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ABSTRACT

Markov chain analysis is a valuable tool in studying a wide range
of problems. Usefully detailed models, however, are usually too
cumbersome to be represented as Markov chains. In this paper, we
demonstrate the construction of Simulation Graph Models of
Markov chains. This approach enables one to evaluate the chain
either numerically through simulation or analytically through path
analysis. This method can be used in conjunction with simulation to
address such problems as rare event estimation, initialization bias,
and determination of initial conditions.

1. INTRODUCTION

Stochastic models are valuable in analyzing a wide range of
problems. However, usefully detailed stochastic models are usually
so complex that obtaining an analytic solution is extremely difficult
or even impossible. Discrete event simulation is usually the only
practical method for studying the behavior of such models [Shedler
1987]. Representing the system as a continuous time Markov chain
is difficult or impractical because of the amount of detail that must be
included in the definition of a state and/or simply because of the
sheer number of states that result from such a definition. In fact,
Fox [1987] argues that, when it is possible to produce the associated
transition matrix -or, equivalently, the chain’s generator- in its
entirety, deterministic numerical methods are more efficient.
Simulation, on the other hand, becomes increasingly attractive as the
number of states grows.

One possible solution to this problem is a procedure by Fox
[1987] where the rows of the transition matrix are produecd only as
needed, generating the transitions directly. An alternative approach
is presented in this paper, where a finite representation of the
stochastic process is obtained even when the chain’s generator or the
transition matrix is not finite. This is achieved by building a
Simulation Graph Model of the Markov chain. This approach
enables the user either to directly simulate the associated stochastic
process and obtain estimates of the desired measures of
performance, or to analyze the directed paths in the Simulation
Graph Model and analytically compute the probabilities of possible
realizations.

2. SIMULATION GRAPH MODELS

A Simulation Graph is a structure of the elements in a discrete
event system that facilitates the developments of correct simulation
models. Events are represented as vertices on the graph. Each
event vertex is associated with a set of changes to state variables.
Relationships between events, on the other hand, are represented as
directed edges between pairs of vertices. Each edge depicts under
what conditions and after how long of a time delay an event can
schedule or cancel another event. More specifically,

tj (})

indicates that “t time units after the occurrence of event A, event B is
scheduled to occur, with parameter string k := j, provided that
condition (i) holds at the time event A occurs.” The parameter string
carries information pertaining to a particular event instance. These
strings can be passed in a model through vertex and edge attributes.
When the origination vertex of an edge is executed, the expressions
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in the edge’s attribute list are evaluated. When the destination vertex
is subsequently executed, the state variables in its attribute list take
on the values that have been computed for the expressions in the
scheduling edge’s attribute list. The main value of these lists is in
defining the particular system entities to which an event pertains. A
complete treatment of Simulation Graph Models is presented in
[Yucesan and Schruben 1989].

3. SIMULATION GRAPH REPRESENTATION OF
MARKOV CHAINS

In this section, the construction of Simulation Graph Models
of Markov chains is demonstrated. This construction enables the
numerical evaluation (simulation) of the underlying stochastic
process to obtain estimates of the desired measures of performance.

In this representation, each vertex corresponds to one particular
state of the process. Edge conditions are used to determine the next
state. For discrete time Markov chains, the edge delay times are all
taken to be unity. For continuous time Markov chains, the edge
delay times are sampled from the sojourn time distribution. The
construction is illustrated next with a series of examples.

Example: Discrete Time Markov Chains
 Suppose that the following transition matrix, P, is associated
with a discrete time Markov chain.

01 0
P= 10 o Il-a
01-fp B

The associated Simulation Graph Model is depicted in Figure 1.
The state variables used in this model are:

X - current value of the process,

p - transition probability,

q - transition probability.

The edge conditions are:

MHp=a,

(iyp>a,

(ii)q<P,

Mq>p.

The edge delay times (not shown on Figure 1) are all taken to be
equal to one. The event descriptions are presented in Table 1.
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Figure 1. Discrete Time Markov Chain
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Table 1. Event Descriptions for Discrete Time

Markov Chains
Event Type Event Description State Changes
1 Initialization X:=0
p:=0
q:=0
S1 Process in State 1 X:=1
p :==U[0,1]
S2 Process in State 2 X:=2
q:=UJ[0,1]

Note that depending on the desired measure of performance (e.g.,
steady state probabilities, first-passage times), other performance-
monitoring state variables can be added to the model.

