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ABSTRACT

The paper traces the development history
of one program generator. Then it reviews the
constraints inherent in a very simple network

definition of the system logic. Alternative
solutions for strengthening the system
features are presented. Distributed
processing, with the network as one of
several nodes, is suggested as a unifying
solution. The paper considers the

implementation of this approach and reports
on the progress to date.

1. INTRODUCTION

Recent simulation software has emphasised
generic models SAME (Renault,1987), MAST
(Citroen, 1987) & SIMFACTORY (CACI,1988). In
this context the appeal of program generators

has diminished. However, for general
modelling, the author believes that they are
an efficient method of coding a 1logical
model.

The modeller's building blocks are simple
nodes of restricted function - a queue and an
activity - placed within a network. The arcs
flowing into the nodes indicate the required
resources. The arcs out of the nodes lead to
the next function. This 1is the core of
information from which a skeletal program can
be automatically derived. The program is
fault free both in terms of the operating
logic and the semantics and syntax of the
target 1language. The programmer can then
expand the logic to meet the needs of the
application. The system combines the benefits
of a block oriented program with the
diversity of a general language. The software
has been used to model such diverse systems
as helicopter ambulances, telephone networks,
cheque processing machinery, FMS cells and
pilot workload.

The purpose of this paper is to review the
development of the methodology underlying the
generator. It assesses the avenues for
functional enhancement. As the object
oriented approach has been used to decompose
simulation models, so it suggests a similar
approach to the modelling process.

2. PROGRAM GENERATOR DEVELOPMENT

This section reviews the DRAFT program
generator system. It introduces the un-
derlying network structure and relates this
to the mapping employed by the generator.
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Figure 1. shows the current DRAFT modules.
Their development extended over a 1long
period. DRAFT (Mathewson,1974), was initially
run in 1970. This was followed by the
graphics module DRAW (Mathewson,1985), which
permits computer assisted development of the
interactive animation. The most recent de-

velopment, SSIM (Mathewson, 1987) is a
response to the impact, at the modelling
stage, of large simulation models, with ani-

mation. As Figure 1 illustrates, the overall
system is designed so that the features of
all the earlier versions are subsets of later
implementations. Growth in the system
complexity has been matched by changes in the
target language. Practical experience lead to
the realisation that the language features
had to be enhanced if the performance of the
overall system was to match contemporary

standards.
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Figure 1. The DRAFT/DRAW/SSIM Structure

2.1 Entity Cycle Diagram

The ‘'entity cycle diagram' provides the
input to the program generator. It records
the physical flow of entities in the system.
The flow of notional entities (e.g. permits)
can also be included. The notation has a re-
stricted set of symbols which are used to
record the essential features of the model.
The two basic symbols are circles and
rectangles. A life cycle is defined as the
path of an entity through circles that
represent queues, and through the rectangles
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that represent activities. It may be helpful
to imagine that, with the passing of time,
the entity moves along the axis of the
activity. Finally the entity emerges from the
end of the activity symbol at the EVENT time.
Activities which rely on one resource start
when the required resource is released from
the preceding activity, and may be called

bound activities. Activities which need
several resources are called conditional
activities.

Figure 2 is an entity cycle diagram for
the activity shown in Figure 3. A robot

serves two lathes. Jobs join a common queue.
The robot loads the jobs onto a free lathe.
After the lathe is 1loaded the robot is
released and the 1lathe runs through .an
automatic cycle. The finished job then waits
for the idle robot to clear the machine. The
robot is shared between the two lathes.
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Figure 2. The Entity Cycle Diagram
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Figure 3. Iconic Modelling

‘'he use ot the entity cycle diagram for
modelling resource constrained queuing
systems, with computer implementations repre-
sented by HOCUS (Poole et al. 1977), CAPS
(Clementson 1985) and DRAFT preceded much of
the literature on network flow diagrams for

simulation model analysis. Subsequently
DeCarvahlo & Crooks (1976), Torn (1981),
Schruben (1983,1989), and Nance and
Overstreet (1987) have explored this theme.
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The literature shows that the entity cycle
diagram can be mapped into any of the common
simulation logic structures process,
activity scan, event base and three phase.

