Proceedings of the 1990 Winter Simulation Conference
Osman Balci, Randall P. Sadowski, Richard E. Nance (eds.)

OBJECT ORIENTED PROGRAMMING LANGUAGES FOR DEVELOPING
SIMULATION-RELATED SOFTWARE

Timothy Thomasma

University of Michigan - Dearborn
Industrial and Systems Engineering
4901 Evergreen Road
Dearborn, Michigan 48128

ABSTRACT

A comparative study has been done in which a portion of an
icon-based simulation program generator is implemented in each of
four object oriented programming languages that are available for
MS-DOS and PC-DOS based personal computers. The languages
studied are MODSIM 1I, Objective-C 4.0, Smalltalk/V 286, and
Zortech C++. These new languages and new versions of older lan-
guages produce code that runs much more quickly than code pro-
duced by earlier object oriented programming languages, thereby
eliminating much of the execution speed penalty commonly associ-
ated with object oriented programming. The choice of which object
oriented language to use is dependent on the syntax one feels most
comfortable with, the appropriateness to the job at hand of the
classes in the libraries provided with the language, and the quality of
support given by the programming environment supplied with the
language.

1. RECENT DEVELOPMENTS IN OBJECT
ORIENTED SIMULATION

In the course of doing a computer simulation study there are a
number of pieces of software that are useful, in addition to the
model itself. Simulation program generators [Ulgen and Thomasma
1989] can often be used to quickly produce models from descriptive
data fed to them describing a real system. There are programs that
assist in analysis of data and management of simulation models, ex-
perimental frames, and results of runs [Grant and Starks 1988].
Some programs fit probability distributions to observed data [Law
and Vincent 1988]. Others assist the user in preparing animations of
simulation runs [Poorte and Davis 1989]. All of this is in addition
to the compiler used to generate executable code from the simulation
language statements.

These pieces of software are being packaged together in the
form of simulation support environments. It is likely that future
simulation environments will include other kinds of software, e.g.,
artificial intelligence software for assistance in system design and
design and management of experiments. The people who are devel-
oping simulation support environments are and should be people
with expertise in simulation.

There has long been interest in applying object oriented pro-
gramming to the construction of simulation models. In fact, object
oriented programming was first supported in the Simula simulation
language [Birtwistle et. al. 1979]. Object oriented programming is
particularly appropriate for implementing hierarchical, modular
simulation modeling and distributed simulation. Hierarchical,
modular simulation modeling and distributed simulation are rarely
done using anything other than an object-oriented programming lan-
guage or approach.

Object oriented programming is also seen as an important
technique for producing all kinds of software. Recently there has
been a proliferation of object oriented programming languages,
some of which are supported and promoted aggressively by leading
software companies. For PC-DOS and MS-DOS machines, one can
choose an object-oriented programming language from this (not nec-
essarily all-inclusive) list: Smalltalk/V 286, ObjectWorks for
Smalltalk-80, C++ (from at least five different companies), Turbo
Pascal 5.5, Objective-C, MODSIM 11, Eiffel, GoldWorks II, Actor,
C_Talk. Similar lists exist for the Macintosh, for OS/2 machines,
and for Unix workstations. Some of these languages and new ver-
sions of older languages have been very recently released.

482

James Madsen

Production Modeling Corporation
One Parklane Blvd. Suite 1604 West
Dearborn, Michigan 48126

Previous experience with earlier versions of many of these
languages has led to the conclusion that object oriented program-
ming languages support faster program development, but the pro-
grams that are developed run more slowly than programs developed
using a standard programming language. Therefore, it has been
considered that the best applications for object oriented program-
ming are in the software elements that support the model-building
process, especially those that involve a high degree of user interface
or artificial intelligence [Alasuvanto, et.al. 1988, Thomasma and
Ulgen 1988]. One should use these tools to assist in building simu-
lation models that are actually compiled by standard compilers, such
as C, FORTRAN, GPSS, SLAM, SIMAN, etc.

