oriented programming has
been compared with the notion of the interchangeable part in
manufacturing since programmers produce components (objects) in
which procedure (methods) and data (state) are packaged together so
as to be reusable. Several practical benefits have been attributed to
object-oriented programming. These include improved
representational flexibility, improved reliability, reduced sensitivity to
disruption by changes thereby promoting enhancements, lower
development and maintenance cost, and a seamless transition from
systems analysis all the way to the actual code.

Object-oriented programming is described in several sources
[Cox 1986; Goldberg and Robson 1983; Pascoe 1986; Petersen
1987; Stefik and Bobrow 1986]. We present only an overview of
the basic ideas in Appendix A. Our terminology is consistent with
the object-oriented language Smalltalk-80 [Goldberg and Robson
1983].

The general goal of this work is to outline how the methods of
object-oriented programming can be applied to the design of compu-
tational engineering software structures and show the advantages of
the approach. We have selected the area of computational multibody
mechanics due to its relatively high level of development, its general-
ity and our familiarity with it (see Appendix B). In our work we
have studied a multibody static equilibrium solver and a multibody
kinematics solver [Sung 1989]. In a related project an object-
oriented bond graph processor has been studied [Reid 1990].

To illustrate the effectiveness of the object-oriented design ap-
proach in this paper we describe an approach for achieving three
advanced simulation design goals related to computational multibody
mechanics software:

2.1 Design Goal 1: Reusable Model Elements

The first goal is to create reusable mathematically based engi-
neering models which allow complex engineering models to be
constructed from proven submodels. This is difficult to achieve with
conventional software methods since interchangeability and
relocatability of software structures are often inhibited by the normal
requirement of data type agreements. Object-oriented programming
methods overcome these difficulties by providing encapsulation,
dynamic binding and polymorphism. In otherwords, since objects
respond to messages according to their own internal methods, objects
(models) of different types can respond to identical messages with
different results. This simplifies the construction of models from
encapsulated submodels as will be illustrated below.

2.2 Design Goal 2: Multi-Resolution Simulation

The second goal is to create multi-resolution computational
mechanics structures. Multi-resolution computational processes
(e.g., multi grid methodology ) been extensively studied in
connection with solving large computational mechanics problems but
their many advantages have been difficult to obtain due to the
difficulties associated with implementing them with conventional
software structures [Schultz 1981]. Dynamic binding and
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polymorphism offer a solution here, as well, since model
components can be easily changed at run time.

2.3  Design Goal 3: Coordinate Free Design

One of the sources of complexity in mechanics is due to the vari-
ous geometric coordinate frames that one can adopt. Indeed the ana-
lytic mechanics of Lagrange was a milestone largely because it pro-
vided a general statement of the equations of motion that did not de-
pend on a particular geometric point of view (e.g., generalized
coordinates and generalized forces). The final goal of this work is to
develop computational mechanics software structures which function
above the level of geometric detail. This goal is achieved by making
the higher levels of the class hierarchy free of specific geometric
references, such as geometric dimension, through the use of
polymorphism.

3. GENERAL DESIGN APROACH

The designs utilize new classes and related subclasses which
are created to support the needs of computational multibody
mechanics as outlined in Appendix B. Figure 1 depicts a portion of a
one class hierarchy used for representing and simulating multibody
systems.

Object
MechanicsObject
MechanicsElement
InertialElement

PointMass
RigidBody
RigidLink
FemLink
MechanicsPalr
ForcePair
LinearSpring

GravitationalForce

KinematicPair

RevoluteJoint

TranslationalJoint
Node

Figure 1. A Class Hierarchy for Multibody Mechanics

The MechanicsElement class is used to define the various
mechanical components found in multibody mechanics such as point
masses, rigid bodies, elastic bodies and springs, dampers and kine-
matic joints. It captures common behavior between its two sub-
classes; those being the InertialElement class and the
MechanicsPair class.

The instance variables of members of the class
MechanicsElement consist of an elementList which is a collec-
tion of MechanicsElement objects , a pairList which is a collec-
tion of inter-element connecting elements such as kinematic pairs or
connecting forces and a nodeList which represent points of interest
in the given mechanical element and any applied forces which act at
the points.

Any instance of the MechanicsElement class possesses meth-
ods for assembling numerical equilibrium equations in the general
forms described in Appendix B or reporting a fault if it cannot do so.
This is done by sending appropriate messages to the members of its
elementList instance variable (e.g. its subcomponents). This
allows instances of class MechanicsElement to simulate its
behavior by directly solving a set of element equilibrium equations.
To support this capability the MechanicsElement class also
possesses methods for reporting the current value of its Jacobian
submatrix and its contribution to the system equilibrium vector. This
allows any instance of class MechanicsElement to become a
subcomponent of a larger mechanics element.