The operation of a program generator can
be illustrated with a portion of Figure 2.
Consider the initial arrival of Jjobs and the
subsequent loading ALOAD. As shown in
Figure 2, a job comes, following some inter-
arrival distribution, from the WORLD and
ENTERS the QUEUE. If the lathe A is in AIDLE,
the PUMA robot is in ROBOT, and a job is in
the QUEUE then ALOAD is initiated. At this
time the Puma leaves the ROBOT queue, the
lathe quits AIDLE and the jobs moves from
QUEUE. Completion of ALOAD releases the robot
while the lathe moves on to activity ARUN.

The skeleton of Figure 4 contains part of
the 1logic of Figure 2. All simulation
languages have the appropriate statements for
the actions specified here. Generation of
program code therefore requires two steps.
Given the network and target structure - what
are the appropriate model activities and the
correct statement sequence. Given the target
language what are the correct templates
and the required parameter(s) e.g. ALOAD for
the template:- 'CAN WE START ?2?2?7?2?272°'.

INITIALISE SYSTEM

SELECT THE NEXT EVENT
I Further EVENTS —
EVENT COMES EVENT ALORD EVENT X
JOIN QUELE JOIN ROBOT
SCHEDULE COMES SCHEDULE ARUN
REMOVE FIRST IN WORLD
L 1 L
\L no
CAN WE START ALOAD?
|yes
SCHEDULE ALOAD
REMOVE FIRST IN QUEUE
REMOVE FIRST IN AIDLE
REMOVE FIRST IN ROBOT
Further Test Heads
Figure 4. The Three-Phase Structure
2.2 DRAFT
The program generator is customarily
structured as the single starred 1linked

modules of Figure 1. This is specific to
DRAFT but is generally representative. The
model expressed as an entity cycle diagram is
input via a terminal. The input/editor module

identifies minor or semant

ic errors (e.q.
of reserved or du (e.g. use

plicate variable names) and

lets the wuser correct the ent

ry. It also
creates a back-u co i
'scratch' files. p oy Tater o input on

1’ These may later be accessed
for modification or stored as a compact copy

of the model. The analysis module checks the
input for errors, to be corrected on 1line

and brepares a coded internal file of thé
entity interaction within the model. This
file then. forms a general input to the
program writer selected by the user. It is at
this stage that the model description is
mappeq onto the particular structure - event

activity, Oor process of the targeé
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language. The scope of the program generator
includes the ability to: assume control over
management of the host computer operation,
provide error free coding which can be used
as a model for further enhancement, and offer
the advantages and convenience of a shorthand
notation.

2.3 DRAW

The DRAW module (Mathewson, 1985) was
designed to support interactive animation. It
operates as a post-processor to the DRAFT
routine - see Figure 1 - from which it takes
the topology of the entity cycle diagram. It
maps this to the topography of the required
animation.

Initially the animation was supported by
an IO Research Pluto V.0001 board. This is an
IBM compatible intelligent graphics board -
with its own 68000 processor. Subsequently
the software has been ported to Microsoft
Fortran 5 and runs on a VGA board.

Historically animation requires the
programmer to add explicit graphics code to
the simulation 1logic. This writes to the
display screen. In the context of the example
and with animation instructions set in bold
type, the event COMES might be modified to
appear as:-

EVENT COMES

JOIN QUEUE
SHOW A JOB ON THE PATH FROM COMES TO QUEUE
DISPLAY THE CONTENTS OF QUEUE AT QUEUE
SCHEDULE COMES
REMOVE FIRST IN WORLD

Note that, typically, there is only a
partial mapping between the logic of the code
and the changes to the animation display.
WORLD and COMES have both been assumed to be
outside the screen. The path COMES-QUEUE uses
some arbitrary entry point. Thus the display
of the model activity can be a partial window
on the system. We may clip real objects or
omit artificial elements introduced as system
semaphores. For example, in the program logic

resource tokens might control access to
single 1line traffic. In the final display
these could be suppressed, or perhaps
displayed in the form of traffic signals.
Adding explicit code for animation is
redundant. The information required to
animate is implicit in the coding. If, for

example, an entity moves to the set QUEUE
with the most recent event the completion of
COMES, then the system could create animation
along the path COMES-QUEUE and modify the
status of the two nodes if it had access to
animation rules. The parameters of the calls
identify some of the required information -
QUEUE in JOIN QUEUE. The relative position
of program statements defines other aspects.
The event COMES, as the most recent event
with respect to the set manipulation
instruction JOIN QUEUE, defines the active
arc. Thus it is clear that an animation
module can be incorporated in JOIN QUEUE if
the event COMES has set a 'most-recent event'
flag. In SIMONG the code offers implicit
animation by reference to a graphics data
base, whose information is addressed by node
and arc. Thus whenever an entity moves

461

between nodes, the arc and the relevant nodes
are checked for animation rules.