Improvements in object oriented programming languages are
changing this picture. In arecent comparative review [Doyle 1990]
it was found that Zortech C++ produces simulation programs that
run very nearly as fast as programs written in C and that Smalltalk/V
286 produces simulation programs that run faster than those written
in Simscript II.5.

These new developments led us to undertake a comparative
review of our own of several object oriented programming lan-
guages. We are primarily interested in how suitable they are for
writing simulation program generators. We also provide new
empirical results on run-time efficiency of simulation programs
written in some of these languages.

2. TEST PROGRAMS

The program that we are using in this experiment is a portion
of SmartSim [Thomasma and Ulgen 1988]. It uses icons and popup
menus to capture information from the user that describes the
buffers and workstations in a manufacturing system. Part routings
are indicated by arrows that the user draws on the layout showing
the paths of the various parts through the system. Figure 1 shows
how the user interface looks. Once the information is obtained, the
program writes it to a file, which is intended to be read by a data-
driven simulation program written in SIMAN.

In addition to designs for simple versions of the classes in
SmartSim's class hierarchy (Figure 2), the design of this program
includes specifications for user interface objects, including Button,
TextButton, EditField, Menu, ParameterMenu, and Image. This is
done in order to implement the program in object oriented pro-
gramming languages that don't have class libraries for interactive
graphics.

In order to compare execution efficiency of the various lan-
guages, simplified versions of SmartSim's Simulator,
StationarySimulationObject, Part, PartType, Event, Source, Sink,
Conveyor, StorageFacility, Router, and Workstation are imple-
mented. Then the model pictured in Figure 1 is built and run
(without animation).

In the system shown in Figure 1 parts enter the Source with an
exponential interarrival time at an averages of 14 seconds between
arrivals. These parts are placed on the Conveyor and travel down it
for 20 seconds before accumulating at the end. The Conveyor has a
maximum capacity of 10 parts. If a part cannot be placed on the
Conveyor, it leaves the system. Parts are taken from the Conveyor
and placed on an idle Workstation. The decision as to which
Workstation to send the part to is made by the Router. Processing
times for these three Workstations are each normal with mean 40
seconds and standard deviation 5 seconds. Each of these
Workstations is subject to random breakdown. Breakdowns occur
between 200 and 1000 seconds apart, distributed uniformly. Repair

T. Thomasma and J. Madsen

a Workstation

Il'ime 20] a Source

a Conveyor a R%ler a Workstation

a Storage Facility a Workstation

Define IXnim:\liun | IN
Subsystem)
l Animation is now : ON l
Reset

time 10 0

[Screen coordinates of time display : 3()2@6I7—l

I Simulated time has no relation to real ime I

Browse l Width = height of one pixel = 0.1 mclers]
part types a Sink

I Number of images drawn per instant move : 6 I OUT

l Name of file in which trace is written : f31 March [988 l

Start — - —
’ I'race is now : OI'F
F'rc;nc an instance of a subsysten from the subsystem library l
Workstation | Storage Facility Router Source Sink Conveyor
l e
Figure 1. The Test Program's User Interface
Object
| J
Simulator Stationary Simulation Object Part Event
Workstation Storage Facility Router Source Sink Subsystem

Conveyor

Figure 2. SmartSim's Class Hierarchy

483

Object Oriented Programming Languages for Developing Simulation-Related Software

times are exponential with mean 15 seconds. When processing is
finished, the parts are placed in the StorageFacility, which has a ca-
pacity of 10 parts, before being processed on the last Workstation,
after which time they leave the system at the Sink. The last
Workstation is not subject to random breakdowns. Its processing
time is normal with mean 12 seconds and standard deviation 2 sec-
onds

All of this code was prototyped in Smalltalk-80 on a Tektronix
4405 and thoroughly tested and debugged prior to the start of the
study. The random number generator in Smalltalk-80 [Goldberg
and Robson 1989] is used if no other random number generator is
provided by the language.