A key to meeting each of the goals listed above is that the mes-
sages sent to the mechanical elements for assembling the equilibrium
equation are designed according to the principle of polymorphism. In
otherwords, identical messages are sent to each Mechanics-
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Element instance regardless of its specific nature. Thus it is
assumed that each MechanicsElement instance possesses the
appropriate specific methods and data for correctly contributing to the
assembly of the system equations.

In order to build up complex models from simpler models (see
Section 2.1), one can proceed by installing the Mechanics-
Element objests which represent each member of a set of submodels
into the elementList belonging to the higher level model. For
example, in order to instantiate a four bar mechanism, one can send a
message to the MechanicsElement subclass FourBar instructing
it to create an instance of itself. The instantiation class method, which
is coded in Smalitalk 80, is shown in Figure 2. It illustrates the
process of installing instances of classes (e.g. RigidLink
instances) into an instance of another class (e.g a
FourBar.instance) A code fragment which uses this class method
to instantiate a four bar mechanism is shown in Figure 3. In these
examples the RigidBody subclass RigidLink describes a rigid
body with two nodes at specific locations within the link's local
coordinate system.

FourBar at:aPosition with:linkl with:link2 with:link3

InewFourBarl

newFourBar « super new.

newFourBar
installElement:link1 named:'Link 1%;
installElement:link2 named:'Link 2';
installElement:link3 named:'Link 3';
installNode: Node at: (link] nodeFramePosition:'Node A’) named:'Ground A';
installNode:Node at: (link3 nodeFramePosition:'Node B') named:'Ground B’;
installRevolute: "Revolute 1' from:self at:'Ground B’ to:'Link 1' at:'Node A",
installRevolute: 'Revolute 2' from:'Link 1' at:'Node B' to:'Link 2' at:'Node A";
installRevolute: 'Revolute 3' from:'Link 2' at:'Node B’ to:'Link 3' at:'Node A';
installRevolute: 'Revolute 4' from:'Link 3' at:'Node B’ to: self at:'Ground B';

setPosition: aPosition.
AnewFourBar

Figure 2. Class Instantiation Method for a Four Bar Mechanism

link1 RigidLink between:positionl and:position2
link2 “RigidLink between:position2 and:position3.
link3 “RigidLink between:position3 and:position3.
fourBar"FourBar at:aPosition with:linkl with:link2 with:link3.

Figure 3. Code for Instantiating a Rigid Four Bar Mechanism

This process is now illustrated in another example. Here (see
Figure 4) a slider crank mechanism, a four bar mechanism and a
simple link are installed into a MechanicsElement representing a
more complex kinematic system.

In order to formulate multi-level representations, instances of the
MechanicsElement class can function at more than one level of
resolution. For example, calculating the dynamic response of a four
bar mechanism in some circumstances requires details concerning the
flexibility of its links whereas in other circumstances a rigid body
assumption is adequate. In the instantiation method below (Figure
five) a four bar mechanism is created from members of class
FemLink. Class FemLink is a subclass of RigidLink whose
elementList instance variable contains a set of plane triangular finite
elements and point masses. Note that the same FourBar class
instantiation method which was shown above in Figure 2 is used
without change to instantiate the flexible four bar .

femLinkl ~ Femlink between:position] and:position2
femLink2 ~ Femlink between:position2 and:position3.
femLink3 ~ Femlink between:position3 and:position3.
flexibleFourBar * FourBar at:aPosition
with:femLink1
with:femLink2
with:femLink3.

Figure 5. Code for Instantiating a Multi-Resolution Four Bar
Mechanism
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FourSlider at:aPosition
with:aFourBar
and:fourBarNode