During program execution these rules exist
in named common, to which they are loaded
from the #*.GDF file (Graphics Description
File). Within the GDF a dueue node, for
example, may be represented by the standard
entity cycle diagram icon, a user defined
symbol or as a point in space which is
overwritten by an entity - thus creating the
appearance of a queue. Similarly the asso-
ciated activity and arc may also be rep-
resented by a diversity of animation styles.
The topic is discussed later in the paper.

The graphics data base is the output from
DRAW. This combines the topological in-
formation of the underlying network, the
* PIN file, produced by DRAFT, with a menu of
animation effects to provide a topographical

file (*.GDF). DRAFT simplifies the network
flows before passing them to DRAW. This
ensures that storage is not occupied by

redundant polylines specifying the movement
vectors of the individual entities which have
been previously grouped in some fashion.

There are three possible styles of anima-
tion. Figure 2 shows a 'logical' represen-
tation of the entity cycle diagram. This can
be created semi-automatically from the
network information, using standard icons for
the blocks of the entity-cycle diagram.

In practice, the complete entity cycle
diagram often contains confusing detail. An
increased feeling of identity with the model
can be created by using 'realistic' icons in
a 'realistic' context. In Figure 3 there is
one lathe icon the change of status is
denoted by changing the colour of a lamp
above the motor housing. This is the iconic
presentation. It requires a user library of
identifiable symbols on a spatially realistic
background.

A further development which emphasises the
importance of the spatial relations, and uses
a real background, superimposes the movement
of the icons upon a CAD quality backdrop.
Figure 5 [taken from a system discussed in
Production Engineering July/August 1985]
demonstrates the <clarity of this pre-
sentation. Backdrops can be copied from
AUTOCAD files and can even use CAD techniques
to effectively change the vantage point or
zoom in and out of a model. The animated
model of Figure 5 represents about eight
hours work. The approach is also flexible -
Figures 2 and 3 represent alternative outputs
from the same program displayed on different
screens.

When animation was added to the functions
supported by the program generator, implicit
animation removed the need to add code. The
program generator section was kept untouched.
only. statements in the target code concerning
the definition of a graphics work space, rep-
resented as simple NAMED COMMON, were added.
This maintained the integrity of the
generator development. Animating via a set
of display rules stored in an ASCII data base
permits the user to modify the presentation
after compilation, or to switch between
libraries with and without graphic support.
As a tool for management insight the system
can be run on a micro, otherwise a fast
mainframe may be preferred.
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Figure 5. An FMS Cell
24 SSIM

The tedium of modelling large animated
systems with identical but parallel processes

triggered the next development (Mathewson,
1987). SSIM (Spreadsheet SIMulation) uses
accepted techniques of spreadsheet pro-

gramming as an alternative input to DRAFT.
The cells hold the paths and symbols of an
entity cycle diagram. As with spreadsheets,
blocks may be selected and copied to
replicate elements of the system. Blocks can
be saved and retrieved as macros. Thus the
user may define his own library of building
blocks. System macros, represented as single
cells, include belt and roller conveyors.
TESS (Standridge, 1985) and RESQME (Kurose et
al, 1986) are recent modular systems.

SSIM runs on personal computers using the
IBM extended character set. Figure 6 shows
the lathe model specified on the software.
Models are built by specifying cells as
queues or activities and then linking the
nodes to reflect the entity flows. Control
commands are analogous to other spreadsheet
software. Arrows on the numeric key pad
cause cursor movement and pan over the
worksheet. Parameters can be selected from
pop-up menus. Blocks can be wused to
duplicate sections of the flow and the
housekeeping function of renaming nodes and
entities is automatic. The left hand upper
window serves as a prompt screen. This can be
overwritten by other scrolling menus specific
to selected program features. Below the
prompt window, a status window relates to the
cell on which the cursor is situated. At the
base of the screen the 'cue line' indicates
possible user response.

Cells may be Queues, Activities or Trans-
porters. "Q" defines a set at the current
cursor position and initiates further data
entry for the NAME and the RULE. There are
four available rules:- FIFO & LIFO or HIGH &

LOW where entities are given priority
depending on attribute value. "A" defines an
activity at the current cursor, requests

entry of the NAME and displays a menu of
DISTRIBUTIONS. "T" defines a transporter at
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the current cursor position and initiates
entry of NAME, TYPE and PATH. TYPE may be a
belt conveyor, or a roller conveyor with stop
belts, or an AGV.