3. LANGUAGES USED IN THE STUDY

The languages we are studying are MODSIM I, version 1.1,
Objective-C 4.0, Smalltalk/V 286, and Zortech C++. Zortech C++
is a complete compiler that comes with an extensive library and pro-
gram development environment.

MODSIM II and Objective-C operate as C preprocessors.
MODSIM I translates its source code into Turbo C 2.0. Objective-
C translates its source code into Microsoft C 5.0. Once translated
by MODSIM II or Objective-C, the code must then be compiled,
using Turbo C or Microsoft C compilers, respectively.

The libraries and programming environment for Objective-C
are limited at present in the MS-DOS version, although there are

third-party libraries available. Other versions (for Unix worksta-
tions) provide much larger libraries and more programming support
tools.

MODSIM II is the only language in the group that supports
simulation directly, and this support is built into the language, as
well as added in a library. The libraries presently provided with
MODSIM 1II are otherwise rather limited. However, the next ver-
sion (becoming available in Summer 1990) offers Simgraphics as a
graphics library.

Smalltalk/V 286 is an interpreted language. Its programming
environment is the most elaborate and its class libraries are the most
extensive of any of the languages tested. Smalltalk/V 286 provides
no direct support for simulation modeling.

Objective-C and Smalltalk/V 286 have been available the for
the longest time for MS-DOS. Zortech C++ has received positive
reviews in the trade magazines. MODSIM II is the first commercial
implementation of the Army's ModSim language [Herring 1990].

Newer object oriented languages tend to be extensions of other
programming languages. Smalltalk is quite different from the usual
programming languages and it is partly for that reason that people
find it hard to learn. In order to learn Objective-C, it is very helpful
to already know both C and Smalltalk.

The newer languages, C++ and MODSIM 11, are extensions of
C and Modula-2, respectively. The latest version of Turbo Pascal
(5.5) also is extended to support object oriented programming, gen-
erally along the lines of the way in which C++ extends C.
Therefore, all other things being equal, a C programmer is most
likely to feel comfortable with C++ and an Ada, Pascal, or Modula-
2 programmer is most likely to feel comfortable with Turbo Pascal
5.5 or MODSIM 11
4. EXPERIMENTS
We wanted to estimate the degree of difficulty we can expect if
we use each of these languages to develop simulation and simula-
tion-support programs. We wanted to find out how well a detailed
object oriented design can guide efforts to implement programs in
several object oriented languages. Prior to performing the experi-
ments, we each were experienced Smalltalk-80 and Objective-C
programmers. MODSIM II and C++ were new languages to us.
We read all accompanying documentation on these two new lan-
guages before starting on these experiments.

All the experiments were done on identical 386-based IBM-
compatible computers, running under MS-DOS at 25MHz. In order
to do the port from Smalltalk-80, the same bottom-up implementa-
tion pattern would be used in each case, as follows.

1. Implement the user interface classes, if needed
2. Add Simulator, if needed

484

3. Add Stationary Simulation Object and submenus.
4. Code and run the example executable simulation
model.

In order to save time, we did parts of this in each language and used
our experiences to extrapolate figures on effort to implement the en-
tire program. We implemented the necessary user interface objects
in Objective-C and C++ and coded and ran the example simulation
model in Smalltalk/V 286 and MODSIM IL

5. OUTCOMES
5.1 Ease of Program Construction

We expected Smalltalk/V 286 and Zortech C++ do the best
job, overall, of supporting program construction, since they have
the best programming support environments and most extensive li-
braries. We did not expect MODSIM II and Objective-C to be as
good. Their libraries are limited and the need for three steps
(translate, compile, link) in order to get executable programs from
source code slows down the pace of work.

In fact, we found that MODSIM II, in its present version, was
as good as C++ in speeding software development, and that the new
release is likely to be better. We found that manually porting the
portion of SmartSim from Smalltalk-80 to our four target languages
takes 26 hours for Smalltalk/V 286, 105 hours for MODSIM I, 171
hours for C++ and 257 hours for Objective-C. We estimate that
when Simgraphics becomes available for use with MODSIM 1I, this
time will be cut from 105 hours to 72 hours.