with:aLink
with:aSliderCrank
and:sliderCrankNode

| newFourSlider|
newFourSlider « super new: aLabel.
newFourSlider
installElement: aFourBar named:'FourBar';
installElement: aLink named:'Link’;
installElement: aSliderCrank named:'SliderCrank;
installNode: Node at:(aFourBar nodeFramePosition:'Ground A')
named:'Ground A’
installNode: (Node at:(aFourBar nodeFramePosition:'Ground B')
named:'Ground B';
installNode: (Node at: (aSliderCrank nodeFramePosition:'Ground A')
named:'Ground C';
installNode: (Node at: (aSliderCrank nodeFramePosition:'Ground B')
named:'Ground D';
reGround: from: self at:'Ground A’ to:'FourBar' at:'Ground A';
reGround: from: self at:'Ground B' to:'FourBar' at:'Ground B';
reGround: from: self at:'Ground C' to:'Slider’ at:'‘Ground A"
reGround: from: self at:'Ground D' to:'SliderCrank’ at:'Ground B'.
aFourBar installNode: fourBarNode
in:'Link 3' named:'Node C'.
aSliderCrank installNode: sliderCrankNode
in:'Link 2' named:'Node C .
installRevolute: ‘Revolute 1'
from:'FourBar' at:'Node C'
to:'Link’ at:'Node A';
installRevolute: 'Revolute 2
from:'Link' at:'Node B’
to:'Slider' at:'Point B';
setPosition: aPosition.
AnewFourSlider

Figure 4. Combining Encapsulated Model Elements

Each FemLink object can function circumstantially either as a
rigid link or a elastic link. by responding to the messages rigid and
flexible. We note that dynamic binding allows these operations to
be carried out at run time. MechanicsElement instances in general
respond to the messages expand and contract. The expand
message causes the instance to be replaced by the contents of its
elementList instance variable in the simulation. The contract
message reverses the process. Experimental codes which explored
this notion were written and tested successfully on static equilibrium
solvers composed of springs and connection nodes.

An additional class, the Vector class, was created to facilitate
a computational mechanics methodology that effectively manages
geometric complexity in the simulations (Section 2.3). This is
achieved by designing a class structure whose higher levels were
free of references to a specific coordinate geometry. Specifically, the
methods that use vectors are designed to function without knowing
the geometric type of the vector. For example, the method for
computing the resultant force on an inertial element does not need to
know whether the inertial body is represented in a two dimensional
space or a three dimensional space.

MechanicsElement objects use Vector instances to represent
position, velocity, acceleration and forces. Due to polymorphism,
objects that send messages to vectors need not know their geometric
type or their computational processes. In effect, much of the system
becomes coordinate free as desired. This is apparent in the Smalltalk
80 code shown above where no specific geometric references are
made.

4. SUMMARY AND FUTURE DIRECTIONS

In this study three advanced simulation design goals related to
computational multibody mechanics software were posed and
successfully achieved. These goals consisted of creating reusable
model elements, implementing multi-resolution simulation and
reducing geometric complexity by following a coordinate free design
approach. The principles of object-oriented design led directly to
effective solutions to these objectives.
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Further development of the object-oriented computational me-
chanics simulators discussed in this paper is needed in order to solid-
ify these benefits over the long range. Especially the question of
overall computational efficiency of the solvers has not been
addressed in our work. Unfortunately, the advantages of object-
oriented design, to date, often have resulted in reduced computational
efficiency. This is not necessarily a permanent situation. Work is
being done to improve the efficiency of object-oriented languages.
Additionally, we expect advanced physical system simulation to
combine several physical domains. For example simulating an active
suspension of an automobile involves concurrent simulation of
mechanical, electrical, hydraulic and feedback control mechanisms.
These issues are directly addressed in [Reid 1990].

APPENDIX A. OVERVIEW OF OBJECT-ORIENTED
PROGRAMMING

Object-oriented programming proposes that large complex prob-
lems can be broken down into simple, easy to manage problems with
the relatively few concepts of objects, classes, encapsulation, inheri-
tance and messages.

Objects combine data and the code that operates on that data into
a single useable structure. An object captures the state and the
behavior of something. The code that operates on the data, or that
represents the behavior, are called methods. The data, or state, of an
object are referred to as instance variables.

The way to manipulate an object's data (or state) is to send that
object a message. If the message is understood by the object it will
perform the requested action using its appropriate method(s). If not,
the object will respond that the message was not understood. The lo-
calization of data manipulation by the object itself is known as encap-
sulation. One cannot manipulate an object's data structure without
sending it a message. Polymorphism is the ability to send the same
message to different objects. That is, the same action can be
requested from different objects without special processing.

Objects sharing common properties are grouped together in a
class. A class provides a template for objects so that common objects
are always stored and manipulated in a consistent manner. The class
feature provides a consistency in the software that typically is lacking
in more conventional languages. An object is an instance of a class.

In order to take further advantage of common data structures and
methods, a class hierarchy is introduced. A particular class can have
subclasses (dependents) and superclasses (parents or ancestors).
This family-tree-like structure is referred to as the class hierarchy.
The advantage of a class hierarchy is that an object inherits all of the
properties of its superclasses. This means that the object not only
has available to it its own data and methods, it also has access to the
data structures and methods associated with its superclasses.