SPREADsheet SIMulation DRAFT PRE-PROCESSOR PMS V1.08

Q
A ACTIVITY ~world- .
B BLOCK L .
C CYCLE > Q
F FIX BLCK . cidle -
L LOAD MACRO A A A —>—
N NAME FUNCT comes* load <run ‘wait - [free
P POIMTER . . . . . . . .
Q QUEUE .
R REV BLCK >- Q — Q
T TRANSPORT “queue ready
W WINDOW OFF . .
x EXIT . .
A A Q A —>-
+loadb: -runb - ‘waitb: -freeb
Q
+idleb-

Figure 6. An SSIM Diagram for Figure 2

Tracing an entity path is analogous
to entering the entity cycle in the DRAFT.
The representation of a path is essentially a
cosmetic - the path is defined by the nodes
it visits. Obtaining the required appearance
can be difficult and requires a process of
trial and error. Apart from a rub-out
feature, the 'Block Delete' is also useful in
error correction. Path graphics are limited
by the character based screen, so SSIM paths

must merge prior to activities. This
contrasts with the normal graphical
representation. A completed SSIM diagram

prepares an input file to DRAFT via the
scratch file structure (See Figure 1.).

The spreadsheet format eases model
building by providing an environment in
which the user can develop the model in a
natural manner, rather than in the rigid
entry sequence enforced by DRAFT. Model
building can also be spread over several
sessions as the diagram can be stored at any
point.

3. THE NETWORK STRUCTURE

DRAFT has an elegant algorithm for decom-
posing the network into quasi-parallel
processing and a unique method of grouping
the resource entities in a complex system.
Adherence to a simple network maintains the
@nvestment in code, especially that concerned
in program generation up to the point when
the language dependent template is invoked.

This section discusses the nature of the
compromises which maintain a simple network
for logic definition yet provide a tool with
proad capabilities. The network structure
implies a default behaviour, variations are
superimposed at the generator stage or later.

Successful schemes include those for 1)
f}ow discontinuity, 2) the effective anima-
plon of the network and 3) the control of
incomplete arc specification. Inelegant but
functional solutions cover 1) the problems of
statement sequence 2) limited nodal function

and _3{ t@e indirect 1ink between network
specification and animation.
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3.1 Mapping the Network Structure to Reality

Interruption, whether a military threat to
ships oiling at sea, a production breakdown,
or hardware interrupts are common charac-
teristics of the real world. These features
are rarely supported in simulation software.
The example below shows how an interrupt can
be embedded in the simple network.

The lathe example has several breakdown
scenarios. Perhaps the tool breaks, damaging
the Jjob beyond repair and requiring a
teardown of the job from its jig. Or the
coolant supply may become blocked, merely
delaying the  turning operation while the
swarf 1s cleared from the filter on the
recirculating  pump. The difficulty of
handling these concepts has been resolved by
adding new interpretations to the structure
shown in Figure 7.

VR BLOKACE
— A AN AaIT
TRIGGERED |, BY HEAR
@ PROBABILITY TOOL. BREAK _ﬁw
RESET
TRIGGERED |, BY BLOCKAGE
@ PROBRBILITY SHARF BLOCK
—&)

Figure 7. Introducing Interrupts

In the obvious sense, this may be inter-
preted as an activity ALOAD which leads to
three alternative outcomes. When the gen-
erator identifies this pattern in the
network, the wuser 1is asked whether the
optional outcomes of ALOAD are conditional
on the JOB (e.g. some castings require more
machining than others), or occur by chance.
Given the probability of TOOL BREAK and SWARF
BLOCK as 0, the system knows that these are
not alternative paths from ARUN. They are
interrupts to ARUN, created by other events.

In response to a query, the user states which
events cause which interrupts. The resources
in ARUN are those that have merged at ALOAD.
The interrupt event need only change the
event flag of the ‘active data set!'
(Mathewson,1989) associated with ARUN to that
of the chosen outcome. A separate interrupt
event node offers a clearer definition than
coding multiple alternative outcomes of the
ARUN activity. It might appear a disadvantage
that, at the 1level of the entity cycle
diagram - Figure 7, the logical connection
between TOOL BREAK and, say, the causative
event WEAR is hidden. If this presentation is
unacceptable, we can add, say, a cosmetic
dotted 1line while presenting the program
logic to a third party.