Example: Continuous Time Markov Chains )
Consider a capacitated Markovian single-sever queue

(M/M/1/N). For exposition purposes, let N = 2. Also let A
represent the arrival rate and |1 represent the service rate. Hence, the
state variables used in the model are:

X - number of customers in the system,

A - arrival rate of customers,

W - service rate,

p - transition probability.

This is a birth and death process [Taylor and Karlin 1984]. The
process’ generator, Q, is given by

A A 0
Q= | 1 -+ 2
0 p -u

The Simulation Graph Model is depicted in Figure 2. Note that
t~exp(h),

tyandts ~exp(A+),

tg ~exp().

The edge conditions are given by:

(@) p< W+,

(ii) p > WAH).
The event descriptions are presented in Table 2.
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Figure 2.  Continuous Time Markov Chain
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Table 2. Event Descriptions for Continuous Time

Markov Chains
Event Type Event Description State Changes
So State 0 X:=0
Sq State 1 X:=1
p:=U[0,1]
Sy State 2 X:=2

Again, performance monitoring state variables can be added to the
model depending on the objectives of the study.

Example: Markov Chains with Countable State Space

Consider now an M/M/1 queue with no capacity constraints
(N=e0). The state, X, depicts the number of customers in the
system. The generator, Q, is then given by

-A A 0 0.
Q= B -G A 0.
0 Lo o—(A+w) A

The model is presented in Figure 3. The initialization vertex, INIT,
establishes the initial values of the state variables, which were
defined in the previous example. The vertex ST depicts the current
state of the process. The information about the next state is carried
by the edge and vertex attributes. Three contingencies exist in the
model: (1) when the system is empty, the only possible transition is
triggered by the arrival of a new customer, with interarrival time

t0~exp(7\.); (2) when the system is in state n, the process moves to
state (n+1) with probability A/(A+), or (3) from state n to state (n-
1) with probability u/(A+u) after a time delay of t;~exp(A+u). The
edge conditions are:

@) pSMAHL) & X =0,

(i) p>MA+p) & X #0,

(i) X = 0.

The event descriptions are presented in Table 3.
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Figure 3. Markov Chain with Countable State Space
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Table 3. Event Descriptions for Markov Chains with

Countable State Space
Event Type Event Description State Changes

INIT Initialization X:=0
p:=0
A:=a
pL=b

ST State of System X:=1
p:=U[0,1]

Performance monitoring variables can be added to the model in
accordance with the desired measure of performance.

4. SAMPLE PATH ANALYSIS

An efficient alternative to numerically evaluating (simulating)
the implementation of Simulation Graph Models of Markov chains is
to analyze the directed paths of the graph for computing probabilities
associated with possible realizations. In this section, this procedure
is illustrated after some preliminary definitions.

4.1 Basic Control Paths

Following McCabe [1976], a program control graph is defined
as follows: a directed graph with unique entry and exit vertices is
associated with a computer program. Each vertex on the graph
corresponds to a block of code in the program where the flow is
sequential, and the edges correspond to branches taken in the
program.

Theorem: In a strongly connected graph, G, the cyclomatic number,

1(G), is equal to the maximum number of linearly independent
directed cycles.

McCabe uses this theorem along with the program control
graph to define the basic control paths in a program. The latter is a
set of paths in the control graph whose linear combinations represent
all possible paths through the control graph and, hence, the

program. Figure 4 depicts an example with (G)=e-n+p = 6-
4+1=3, where G is a graph with e edges, n vertices and p connected
components. Note that edge 6 is added to the graph to make it
strongly connected. One can then choose the following set of
independent directed cycles to form a basis:

By: (abda), (bcb), (acbda).

A row vector is associated with every element of the basis, By:
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Figure 4. Program Control Graph

edges 1 23 456
abda 1 00011
bcb 001100
acbda 011011

For instance, the path (a (b c)2 b d a) corresponds to the vector (1 0
2 21 1), and the vector addition of (a b a d) + 2(b c b) yields the
desired result.

4.2 Extension to Simulation Graphs

Simulation Graphs are analogous to program control graphs.
On a Simulation Graph, each vertex essentially corresponds to a
block of code in the program where the flow is sequential. The
edges, on the other hand, are analogous to branches taken in a
program. Without loss of generality, we can assume that Simulation
Graphs have unique entry and exit vertices. An initialization vertex,
where the initial state of the model is established, is the entry vertex.
The exit vertex, on the other hand, is a special vertex on the
Simulation Graph, which terminates the execution of the simulation
run upon the satisfaction of the termination conditions ( a so-called
end vertex).