Inheritance of class description reduces the information needed
to build up descriptions since each statement describes how a new
class differs from a previous one in the class library. This of course
contributes to the reusability of software existing classes can be
modified to create new ones. Another consequence of inheritance is
that the descriptions associated with the higher levels in the system
hierarchy can be arranged to be more abstract while detailed
information is hidden in lower system levels. Thus, inheritance
organizes information structures so that messages have minimal
detail and type sensitivity For example the model, state space and
computational processes associated with multibody mechanics are
hierachically decomposed from abstract to specific. We have found
that this allows for a more robust and extendible implementation.

APPENDIX B. COMPUTATIONAL MULTIBODY
MECHANICS

References [Calahan 1977; Orlandia 1973; Haug 1984; Sohoni
and Whitesell 1985]. describe the body of computational mechanics
methods that we are studying. The research has concentrated on
creating an object class hierarchy that is able to support some or all of
the methodologies described below .

Any of the cases of state variables and equations of motion we
are studying can be represented with mixed sets of differential-
algebraic equations of the form
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aly.y.f)=0 (1

where the actual form of the vectors y,Y,f will depend on the dimen-

sion and type of state space chosen. One of the project goals is to for-
mulate computational mechanics problems in terms of arbitrary state
spaces. For the present we will assume that y has the form

y'=[a.qA]
Here q and q represent body position and velocity vectors. The

vector A represents Lagrange multipliers which correspond to alge-
braic kinematic constraint equations. The vector f has the form:

f=1(q,q,\,t) and it represents all non inertial forces. This choice
amounts to a non-minimal set of body coordinates and it usually
leads to large and sparse differential-algebraic equation sets An
important advantage of this approach is that forming the system
equations is simple since the coordinates are chosen without regard to
model topology. Another advantage is the ready availability of body
position velocity and force information. Numerical solution is more
difficult however and special methods are sometimes necessary.

We also assume that the governing equations for the mechanica.
system as given by equation (1) can be linearized by taking

variations about an operating point P = (y (t),y (1),f*(t)) as

89 =[09/9y],8y +[0g/y],, 8y +[0g/of],8f =0  (2)
where 8y 8y and 3f are variations about p. The matrices

[99/9Y]l, » [0g/dy]|p and [9/0f]|, are partitions of the Jacobian
matrix associated with the nonlinear function g(p). The linearized
equation (2) is called the linear variational equation associated with
g.

B.1 Nonlinear Dynamical Analysis

To carry out the integration of equation (1) it is common to use a
multistep predictor-corrector method . Usually, the corrector formula
for these methods is based on a Newton-Raphson iteration scheme
and has the form:

JAy = -¢g

where the matrix J depends on [09/9Y]|, and [99/dY]|p.
After predicting a new value for y on the basis of the history of

yand Yy over one or more preceding time steps, the residual of the
governing equations , based on the predicted values of y is reduced
by repeated applications of the corrector formula. The iterative proce-
dure is stopped when the convergence criterion is satisfied. It has
been observed that numerical difficulties can occur when attempting
to solve differential-algebraic sets. However, for the purposes of this
study it will be assumed that effective numerical approaches are avail-
able for integrating the equations.

B.2 Nonlinear Static Analysis

If the equation is satisfied by p such that y'(t) = O then we say
that the system is in a state of static equilibrium. Finding such a point
constitutes a static equilibrium analysis. Having found such a point a
linearized dynamic or linearized static analysis in a neighborhood of
this point can be carried out.

B.3 Linearized Dynamic Analysis

If we assume that the mechanical system represented by g is in a
state of equilibrium or other state (e.g. steady motion) at p* such that

matrices [09/0Y]l,» [0g/dy]|p @and [09/5f]lp are time invariant then
we may carry out eigenanalysis. If we assume (2) is a homogeneous
equation by choosing &f =0 and if we express 8y as

dy = eBt 2

where
Z ... complex constant vector
f3... complex constant scalar
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we may derive a generalized eigenvalue problem of the form
{{9g/9y]l,~Blog/oy],}z =0

from which we may determine 3y.
The matrix [09/0y]|, ;however, is singular if no A terms appear

in g. Thus the eigenvalue problem is not well posed and special
methods are needed.

B.4. Linearized Static Analysis.

In a state of static equilibrium p the linear variational equation

becomes
(09/9y]lp 8y + [dg/of]|p 8f = O
from which we may extract

[3g/3a|3g/dr]lp [5G, SAIT = - [3g/af]|p 8

From this equation we may determine variations in the displacement
and reaction forces due to load variations 8f by solving for 8q and
SA.
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