3.2 Mapping Animation to the Network Structure

DRAW introduces the idea of replacing

explicit animation code with implicit calls
to an animation data base. The animation must
reflect the physical nature of the process
and this implies different mappings for
different situations. Consider the entity
flow in Figure 3. At one place entity
movement between nodes (COMES-QUEUE) equates
with actual movement. At another, movement
between nodes (ARUN-AWAIT) denotes a
machine's change of state.

Table 1. Optional Animation Styles

ELEMENT TYPICAL ANIMATION REPRESENTATION

QUEUE CIRCLE WITH CURRENT QUEUE SIZE
POINT WITH QUEUING ON INPUT ARC
SYMBOL DEPENDENT ON STATUS

- empty queue = busy robot
- actual queue = idle robot
HIDDEN

ACTIVITY|RECTANGLE - COLOR SET BY STATE
STATUS LIGHT ON ICON
- red is busy
- green is idle
ICON SUPERIMPOSED ON SYMBOL
- job loaded on machine
POLYLINE FOR AGV PATH/CONVEYOR
- entity makes scale moves
on downstream arc
NUL - for multi-state machines

ARC FLASHING POLYLINE ON MOTION PATH
ENTITY ICON MOVES ALONG PATH
HIDDEN - path is hidden
TITLE ALWAYS ON

ON WHEN QUEUE EXISTS

ON WHEN ACTIVITY IS IN PROGRESS
HIDDEN

Table 1 shows a non-exhaustive list of the
available display options. They are chosen by
setting the GDF variables. Effective anima-
tion can also require the removal of elements
of the network. This is shown as the 'nul' or

'hidden' option. However there is also, with
the current SIMON structure, a situation
where increased complexity is required.

Without graphics we can use subscripted
activities [TURN(1l), TURN(2) etc.] possessing
class attributes. With animation each
activity must be individually identified as a
distinct node. Consider a hospital ward. The
activity RECOVER must include an individual
bed, with an individual coordinate reference
for each patient. The preparation of models
with multiple occurrences of the same class
of action was the motivation beneath the
'Block Copy' in the SSIM program.

To conclude, effective presentation of a
model requires a diversity of styles. The

GDF can achieve this goal and isolate the
user from program code.

3.3 Incomplete Arc Specification

There are disadvantages in the use of a
rigid, data driven definition of animation.
For example, it implies a complete
specification of all the possible routes in
the model. A machine shop may have many
machines, with Jjobs scheduled by routing
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slips containing tens of operations on any
order of machine. To include all possible
routes in the GDF file would be a huge task -
twenty machines is 20! routes. A simpler
approach is to define a network where the job
entity visits each activity at least once.
This provides a template for all possible
activity animation. Then the user codes a
module to determine the geometry for any
unknown move. In a factory crossed by access
roads, it is, for example, possible to find
the nearest road and then move to the next
site. Whenever an unknown path occurs,
SIMONG automatically refers to the user
defined subroutine to determine the vector
from source to sink. This vector is then
handled as though it were attached to the
standard input arc for the particular node.

This demonstrates a specific application
of an wunderlying philosophy whereby the
program provides defined interfaces for areas
where the user wishes more freedom than is
provided by the network based data.

3.4 Statement Sequence Versus Natural Logic Sequence

The use of display drivers within the
modelling statements, e.g. JOIN QUEUE, create
animation effects which depend on statement
sequence. These effects were not foreseen.

What are they? Inconsistencies normally
arise in the 'C-Phase' portion of the code.
As written this is:-

SCHEDULE ALOAD

REMOVE FIRST IN QUEUE

REMOVE FIRST IN AIDLE

REMOVE FIRST IN ROBOT
In the entity cycle representation this
would, sequentially, change the state of the
rectangle ALOAD, by redrawing the borders in
red, decrement by 1 the content of QUEUE and
indicate flow along the path QUEUE-ALOAD. An
identical process would be followed for the
AIDLE and ROBOT queues. From the viewer's
perception this sequence:-

1) alerts the viewer to the area of change

- ALOAD

2) explains the consequences of the

activity in terms of the reduction in the

QUEUE and service resources.

Although contrary to reality, the sequence is
generally effective in informing the viewer
of what is happening. In this context it does
not appear inconsistent.