The numbers presented above are only estimates, based on
extrapolations from two programmers' experiences in porting por-
tions of one program. We feel that at most the numbers indicate that
this sort of programming requires similar effort in MODSIM II and
C++, greater effort in Objective-C, and somewhat less effort in
Smalltalk/V 286. One reason why the port to Smalltalk/V 286 took
so little time is that Smalltalk/V and Smalltalk-80 are very similar
languages.

The surprising degree of suitability of MODSIM 1I could be
attributed to at least three factors. One is that MODSIM II comes
with a very powerful intelligent compiler that manages the entire
process of translating, compiling, and linking. It also does configu-
ration management, much as a Unix or C "make" utility does, but it
creates and maintains its own "make file" automatically.
Compilation does in fact take a long time, but the compiler auto-
mates a lot of tasks that usually fall to the programmer. This
makes it particularly useful to support programming teams.

Secondly, the MODSIM II language is well designed and well
documented. The language elements are familiar to anyone who
knows a language like Pascal, C, or Ada and who is familiar with
the concepts of object oriented programming. The language ele-
ments usually work in just the way a person with that background
would expect them to. About 85% of what we needed to know in
order to write our program in MODSIM II we learned just by read-
ing the tutorial. Finally, both the compiler and runtime error mes-
sages pinpointed precisely which statements in which modules were
causing errors.

We had expected to be able to port our work to Objective-C
much more easily than we did. Objective-C is designed to incorpo-
rate the best features of both Smalltalk and C and some important
simulation work is being done in that language [Najmi and Lozinski
1989]. However, Objective-C for MS-DOS has very little pro-
gramming support. In particular, it does not help the programmer
very much in dealing with dynamic memory allocation problems.
Also, the libraries that come with the system contain only collection
types of data structures. One must even build routines to mix text
and graphics, since these are not provided in the Microsoft C sub-
routine library.

Since MODSIM I is the only one of the languages that directly
supports simulation modeling, we expected step 4 of the experi-
ments to be easiest to do using that language. However, the
Smalltalk-80 simulation was event oriented and proved to be rather
difficult to recast that in the process orientation that MODSIM II
supports. For this reason, even though the Smalltalk/V 286 port re-
quired writing of classes for event handling and random number
generation which are already supported in MODSIM 11, step 4 for

T. Thomasma and J. Madsen

Smalltalk/V 286 was done in half as much time as for MODSIM IL
5.2 Execution Efficiency of Simulation Programs

We ran the simulation for 600,000 seconds of simulated time
in Smalltalk/V 286 and in MODSIM II. One would expect that, be-
cause Smalltalk/V 286 is interpreted and MODSIM II produces a
.EXE file, the program run in Smalltalk/V 286 would run more
slowly. In fact, the Smalltalk/V 286 version finished in 20 minutes,
while the MODSIM II version required 38 minutes. Similarly,
Doyle [1990] found that a Simscript IL5 version of a simulation
program required 56% more time to run than a Smalltalk/V 286 ver-
sion on an AT-286 machine.

In our earlier study [Thomasma and Ulgen 1988] we found
that a Smalltalk/V version of a simulation program required three
times a long to run as a SIMAN version. Smalltalk/V is an early
version of Smalltalk/V 286. In order to see how much faster
Smalltalk/V 286 is than Smalltalk/V, we ran our Smalltalk/V 286 ex-
ample in Smalltalk/V on the same AT-386 machine that we used for
the MODSIM 1I and Smalltalk/V 286 timings. The Smalltalk/V run
required 46 minutes. If we give SIMAN a rank of 1.0, then, based
on these results, Smalltalk/V 286 has rank 1.33, MODSIM II has
rank 2.5, and Smalltalk/V has rank 3.0. One should note that this is
the first release of MODSIM 1I and later releases are likely to be
faster. Also, the SIMAN that was involved in the 1988 study is not
the most recent version of SIMAN.