With this correspondance in mind, the results of the previous
section can be applied to the Simulation Graph Models of Markov
chains. Once a basic set of control paths is determined for the
Simulation Graph, all possible sample paths can be expressed as
linear combination of these paths. In addition, it is possible to
associate a probability measure with each of the basic paths; and
since these paths are independent, the probabilities can be combined
to compute the likelihood of observing a particular realization.

More specifically, let;, Ty, ...., My be the basic control paths
of a Simulation Graph Model. Also, let p; be the probability of
observing the ith basic path (i=1,2,3,...k). Then, if a particular
realization can be expressed as the following linear combination:

S= Q) + WyTy + ..t Ty
then, by the independence of these paths, the probability of
observing such a realization is given by:

[V
PIS] = p, @1 * 2 * o ¥ k.

Example: Discrete Time Markov Chaing
Consider the Simulation Graph Model of the discrete time
Markov chain of Figure 1 with N(G)=4. A set of basic control paths
is given by:
B: (IS182), (IS1S182), (IS1S2S18S2), (IS1S28S2).
As a vector, they can be represented as:

12345
ﬂ:l:ISlSZ 10100
1|:2:ISISISZ 11100
n3:ISlSZSISZ 10210
1t4:ISISZS2 10101
The associated probabilities are given by:
p1=1—a,
pp =a(l-o),
p3 =B(1~a),

pa =(1-0)%(1-B).
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Suppose we are interested in observing the following sample path: (I
a%*b). This path can be represented as -3n1 + 31 + ©4. Hence, it
can be observed with the following probability:

-3,.,3

PIS) = p1™ P24
= (-3 o3 (-3 (1-w? (1-p)
= o (1-0) (1-B).

Example: ntinuous Time Markov Chain

Consider the Simulation Graph Model of Figure 2, where

1(G)=3. A set of basic control paths is given by:
B: (S0 S1 S2), (SO S1S0S1 S2), (SO S1S2 S1 82).
As a vector they can be represented as:

my: SOS182 1010 p
Ty S0 S1S0S1S2 2110 Pq
my SOS1S28182 1 0 2 1 p2

where, p = M(A+u) and g = 1-p. Any particular sample path can
then be expressed as a linear combination of these basic paths, and
its probability can be computed accordingly.

Example: k hain

Consider a general birth and death process. Let A; be the birth

ith Countabl

parameter and W; be the death parameter. The process goes from

state i to state i+1 with probability p; = A; /(A; +4; ), and from state i
to state i-1 with probability g; = 1 - p;. The sojourn time at each

state is given by t ~ exp(A;+H;). The Simulation Graph Model of the
general birth and death process is presented in Figure 5. Since
1(G)=3, the basic control paths are given by:

1 2 3 p;

ny: (INIT) () 1 0 O 1
Ty (INIT) (I) (I+1) 1 1 0 p;
Ty (INIT) (D (-1) 1 0 1 g;

Then, the sample path (INIT, 0, 1, 2, 1, 2, 3) can be represented by
S:-4mq +4my + m3. Then,

P[S] = 1% p*q;

= poP1%P2ay

p.

1
(’) t:(I+1)

) —(1

L‘) t:(I-1)

9

Figure 5. General Birth and Death Process
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S. APPLICATIONS OF SAMPLE PATH ANALYSIS

The information about sample paths can be used independently
or in conjunction with the simulation run to improve the precision of
estimators for desired measures of performance. Several possible
applications are highlighted below.

Analysis of the Chain

Some popular measures of performance can be calculated
through the analysis of basic paths. For example, in models with
absorbing states, the probability of absorption or mean time until
absorption starting at a particular state can be computed by using the
probabilities associated with these paths.

Estimation of Rare Events

The analysis of directed paths in the Simulation Graph can be
used in computing rare event probabilities without even running the
simulation. This is achieved by computing the probabilities
associated with different sample paths that lead into that state which
would result from the execution of the rare event.

Possible Test for Initialization Bias

An initialization test can be developed based on the likelihood
of the observed sample path. A control mechanism can be imposed
on the simulation, that, at given intervals, computes the probability
of observing the path generated thus far. Since the probabilities of
all possible sample paths can be computed, the observation of a
highly unusual (i.e., highly unlikely) path would be a sign of
initialization bias.

Initialization of a Run

Since probabilities of different sample paths can be computed,
this information can be used to start a simulation run in a “typical”
state. Alternatively, the inital state can be chosen at random based
on the sample path probabilities.

6. CONCLUDING COMMENTS

The representation of Markov chains through Simulation Graph
Models provides a practical way to analyze these models either
analytically or numerically. However, analytic methods can be used
in conjunction with simulation to enhance the precision of
estimators. The next task is to extend these procedures to non-
Markovian models.
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