In a more sophisticated animation, the
state of ALOAD may be indicated by an overlay
which represents the work in progress at the
site of the activity. Here the suggested
sequence does impair understanding, as may be
illustrated by Figure 8. Here an aircraft
baggage container is delivered on a truck
before being moved, via a scissor 1lift, to a
train in an automated handling system. The
picture shows a container on the 1lift. The
next action moves the container onto the
turntable of the train. The default
animation would initially show another
container on the turntable, thereby instan-
taneously displaying two containers, before
the container on the scissor moves to the
turntable. Manually rearranging the code
sequence by placing the queue manipulation
before the event scheduling and pre-setting
the event flag is an ad hoc method to create

i imation sequence. Indeed it may
geci;gikif ;g?icy of deleting from the queue
pefore scheduling the event is more generallz
applicable and should be'fo}lowed by DRAET
but not always SO-. This is an outstanding

problem to which the paper returns.

— M 1 FEEDER LANES TIME=
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=

TRAIN 7

— ___C%__L__ Uy
BUILDlg_l @d]d]d] ED
]

L

Figure 8. An Air Freight Container System
3.5 Nodal Function

Generic models possess further features,
e.g. capacity constraints on queues. With a
fixed capacity queue, any preceding activity,
upon completion of its processing function,
may be baulked because it cannot release its
entity downstream. It 1is possible to
represent such features by capacity flags as
shown in Figure 9. Here SPACE, together with
the additional queue BLOCKED and activity
CLEARED can represent blocking. However
addition of a capacity constrained queue plus
a pointer from the activity to the downstream
node permits the 1language to manage such
situations implicitly as in the simpler, and

arguably, more natural alternative shown
below.
~)-
—f wone> |5 Loom)>—] oz @ Hove
A —

TIME DEPENDENT EVENT  NO INTRINSIC CAPACITY
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Figure 9. A Capacity Constrained Queue
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Thus the demand for extended features can
be met by redefining concepts and structures
within the target language. Here the histor-
ical 'EVENT' of the SIMON language, an
instant defined as a time dependent change of
state of the system has been modified by an
additional state 3ependent feasibility con-
straint - Is there available capacity in the
output queue? The activity node has become
more complex. The state of the node depends
not only on time but on the contiguous
states. While the alternative solution, using
the original concepts, is available and while
the facilities of SSIM can duplicate this as
a macro, it seems premature to redefine the
basic set of modelling primitives. However it
is pertinent to ask whether the inter-
pretation of the connectivity of the network,
as constrained by the direction of entity
flow, is generally sufficient.

3.6 Closely Coupled Systems

A system with a closely coupled problem
definition and animation provides the best
modelling environment. Imagine that we wish
to add a third lathe to Figure 3. 1In, say,
Witness the animation screen has a window at
the top, in which to define a third machine,
£ill in the appropriate numbers for the
reliability and performance, and specify the
input and output buffers. After the chosen
icon 1is positioned on the screen, the
animation will run with the revised system.

In contrast DRAFT/DRAW generally requires
a redefinition of the model followed by a
redefinition of the screen. The problem lies
in the conceptual differences of the two
approaches. Generic models have a 1:1
relationship between the program speci-
fication and the screen, generalised programs
have an infinity of mappings. Much of this
flexibility arises from the wish to suppress
explicit cycles controlling, say, breakdowns
or capacity limits on buffers.

Generic models have functionally complex
nodes with defined input and output cells,

e.g. machines and conveyors. Call these
DEVICES. The frequency of breakdowns and
repairs, the match between levels of input

and of output (e.g. 12 cans plus a carton
produces a case) can be transferred to the
program generator. We can provide a node
defined as the device M (for machine). With
a file of such nodes, the generator can
replace the simple activity in the C-phase
template with an activity test which looks
for 12 cans and one carton. This does not
fully emulate the features of ‘'on-line'
change at the user level. The scheme has been
used in a paper presented at the 1982 ORSA
Conference - "Computer Simulation, A Research
Focus" (Mathewson 1982). It is not however a
general solution.

4. DEVELOPMENTS - CURRENT AND FUTURE

In the context of program enhancement, the
value of comparisons with peer group simu-
lation software is large. Without doubt the
increased functionality of the 1latter has
motivated improvements to this system. The
published enthusiasm for Object Oriented
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Programming has also suggested a suitable
path for system development.