It is becoming clear that one need not pay a significant run time
penalty in order to use object oriented programming languages in
order to build simulation programs. The C++ language has many
features that allow the programmer to develop programs that run
very fast. If one uses that data reported by Doyle [1990], Zortech
C++ would be given a rank of 0.15.

The performance of Smalltalk systems has improved markedly
in the last two years. Programs written in the Smalltalk/V 286 inter-
preter have been observed to run faster than equivalent programs
produced by compilers. The latest Smalltalk systems (ObjectWorks

for Smalltalk-80 by ParcPlace and Smalltalk/V PM by Digitalk) pro-
duce compiled code.

All four of these languages (Objective-C, MODSIM II,
Smalltalk/V 286, and Zortech C++) are quite reliable. Once a de-
tailed design is done and a prototype is built, it is fairly straightfor-
ward to reimplement it in any one of these programming languages.
The choice of language to use is dependent on which syntax one
feels most comfortable with, the appropriateness to the job at hand
of the classes in the libraries that one has available, and the quality
of the programming support environment that is available. Run-time
efficiency is a secondary concern. All the object oriented program-
ming languages produce programs that run as efficiently as pro-

485

grams written in corresponding non-object-oriented languages, and
new releases of the object oriented programming languages are con-
tinually improving in this respect.

REFERENCES

Alasuvanto, J., E. Eloranta, M. Fuyuki, T. Kida, and 1. Inoue
(1988), "Object Oriented Programming in Production
Management: Two Pilot Systems," International Journal of
Production Research 26, 5,765-776.

Birtwistle, G.M., O.J. Dahl, B. Myhrhaug, and K. Nygaard
(1979), Simula BEGIN, Second Edition, Studentlitteratur,
Lund.

Doyle, R.J. (1990), "Object-Oriented Simulation Programming," In
Object Oriented Simulation, A. Guasch, Ed. Society for
Computer Simulation, San Diego, CA, 1-6.

Goldberg, A. and D. Robson (1989), Smalltalk-80: The Language,
Addison-Wesley, Reading, MA.

Grant, M.E. and D.W. Starks (1988), "A Tutorial on TESS: The
Extended Simulation Support System," In Proceedings of
1988 Winter Simulation Conference, M.A. Abrams, P.L.
Haigh, and J.C. Comfort, Eds. IEEE, Piscataway, NJ,
136-140.

Herring, C. (1990), "ModSim: A New Object-Oriented Simulation
Language," In Object Oriented Simulation, A. Guasch, Ed.
Society for Computer Simulation, San Diego, CA, 55-60.

Law, A.M. and S.G. Vincent (1988), "A Tutorial on UNIFIT: An
Interactive Computer Package for Fitting Probability
Distributions to Observed Data,” In Proceedings of 1988
Winter Simulation Conference, M.A. Abrams, P.L. Haigh,
and J.C. Comfort, Eds. IEEE, Piscataway, NJ, 188-193.

Najmi, A. and C. Lozinski (1989), "Managing Factory Productivity
Using Object-Oriented Simulation for Setting Shiftly
Production Targets in VLSI Manufacturing,” In Proceedings
of AUTOFACT, SME, Dearborn, M1, 3-1 through 3-14.

Poorte, J.P. and D.A. (1989), "Computer Animation with
CINEMA," In Proceedings of 1989 Winter Simulation
Conference, E.A. MacNair, K.J. Musselman, and P.
Heidelberger, Eds. IEEE, Piscataway, NJ, 147-154.

Thomasma, T. and O.M. Ulgen (1988), "Hierarchical, Modular
Simulation Modeling in Icon-Based Simulation Program
Generators for Manufacturing," Conference, M.A. Abrams,
P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscataway, NJ,
254-262.

Ulgen, O.M. and T. Thomasma (1989), "Computer Simulation
Modeling in the Hands of Decision-Makers," Simulation and
Al 1989, W. Webster, Ed. Society for Computer Simulation,
San Diego, CA, 89-95.