4.1 Object Oriented Processing

In SIMONG any access to a node triggers an
animation request. Because the PLUTO board
sits on the bus and accepts GKS .levgl
graphics commands, the animation design 1s
filtered and implemented at statement levgl.
Albeit with a reference to a common graphics
description block, every statement origipates
its own display instructions. The experience
of developing other features in the language
suggests another method. This subsection
reviews these ideas in the context of a
single node.

At the statement level, any language can
be enhanced. For example consider the queue
handling routines and trace the devglopmgnt
of the original calls as their functionality

has increased to include graphics apd
statistical monitoring. The code is
programmed in Fortran but the concepts are
general.

The original commands controlling the

queue are those of entity manipulation
adding entities, removing entities, and
sorting. The activity associated with a
command is explicit in the name of the call:-

CALL ADDLA (JOB, QUEUE)
adds the entity JOB as the last member of the
QUEUE.

SIMONG demonstrates that the ADDLA state-
ment can be enriched by the addition of an
animation driver to the subroutine.

CALL ADDLA (JOB, QUEUE)
explicitly adds the entity JOB as the last
member of the QUEUE. Implicitly it sends a
message to the PLUTO board which determines
the animation for QUEUE, and for the arc
between the preceding event and QUEUE.

Comparisons with generic models (e.g. Sim-
factory) emphasise the importance of auto-
matic statistical records and summaries. The
concepts which have been applied to the
control of animation can also provide statis-
tical features.

CALL ADDLA (JOB, QUEUE)
explicitly adds the entity JOB to QUEUE.

Implicitly it sends a message to the
statistical record manager to wupdate the
queue record and so provide performance
statistics on request. Polling a queue
generates output as shown.
RESULTS FOR QUEUE - QUEUE

MAXIMUM QUEUE SIZE - 6

TOTAL THROUGHOUT - 18

CURRENT OCCUPANCY - 0

EMPTY FOR 28.76% OR (TIME UNITS) - 65.20

OCCUPIED FOR 71.24% OR (TIME UNITS)- 161.52
AVERAGE OCCUPANCY (TIME UNITS) - 30.61

Customarily the queue node is implemented
as a pointer to an area of memory where some
form of linked list is maintained. The queue
node is an entry point to a dynamic data
structure not the data structure itself. In
this way, as entities move around the system,
memory is released and reused in an efficient
manner. In implementing the statistical
monitor it seemed sensible to reflect this
policy for the storage of statistical
records. The focus thus shifts from function-
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ality within the node, to message passing to
a central monitor managing central storage.

The problem of queue monitoring arose at
the time when the modelling of AGVs and
conveyors was in review. The conceptual basis
of the entity cycle diagram is that all state
changes occur at events. At the coarsest
level this constrains vehicle animation to
moving to an intermediate point on the path,
holding there for the duration of the total
movement activity and, at that event
instant, making a jump to the destination.
In contrast the movement of AGVs or conveyors
is a continuing change of state along co-
ordinate axes! This default behaviour was
modified by coding a centralised AGV/conveyor
manager. Placed prior to the 'find next
event' statement and running in background
mode, it advances time at an incremental §t
and updates any movement activity, so
providing a realistic appearance.

4.2 Distributed Function Management

At this juncture, for historical reasons
the software includes 1) variable action on
receipt of a message 2) global suppression of
messages and 3) local suppression of messages
or local resequencing of messages. The first
and second options are code free changes to
the program. They rely on the user access to
an ASCII data base which can be modified via
an editor or via a form handler, with range
and variable type checking on the fields. The
third

option arises for several reasons
including the dichotomy between the
information content of the entity cycle
diagram as it illustrates the flow of

entities and the information content required
to control that flow. Thus while we know
entity A and entity B are required to start
activity C, we do not know how many of each
are used. When event C occurs, we assume that
entities can always flow into queue D. If D
has a finite capacity, then we can only baulk
activity C by using the diagram of Figure 9.

Although the flexibility of a system which
incorporates several model styles may be
useful, it is not an excuse for ignoring the
approach which offers the strongest unifying
concepts and the greatest possible
functionality.

Combined with the insights of a central
database for storage of queue statistics, the
centralised vehicle motion manager suggests
an alternative strategy for animation and

control. In the new system a centralised
animation sequence manager receives messages
originating from the nodes and arcs. Such a
manager creates appropriate displays whenever
a 'paragraph' has been transferred to the
animation buffer. A paragraph is defined by
the time between the 1last event and the
instant just prior to a time advance of the
central clock. In a sense we replace the
left hand system of Figure 10 by that on the
right and trigger the manager whenever the
code to 'Select the next event' is invoked.
With centralised animation rules defined
in ASCII, as in the GDF file, the manual
intervention which is now required to change

the sequence of the automatically coded
statements is replaced by an automated
sequencing of the buffer commands.

/_\ ENTITY FLO
QUELE

TN NODE
~
ANHATION [
DRIVER
EVENT 3 aoF AT
SEMAFHORE DATRBeGE | [DATRRRGE [ SOECE
EAEE
\ RULE BASE
P00
ALTO
o
——J

DISTRIBUTED ANIMATION CENTRALISED ANIMATION
STATEMENT SEGUENCED RULE SEQUENCED

Figure 10. The Revised Animation Manager

Additionally porting the code, say from the
PLUTO board to Microsoft Fortran 5, is made
easier because the animation features are
centralised.

There is thus an object oriented analogy
to control of the model execution. In this
context animation, statistical monitoring and
system management can be expressed as the
transfer of messages between the node/arc and
specialist system functions. Figure 11 shows

this.
ENTITY
[‘PNIFU.ATION
EXPLICIT ACTION
mRICITACTIN | TT T
ANIMATION BTATISTICAL|
RECORD
MANAGER MBNAGER
SYSTEM
ACTIVITY
MANAGER
Figure 11. A Multi-Processor Node
The approach - a single message at the

statement level causing differing responses
at the simulation system level permits the
user to tailor the model behaviour. Using
the enhanced animation system as a paradigm
we can identify further system managers.

The statistical monitoring manager refers
to a SDF - statistical description form - to
select the appropriate level of monitoring.
This is analogous to SIMAN (Pegden 1982)
which controls the experimental process via
the definition of the experimental frame.
Each node has a unique run-time definition
of the required message response. This is
set out as an ASCII file.

The system activity manager refers to the
RDF - rule definition file. We have already
observed that the entity cycle diagram, as a
record of entity flow is an insufficient

specification _of the model. Rather than
modify the primitives, the RDF adds another
level of model definition. As the GDF file
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is developed from the interaction of the user
with the topology produced by DRAFT, so the
control rules can be generated by
interactively building on this knowledge.
Specification of a finite queue size
automatically identifies the upstream
activity from the network topology. In
operation each C-Phase Test Head previously
coded explicitly, is replaced by a single
test of an activity flag. The flag is set
whenever the control criteria are met.
Returning to Figure 4 where, say, we are
batch processing the contents of QUEUE in
units of two, the RDF may have the form:-

ALOAD 2*QUEUE ; 2*QUT
implying two units are used from QUEUE to
start ALOAD, the other resources defaulting
to 1. Output requires two free spaces in OUT.

The parametric selection of the control
rules permits interfacing with optimising
modules, who can read the system state from
the messages and reset the RDF file.

In addition to the benefits of increased
flexibility, the combination of object nodes
communicating via messages to managers with
their own data bases provides ease of program
restart from given points in time. Such
restarts provide the option of viewing the
implication of alternative decision rules and
are an important aid to system optimisation.
A program with 1limited intrinsic features
will have code added and new variables
defined whenever features are extended. To
dump the program status with a view to
providing restart facilities rules is there-
fore complex. In contrast a program with
modular storage and a minimum of extra
variables is easier to manage.

There are also hardware implications,
especially in view of the development of
multi-processors and transputers. We note
the present benefits of the Pluto board card
as an off-line graphics processor. Similar
applications devoted to simulation are sparse
(Zenios 1987). Current research appears
directed towards speeding the simulation by
identifying relatively independent areas of
activity and distributing these between pro-
cessors. In contrast the off-loading of
implicit 'service' calculations - statistical

monitoring, scheduling and animation has no
impitications for the clock time syn-
chronisation and would appear easier to

implement for coarse grained parallel proc-
essing.

5. CONCLUSIONS

The paper demonstrates the value of a
network structure and computer aided suppox_:t
in the coding of simulation models. In tl:us
context the network structure is a partial
formulation of the rule base used by those
who present their work as AI in program

development. The particular benefits of a
program generator - efficient code and
flexibility for later modification - have

been eclipsed by the management information
that is built into generic models. The paper
discusses how a revision of the sy;tem can
redress this balance. A parallel is drawn
between this solution and object oriented
programming. The possibility of splitting the
"simulation into functional tasks rather than
independent sub-networks is suggested as a

possible implementation of parallelism for
coarse grained processing.
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